高中文科数学教案第一章
高中数学必修1全套教案

人教版高中数学必修1全册教案目录第一章集合与函数概念§1.1.1集合的含义与表示§1.1.2集合间的基本关系§1.1.3集合的基本运算§1.2.1函数的概念§1.2.2映射§1.2.2函数的表示法§1.3.1函数的单调性§1.3.1函数的最大(小)值§1.3.2函数的奇偶性第二章基本初等函数(Ⅰ)§2.1.1指数(2)§2.1.1指数(3)§2.1.2指数函数及其性质(1)§2.1.2指数函数及其性质(2)§2.2.1对数与对数运算(1)§2.2.1对数与对数运算(2)§2.2.2对数函数及其性质(第一、二课时)§2.2.2对数函数及其性质(第三课时)§2.3幂函数§第2章小结与复习第三章函数的应用§3.1.2用二分法求方程的近似解§3.2.1几类不同增长的函数模型§3.2.2函数模型的应用实例(1)§3.2.2函数模型的应用实例(2)§3.2.2函数模型的应用实例(3)第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高一数学必修一教案(精选10篇)

高一数学必修一教案(精选10篇)第一篇:数学初识教学目标:•了解数学的起源和发展历程;•掌握数学基本概念和术语;•培养对数学的兴趣和好奇心。
教学内容:•数学的定义和分类;•数学的起源和发展;•数学的基本概念和术语。
教学重点和难点:•掌握数学的基本概念和术语;•了解数学的起源和发展历程。
教学方法:•课堂讲解结合小组讨论;•配合多媒体教学工具展示数学的发展历程;•指导学生进行实际例子分析。
教学过程:1.导入:通过提问引起学生的兴趣,如“你们对数学有什么认识吗?”2.课堂讲解:介绍数学的定义和分类,并与学生进行互动讨论。
3.小组活动:分成小组,让学生在小组内讨论并展示自己对数学起源和发展的了解。
4.多媒体展示:使用多媒体教学工具展示数学的发展历程,以图表和视频的形式呈现。
5.实例分析:指导学生通过实际例子来理解数学的基本概念和术语。
6.总结:通过课堂总结,巩固学生对数学的认识和理解。
第二篇:函数与方程教学目标:•掌握函数和方程的基本概念;•理解函数与方程之间的关系;•学会用函数解决实际问题。
教学内容:•函数的定义和性质;•方程的定义和性质;•函数与方程之间的关系;•使用函数解决实际问题。
教学重点和难点:•函数与方程之间的关系;•使用函数解决实际问题。
教学方法:•课堂讲解结合实例演练;•小组合作学习;•独立解决实际问题。
教学过程:1.导入:回顾上节课的内容,引出本节课的主题。
2.课堂讲解:介绍函数和方程的基本概念,并与学生进行互动讨论。
3.实例演练:通过具体的函数和方程实例,让学生理解函数与方程之间的关系。
4.小组合作学习:分成小组,让学生在小组内解决一系列与函数和方程相关的问题。
5.独立解决实际问题:指导学生通过函数解决实际问题,提高实际应用能力。
6.总结:通过课堂总结,巩固学生对函数和方程的理解。
第三篇:三角函数初步教学目标:•掌握三角函数的基本概念和性质;•学会计算三角函数的值;•熟练应用三角函数解决实际问题。
高中数学说课稿第一章教案

高中数学说课稿第一章教案一、教学目标:1. 了解数域的概念,能够区分不同数域之间的特点。
2. 理解整式的概念,掌握有理数的加减乘除运算。
3. 掌握代数式的含义和运算规则,能够简化代数式。
二、教学重点和难点:重点:整式的加减乘除运算,代数式的简化。
难点:理解数域的概念,区分不同数域之间的特点。
三、教学过程:1. 概念引入请同学们思考以下问题:什么是数域?不同数域之间有什么区别?通过讨论,引出数域的概念,让学生理解数域是一个包含一组数的集合,并且具有特定的运算规则。
2. 整式的概念和运算介绍整式的概念,以及整式的加减乘除运算规则。
通过例题演练,让学生掌握有理数的加减乘除运算方法,并能够灵活运用。
3. 代数式的概念和运算引导学生理解代数式是由数字、字母和运算符号组成的式子,可以包含变量。
介绍代数式的含义和运算规则,教授如何进行代数式的简化操作。
通过实例演练,让学生熟练掌握代数式的简化方法。
4. 总结归纳总结本节课的重点内容,让学生明确整式和代数式的概念及运算规则,强化学生的记忆和理解。
5. 课堂练习布置相关练习题目,巩固学生的学习成果。
在下节课开始前,可以让学生自主复习或者相互交流讨论,提高对知识的掌握和理解能力。
四、板书设计:1. 数域的概念2. 整式的加减乘除3. 代数式的简化4. 代数运算规则五、教学反思:本节课主要介绍了数域与代数运算的基本概念和规则,通过理论讲解和实例演练,帮助学生建立了整式和代数式的概念框架,并掌握了相关运算技巧。
在后续的教学中,可以通过更多的例题训练和综合运用,进一步提高学生的代数运算能力,并引导学生将代数式运用到实际问题中解决。
高中数学第一章集合教案1

高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。
一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。
教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。
高中数学第一章第2课教案

高中数学第一章第2课教案
教学内容:集合及其运算
教学目标:
1. 了解集合的定义和表示方式。
2. 掌握集合的基本运算:交集、并集、差集。
3. 能够运用集合的运算解决实际问题。
教学重点和难点:
重点:集合的定义、表示方式,集合的基本运算。
难点:理解集合运算的概念及运用。
教学准备:
1. 教材《数学》第一册。
2. 教学课件。
3. 练习题。
教学过程:
一、导入
教师引导学生回顾上节课所学内容,引出集合及其运算的主题。
二、讲解
1. 集合的定义和表示方式。
2. 集合的基本运算:交集、并集、差集。
三、讲解案例
教师通过案例演示集合的运算方法及应用,让学生深入理解集合运算的概念。
四、练习
教师布置练习题,让学生运用所学知识进行练习。
五、总结
教师对本节课所学内容进行总结,强调重要概念和运算方法。
六、作业
布置作业:完成《数学》第一册相关练习题。
七、课外拓展
学生可自行拓展集合运算的相关知识,加深对集合的理解。
教学反思:
教师应该结合学生实际情况,注重培养学生的逻辑思维能力和问题解决能力,引导学生自主学习和思考。
同时,注重实际运用,让学生掌握数学知识的应用技能。
高中文科数学 第1章集合复习学案1

第一章 集合复习(文科学案)(总学案1)撰稿: 潘长生 修订:高二备课 班级 姓名:一、复习目标,心中有数(1)理解集合的含义及其表示法,子集、真子集的定义;(2)了解属于、包含、相等关系的意义;了解两个特殊的集合。
(3)通过例题回顾掌握集合的有关概念,表示方法. 归纳整理本章所学知识使知识形成网络. 二、知识梳理,形成体系 (一)、集合知识导图集合考试说明 (以选择题或填空题考查 5分)1.了解集合的含义、元素与集合的属于关系. 2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合的关系及运算.(二).复习集合的有关基础知识1、集合的概念:(1)集合中元素特征: , ,无序性. (2)集合的分类:①按元素个数多少分: , ,无限集; ②按元素特征分:点集,和 集. (3)集合的表示法:描述法; ;图示法. 2.两类关系:(1)集合中元素与集合的关系分为____和 两种,分别用____和____表示. (2)集合与集合的关系,用 , , 表示(填符号).当A B 时,称A 是B 的 ;当A B 时,称A 是B 的 . 集合间的基本关系⊆≠ ⊂4、两个特殊的集合:(1)空集:.记作:(2)全集:.记作:(四)、集合问题中的几个基本结论1.集合A本身是本身的子集,即________;2.子集关系的传递性,即A⊆B,B⊆C ⇒________;3.A∪A=A∩A=______,A∪∅=______,A∩∅=_____,∁U U=______, ∁U∅=______ 三、合作探究,共同进步例1.(集合概念的认识)判断题(1)已知x,y是实数,集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(2)[2012·江西] 若集合M={z|z=x+y,x∈A,y∈B},其中A={-1,1},B={0,2},则集合M={-1,1,3}.()例2.(集合间关系的基本问题)判断题(1)A={x|2m+1<x<3m},集合B={x|3<x<9},若A⊆B,则1≤m≤3.()(2)含有n个元素的集合的子集个数是2n、真子集个数是2n-1、非空真子集的个数是2n-2.( )例3.(集合的运算与集合间基本关系的联系)判断题(1)A∩B=A∪B的充要条件是A=B.()(2)A∩B=∅的充要条件是A=B=∅.()(3)A∩B=A⇔A⊆B.()(4)A∪B=A⇔B⊆A.()(5)若全集U={-1,0,1,2},P={x∈Z|x2<4},则 ∁U P={0,2}.()例4 (集合的基本概念的理解)(1)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )A.0 B.1 C.2 D.3(2)已知集合A={x|x2+mx+4=0}为空集,则实数m的取值范围是( )A.(-4,4) B.[-4,4] C.(-2,2) D.[-2,2]变式题 (1)下列结论不正确的是( )A.2∈{x |x =a +b 2,a ,b ∈Z }B.3∈{x |x =2+a 3,a ∈R }C .i ∈{x |x =a +b i ,a ,b ∈R }D .1+i ∉{x |x =a +b i ,a ,b ∈R }(2)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0 B .2 C .3 D .6 例5.集合间基本关系的认识(1)[2012·全国卷] 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或3(2)若集合A ={1,a ,b },B ={a ,a 2,ab },且A ∪B =A ∩B ,则实数a 的取值集合是________.变式题 (1)已知M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为( ) A .1 B .-1 C .1或-1 D .0或1或-1(2)设集合A ={x ,y ,x +y },B ={0,x 2,xy },若A =B ,则实数对(x ,y )构成的集合是________.例6.集合的基本运算的求解 (1)[2012·辽宁卷] 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则C U A )∩C U B )=( )A.{5,8} .B.{7,9} .C .{0,1,3} .D .{2,4,6} (2)[2011·陕西] 设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =x ⎪⎪⎪⎪⎪⎪⎪⎪⎪x -1i <2,i为虚数单位,x ∈R ,则M ∩N 为( )A .(0,1) B .(0,1] C .[0,1) D .[0,1]变式题 [2013·北京海淀] 已知全集U =R ,集合A ={x |x 2≥1},则C U A =( )A .(-∞,1)B .(-1,1)C .(1,+∞)D .(-∞,-1)∪(1,+∞) 例7.已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是_ _。
(数学教案)高中数学教案必修1

高中数学教案必修1过教学互动促进师生情感,激发同学的学习爱好,提高同学抽象、概括、分析、综合的力量。
一起看看高中数学教案必修1!欢送查阅! 高中数学教案必修1 一一、说课分析1.指数函数在教材中的地位、作用和特点指数函数是人教版高中数学(必修)第一册其次章“函数〞的第六节内容,是在学习了指数一节内容之后编排的。
通过本节课的学习,既可以对指数和函数的概念等学问进一步稳固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来争辩对数函数的性质打下坚实的概念和图象根底,又由于指数函数是进入高中以后同学遇到的第一个系统争辩的函数,对高中阶段争辩对数函数、三角函数等完整的函数学问,初步培育函数的应用意识打下了良好的学习根底,所以指数函数不仅是本章函数的重点内容,也是高中学段的主要争辩内容之一,有着不行替代的重要作用。
此外,指数函数的学问与我们的日常生产、生活和科学争辩有着紧密的联系,尤其表达在细胞、贷款利率的计算和考古中的年月测算等方面,因此学习这局部学问还有着广泛的现实意义。
本节内容的特点之一是概念性强,特点之二是凸显了数学图形在争辩函数性质时的重要作用。
2.教学目标、重点和难点通过学校学段的学习和高中对集合、函数等学问的系统学习,同学对函数和图象的关系已经构建了肯定的认知结构,主要表达在三个方面:学问维度:对正比例函数、反比例函数、一次函数,二次函数等最简洁的函数概念和性质已有了初步生疏,能够从学校运动变化的角度生疏函数初步转化到从集合与对应的观点来生疏函数。
技能维度:同学对接受“描点法〞描绘函数图象的方法已根本把握,能够为争辩指数函数的性质做好预备。
素养维度:由观看到抽象的数学活动过程已有肯定的体会,已初步了解了数形结合的思想。
鉴于对同学已有的学问根底和认知力量的分析,依据教学大纲的要求,我确定本节课的教学目标、教学重点和难点如下:(1)学问目标:①把握指数函数的概念;②把握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;(2)技能目标:①渗透数形结合的根本数学思想方法②培育同学观看、联想、类比、猜想、归纳的力量;(3)情感目标:①体验从特殊到一般的学习规律,生疏事物之间的普遍联系与相互转化,培育同学用联系的观点看问题②通过教学互动促进师生情感,激发同学的学习爱好,提高同学抽象、概括、分析、综合的力量③领悟数学科学的应用价值。
高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3. 集合相等:构成两个集合的元素完全一样。
4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点:集合计算、指数对数性质、二次函数、分段函数第一章知识梳理1.1集合间的基本关系名称记号意义性质示意图子集BA⊆(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A真子集A≠⊂B(或B≠⊃A)BA⊆,且B中至少有一元素不属于A(1)A≠∅⊂(A为非空子集)(2)若A B≠⊂且B C≠⊂,则A C≠⊂B A集合相等A B=A中的任一元素都属于B,B中的任一元素都属于A(1)A⊆B(2)B⊆AA(B)1.2集合的基本运算交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=1.3函数、指数函数和对数函数的性质1.3.1函数的单调性函数的定义图象判定方法()()()U U UA B A B=()()()U U UA B A B=性 质函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数1.3.2函数的奇偶性①定义及判定方法 函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rrrab a b a b r R =>>∈对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 1.4二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2ba-+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =- (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a≤-≤,则()2b M f a =- ③若2b q a ->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.xxxxx x(q)0x xf xfxfxxx1.5分段函数:(1)分段函数的定义:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数;(2)分段函数定义域,值域:分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”)(3)分段函数图象:画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;例题讲解 1、已知集合{}220,S x x x x R=+=∈,{}220,T x xx x R=-=∈,则ST =( A )A.{0}B.{0,2}C.{-2,0}D. {-2,0,2}2、已知集{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则AB 的元素个数为(C)A .4 B.3 C.2 D. 1 3、若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则D A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数4、函数()lg 11x y x +=-的定义域是( C )A.()1,-+∞ B. [)1,-+∞ C.()()1,11,-+∞ D. [)()1,11,-+∞5、已知函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-. (1)求(1)f -,(2.5)f 的值;(2)写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性; (3)求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值. 5、解:(1)∵)2()(+=x kf x f ,且)(x f 在区间[0,2]时)2()(-=x x x f∴k k kf kf f -=-⋅⋅==+-=-)21(1)1()21()1(由)2()(+=x kf x f 得)(1)2(x f kx f =+ ∴kk f k f f 43)25.0(5.01)5.0(1)25.0()5.2(-=-⋅⋅==+=(2)若]2,0[∈x ,则]4,2[2∈+x ]4)2][(2)2[(1)2(1)(1)2(-+-+=-==+x x kx x k x f k x f ∴当]4,2[∈x 时,)4)(2(k1)(--=x x x f若)0,2[-∈x ,则)2,0[2∈+x ∴)2(]2)2)[(2()2(+=-++=+x x x x x f ∴)2()2()(+=+=x kx x kf x f 若)2,4[--∈x ,则)0,2[2-∈+x∴)4)(2(]2)2)[(2()2(++=+++=+x x k x x k x f ∴)4)(2()2()(2++=+=x x k x kf x f ∵)2,4[)2,3[],4,2[]3,2(--⊂--⊂∴当]3,3[-∈x 时,⎪⎪⎩⎪⎪⎨⎧∈--∈--∈+--∈++=]3,2(),4)(2(1]2,0[),2()0,2[),2()2,3[),4)(2()(2x x x kx x x x x kx x x x k x f ∵0<k ,∴当)2,3[--∈x 时,)4)(2()(2++=x x k x f ,由二次函数的图象可知,)(x f 为增函数;当)0,2[-∈x 时,)2()(+=x kx x f ,由二次函数的图象可知, 当)1,2[--∈x 时,)(x f 为增函数, 当)0,1[-∈x 时,)(x f 为减函数;当]2,0[∈x 时,)2()(-=x x x f ,由二次函数的图象可知,当)1,0[∈x 时,)(x f 为减函数;当]2,1[∈x 时,)(x f 为增函数; 当]3,2(∈x 时,)4)(2(1)(--=x x kx f ,由二次函数的图象可知,)(x f 为增函数。