_R_-_-_-JQ1_Enantiomer_COA_07942_MedChemExpress
Mapping of quantitative trait loci corroborates independent genetic control of apple size and shape

Scientia Horticulturae 174(2014)126–132Contents lists available at ScienceDirectScientiaHorticulturaej o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s c i h o r tiMapping of quantitative trait loci corroborates independent genetic control of apple size and shapeYuansheng Chang a ,Rui Sun a ,Huanhuan Sun a ,Yongbo Zhao b ,Yuepeng Han c ,Dongmei Chen b ,Yi Wang a ,Xinzhong Zhang a ,∗,Zhenhai Han a ,∗aInstitute for Horticultural Plants,College of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China bChangli Institute for Pomology,Hebei Academy of Agricultural and Forestry Science,Changli,Heibei 066600,China cWuhan Botanical Garden,The Chinese Academy of Sciences,Wuhan 430074,Chinaa r t i c l ei n f oArticle history:Received 3April 2014Received in revised form 18May 2014Accepted 19May 2014Available online 9June 2014Keywords:Fruit shape Fruit size QTLMalus domesticaa b s t r a c tFruit size and shape are important external quality traits in commercial crops.To determine the genetic relationship between the size and shape of apple fruits,quantitative trait loci (QTLs)for apple size (average weight),length,diameter,and shape (length/diameter ratio)were identified and mapped in progeny of a ‘Jonathan’בGolden Delicious’cross.Fruit size,length,and diameter followed a normal distribution.There was no correlation between apple size and shape,but both variables were significantly correlated with length and diameter.Forty-five QTLs for apple size,length,diameter,and shape were mapped to 13chromosomes of the two parent cultivars.Of these,12QTLs for fruit length and diameter either overlapped or were closely associated with QTLs for fruit size,whereas three co-localized with QTLs for fruit shape.No QTLs for fruit size mapped to the same or neighboring regions as QTLs for fruit shape,suggesting that size and shape are under independent genetic control.©2014Elsevier B.V.All rights reserved.1.IntroductionFruit size and shape are important external quality traits in commercial fruit crops.Fruit size is usually quantified by average weight and determined by fruit length and diameter.Fruit shape can be quantified morphometrically by length and diameter or can be described using morphological attributes,such as the fruit shape index (FSI;length:diameter ratio),indentation area,and boundary angles (Brewer et al.,2006;Gonzalo et al.,2009).New apple (Malus domestica )varieties,with improved and novel quality traits,for use in apple breeding programs should satisfy consumers (Meneses and Orellana,2013).The market usually demands large fruit.Con-sumers prefer fruit with a relatively larger longitudinal length and smaller latitudinal diameter (Tabatabaeefar et al.,2000;Waseem et al.,2002;Sadrnia et al.,2007).Apple size and shape are under polygene control and are quan-titatively inherited (Brown,1960).The heritability for apple fruit shape aspect (ratio of height to maximum width)is estimated to be 0.79;fruit aspect is best predicted by the ratio of length to∗Corresponding authors.Tel.:+861062734391;fax:+861062734391.E-mail addresses:zhangxinzhong999@ (X.Zhang),rschan@ (Z.Han).diameter (R 2=0.97)(Currie et al.,2000).In our previous work,we identified five major genes involved in the segregation of FSI,and the heritability of these genes was as high as 75.0%(Sun et al.,2012).The heritability of length and diameter in strawberry (Fragaria ×ananassa Duch.)is reported as 0.51and 0.21,respec-tively (Lerceteau-Köhler et al.,2012).In hybrid crosses of European pears,the heritability of fruit shape is estimated to be 0.66from parent–offspring regression,and 0.68from variance component analysis (White et al.,2000).The heritability of apple size has been estimated to be as low as 0.33,whereas estimates for fruit weight are higher (0.56–0.61)(Durel et al.,1998;Oraguzie et al.,2001;Alspach and Oraguzie,2002).Phytohormones and environmental factors have different effects on apple fruit length and diameter.Young seeds likely provide a source of gibberellins during the early stages of fruit development (Garcia-Martinez et al.,1987).Application of exoge-nous gibberellic acid (GA 4+7)during blooming or early fruit developmental stages produces longer apples at ripening,with a FSI >1.0in the ‘Golden Delicious’variety (Eccher and Boffelli,1981).In contrast,foliar application of the plant growth retardant paclobu-trazol (PP333)at 1500or 3000ppm,administered 21days after full blooming,resulted in a significantly lower FSI in ripe fruit compared with control fruit;the reduced FSI persisted until the fourth year after spraying (Greene,1986).Foliar application of GA 3or GA 4+7/10.1016/j.scienta.2014.05.0190304-4238/©2014Elsevier B.V.All rights reserved.Y.Chang et al./Scientia Horticulturae174(2014)126–132127counteracted the effect of PP333(Curry and Williams,1983).Con-tinuous fruit growth,from cell division to ripening,is primarily associated with auxin-related cell expansion(Devoghalaere et al., 2012).The harvest weight of apples is closely correlated with seed number(including aborted seeds),and increased fruit weight is attributed to increased cell number rather than cell size(Denne, 1963).Environmental factors can also affect apple fruit shape, specifically temperature and humidity.Shaw(1914)observed that fruit length was longer when temperatures were lower following full bloom.Tromp(1990)reported that the FSI of‘Golden Delicious’was lower in apples grown at a relative humidity between40and 50%than in apples grown at80–90%relative humidity.Developmental rhythms differ for fruit length vs.diameter.The expression of genes important in cell division(e.g.,MdANT1and MdANT2)is high from bloom until15days after full blooming(Dash and Malladi,2012),a period coinciding with active cell division and rapid longitudinal fruit growth(Skene,1966).Quantitative trait loci(QTLs)are important in the investiga-tion of the genetic control of economically valuable traits.Genetic linkage maps enable the identification of chromosome regions con-taining one or more genes associated with QTLs(Meneses and Orellana,2013;Tanksley,1993).Since the generation of thefirst integrated apple linkage map (Rome Beauty×White Angel;Hemmat et al.,1994),several genetic linkage maps have been reported in apple(Conner et al.,1997; Maliepaard et al.,1998;Liebhard et al.,2002,2003;Baldi et al., 2004;Silfverberg-Dilworth et al.,2006;Calenge et al.,2004;Kenis et al.,2008;Zhang et al.,2012).Saturated and high-density genetic linkage maps are useful for genetic research,and many traits have been mapped in apple (Conner et al.,1997;Weeden et al.,1994;Stankiewicz-Kosyl et al., 2005;Fernández-Fernández et al.,2008;Gao et al.,2005).In apple,QTLs for fruit length have been mapped on linkage group(LGs)2,6,15,and17;and QTLs for apple diameter on LGs2, 5,9,10,and17(Kenis et al.,2008).However,mapping results in dif-ferent years(2004and2005)were found to be inconsistent(Kenis et al.,2008).Several QTLs for apple fruit size have been identified in different mapping populations,including‘Fiesta’בDiscovery,’‘Telamon’בBraeburn’,‘Royal Gala’בBraeburn,’and‘Starkrim-son’בGranny Smith’(Liebhard et al.,2003;Kenis et al.,2008; Devoghalaere et al.,2012).We previously mappedfive major gene loci involved in the determination of FSI using bulked segregant analysis in a ‘Jonathan’בGolden Delicious’mapping population;these were located on LGs11,12,and13of the female parent‘Jonathan’,and on LG10of the male parent‘Golden Delicious’(Sun et al.,2012). However,we did not obtain any QTLs without linkage maps at that time.In this study,to clarify the genetic relationships among fruit weight,length,diameter,and FSI,and we analyzed the inheritance of these external quality traits,and identified QTLs associated with them.2.Materials and methods2.1.Plant materialsThe apple cultivars‘Jonathan’(J)and‘Golden Delicious’(G),with ‘Jonathan’as the female parent were crossed in spring2002at the Changli Institute of Pomology(Hebei Province,China)to obtain hybrid progeny.Seedlings were planted in2003at a density of one per0.5m×2m plot,resulting in a J×G F1population of1733 seedlings.After planting,the seedlings were subjected to conven-tionalfield management and pest control procedures(Sun et al., 2012).2.2.PhenotypingApples sufficient for phenotyping were harvested in1162 seedlings in2008.Due to alternate bearing,ripening fruit from971 seedlings were collected in2009.A vernier caliper was used for the measurements of fruit diameter(D)and fruit length(L).The phenotypic value used for further analysis was represented by the average values of at leastfive apples per seedling each year.FSI was calculated using the formula FSI=L/D.Fruit size was recorded as the average fruit weight,and the phenotypic data of fruit size were the average values offive apples,which were determined by weighing the fruit on an analytical balance.2.3.Inheritance analysisTo evaluate the quality of phenotypic data to obtain reliable results of QTL identification,data of fruit length and fruit diame-ter were subjected to analysis of variance(ANOVA,F-test)using Microsoft Excel2003with30randomly selected seedlings,which bear sufficient amounts of fruit(n=10apples per plant)in both 2008and2009.The correlations of fruit length,diameter,shape, and size were analyzed using data collected from983seedlings in 2008and from789seedlings in2009.Inheritance was analyzed using frequency-distribution analysis,Shapiro–Wilk tests(SPSS v.12.0;SPSS Inc.,Chicago,IL,USA),and chi-square tests(Microsoft Excel2003).This protocol has been previously described by Sun et al.(2012).Phenotypic variance(S)was defined as the sum of genotypic variance(Sg)and environmental variance(Se).Heritabil-ity was calculated as(S−Se)/S×100%,and S was calculated using the variance among the30seedlings.Environmental variance was represented by the average variance among the10apples from each seedling(Sun et al.,2012).2.4.QTL analysisQTL analysis was performed using our previously published genetic linkage maps(Zhang et al.,2012),which consisted of 242individuals and251simple sequence repeat(SSR)markers. Phenotypic data on fruit length,diameter,FSI and size for the map-ping population(n=242seedlings)were collected in2008(n=144 seedlings)and2009(n=140seedlings).MapQTL 6.0(Van Ooijen et al.,2009)was used to analyze QTLs.Interval mapping was performed,and the genome-and chromosome-wide threshold for QTL significance of logarithm of odds(LOD)was calculated by performing1000iterations using the MapQTL Permutation Test.The genome-wide threshold was LOD=2.80at the95%confidence interval.3.Results3.1.Phenotype evaluationThere was significant variation in fruit diameter,length,and FSI among the seedlings and between the sampling years,but there were no significant differences among apples from individ-ual seedlings(Table1).Unfortunately,ANOVA could not be used for fruit size because phenotypic data were obtained by averaging the weight of10apples from each seedling.Fruit length and diameter were significantly correlated(r>0.70) in both2008and2009.FSI was positively correlated with fruit length,and negatively correlated with fruit diameter.The abso-lute values of correlation coefficients between FSI and fruit length were larger than those between FSI and fruit diameter,suggesting that length was a more pronounced trait than diameter.Although both length and diameter were positively correlated with fruit size, the correlation was stronger for diameter,indicating that fruit size128Y.Chang et al./Scientia Horticulturae 174(2014)126–132Fig.1.Frequency distributions of fruit length,diameter,and size (weight)in progenies from the ‘Jonathan’בGolden Delicious’hybrid cross.Phenotypic data were collected in 2008and 2009.The parental values are indicated on the figures with vertical dash lines.(weight)was more a function of diameter than of length.No signif-icant correlation was detected between FSI and fruit size (Table 2).Fruit size,length,and diameter followed normal distribution patterns in both sampling years,and they showed features typical of quantitative traits controlled by polygenes without major gene segregation (Fig.1).The broad-sense heritability of fruit length and diameter were estimated as 91%and 93%,respectively in 2008;and as 82%and 85%in 2009.These values indicated that environmental effects had a greater effect on fruit quality in 2009(Table 3).3.2.QTL analysisNineteen QTLs for fruit size,shape,length,and diameter were identified at the whole-genome level based on a LOD thresh-old ≥2.80in both sampling years (Table 4).Twenty-six additionalTable 1F -tests of phenotypic traits in apple fruit.VariationTraitYearFF 0.01Seedlings Length 2008106.62* 1.78200947.57* 1.78Diameter2008142.01* 1.78200960.69*1.78ReplicatesLength20080.22 2.4720090.70 2.47Diameter20080.147 2.4720090.542.47YearsLength 56.53* 6.68Diameter23.05*6.68*Significant difference at P ≤0.01as determined using Duncan’s test.QTLs were identified,based on a permutation test at P =0.05,at the single-chromosome-based LOD threshold (Table 4,Fig.2).Of these,eight QTLs related to fruit length were detected in 2008;no QTLs for fruit length were detected in 2009.Eleven and two QTLs for fruit size were identified in 2008and 2009,respec-tively.Nine QTLs in 2008and two QTLs in 2009for fruit diameter mapped onto the two parental linkage groups.In addition,we also detected seven and six QTLs associated with FSI in 2008and 2009,respectively.For FSI,one QTL,fsij08.11.2/fsij09.11on LG11of the female parent ‘Jonathan,’and one QTL fsig08.15/fsig09.15.1in the male parent ‘Golden Delicious’were observed in both years (Fig.2).Four QTLs for fruit size,four for diameter,and three for length co-localized and clustered on chromosome 8of ‘Golden Delicious.’The fszg08.11.1QTL for fruit size was tightly linked to flg08.11forTable 2Correlations between apple length,diameter,shape index,and size in a ‘Jonathan’בGolden Delicious’hybrid population.Fruit traitFruit lengthFruit diameterFruit shape2008Fruit diameter 0.77*Fruit shape 0.48*−0.19*Fruit size0.76*0.87*−0.0332009Fruit diameter 0.76*Fruit shape 0.42*−0.27*Fruit size0.78*0.89*−0.084983seedlings in 2008and 789in 2009were used to analyze the correlations of fruit length,diameter,shape and size (r 0.05=0.0625and r 0.01=0.082in 2008;r 0.05=0.07and r 0.01=0.09in 2009).*Significance at P =0.05.Y.Chang et al./Scientia Horticulturae174(2014)126–132129 Table3Estimated heredity parameters for apple length and diameter in a‘Jonathan’בGolden Delicious’hybrid population.Trait Year Average±SD(mm)Population variance(S)Genetic variance(Sg)Environmental variance(Se)Heritability(%) Fruit length200858.66±5.48123.41112.4310.9891.10 200952.88±4.5828.3823.24 5.1481.89Fruit diameter200868.70±5.69156.63145.9610.6793.20 200963.27±5.1540.3334.39 5.9485.30length and to fdg08.11for diameter on LG11of‘Golden Delicious’(Table4,Fig.2).The QTL fszj08.15(fruit size)overlappedflj08.15 (fruit length)exactly on chromosome15of‘Jonathan’.The fszg08.3 QTL for fruit-size coincided with fdg08.11.3(fruit diameter)and QTL fszj08.5(fruit size),and partially overlapped fdj08.5(fruit diame-ter)on LG5of‘Jonathan’(Table4,Fig.2).For FSI,fsij08.4partially overlappedflj08.4(fruit length)on LG4of Jonathan;fsij09.9was co-localized with fdj09.9on LG9;and fsij08.17was closely linked to flj08.17on LG17of‘Jonathan’(Table4,Fig.2).4.DiscussionFruit size and shape indices were closely associated with length and diameter,whereas the inheritance of fruit size,shape,length, and diameter differed.The normal distribution of phenotypic traits suggests that apple length,diameter,and size are under polygenetic control.However,variation in FSI is associated with segregation in both major genes and polygenes,and the heritability of major genes was found to be as high as75%(Sun et al.,2012).Table4Quantitative trait loci(QTLs)and mapping information for apple size,shape,length,and diameter in segregated progeny of‘Jonathan’בGolden Delicious’.Trait Year QTL LG Location Nearest marker LOD Contribution to totalvariance(%)Fruit length2008flj08.15J150.000WBGCAS50 3.5010.10flj08.17J17-20.000NZmsEB137525 2.337.60flj08.4J40.000Hi23g08 2.01 6.20flj08.8J871.700Hi23g12 1.797.30flg08.8.1G869.141H20b03 3.9812.10flg08.8.2G837.552BACSSR46 3.0411.80flg08.8.3G830.644CTG1069672 3.3013.00flg08.11G1116.788CH05c02 2.347.70Fruit diameter2008fdj08.5J591.033NZmsCN898349 2.809.20fdj08.13J1321.582CTG1075622 2.087.20fdg08.2G258.212CH03d10 2.387.30fdg08.3G382.408WBGCAS27 2.258.10fdg08.8.1G868.660Hi20b03 3.1710.1fdg08.8.2G853.250CH05a02 3.0212.5fdg08.8.3G837.552BACSSR46 2.8510.90fdg08.8.4G830.644CTG1069672 3.0311.30fdg08.11G1120.788BACSSR10 2.539.202009fdj09.9J927.391CTG1067792 2.739.10fdg09.4G4 5.000CH01b01b 1.80 6.30Fruit shape index2008fsij08.4J40.000Hi23g08 2.878.40fsij08.17J17-2 5.000CN938125 1.91 6.20fsig08.15G15-1 1.000CH02c09 2.598.00fsij08.11.1J1114.813Hi23d02 4.0012.80fsij08.11.2J117.371CH02d12 3.4210.30fsij08.11.3J11 3.000CH02d08 3.7613.70fsij08.5J57.000CN881672 1.817.702009fsij09.9J924.391CTG1067792 2.659.20fsij09.13J1332.087CTG1075622 2.2110.00fsij09.7J715.069CTG1060504 1.817.20fsig09.15.1G15-1 3.000CH02c09 1.95 6.70fsig09.15.2G15-151.249NZmsEB117266 1.85 5.50fsij09.11J117.371CH02d12 4.0210.20Fruit size2008fszg08.8.1G869.141Hi20b03 4.2912.80fszg08.8.2G851.250CH04g12 3.0712.60fszg08.8.3G837.552BACSSR46 3.1311.50fszg08.8.4G828.644CTG1069672 3.3112.60fszg08.11.1G1124.788BACSSR10 2.979.70fszg08.11.2G119.930CH04a12 2.447.30fszg08.11.3G110.000CH02d08 2.147.10fszj08.5J595.033Hi02a03 2.517.7fszj08.15J150WBGCAS50 2.227.2fszj08.12J1257.944CH03c02 2.019.6fszg08.3G384.408WBGCAS27 1.72 6.42009fszg09.12G1245.311WBGCAS37 2.02 6.7fszg09.14G1494.33NZmsEB146613 1.858.9LG:linkage group;LOD:logarithm of odds.QTLs detected at whole-genome LOD threshold≥2.8are indicated in bold fonts.130Y.Chang et al./Scientia Horticulturae 174(2014)126–132Fig.2.Internal mapping of quantitative trait loci (QTLs)for fruit length,diameter,shape index (FSI),and size using the ‘Jonathan’בGolden Delicious’hybrid population.The letters J and G on the top of the linkage maps represent the maternal parent ‘Jonathan’and pollen parent ‘Golden Delicious’,respectively.The number following J and G indicates the number of linkage groups.Homologs between parents on corresponding linkage groups (LGs)are joined to each other with solid black lines.The solid color bars indicate the QTLs identified on the most likely position of the linkage groups,while the thin lines represent the confidence interval at the 95%level.QTLs for fruit length,diameter,size,and FSI are marked by the black,blue,red,and yellow color bars,respectively.F11-1and F11-2,on LG11of ‘Jonathan’,represent the two major gene loci for FSI detected by Sun et al.(2012).(For interpretation of the references to color in this legend,the reader is referred to the web version of the article.)Our findings contrasted with previous reports that apple fruit size is a quantitative trait with relatively low heritability (0.33–0.61)(Durel et al.,1997;Oraguzie et al.,2001;Alspach and Oraguzie,2002).The heritability of fruit length and diameter was relatively high (82–93%)during the two years of evaluation.Both FSI and fruit size correlated with fruit length and diameter.QTLs for closely correlated traits should map to the same or simi-lar positions (Paterson et al.,1991;Kenis et al.,2008).Thus,QTLs associated with FSI or fruit size,at least in part,should overlap or be linked to those for fruit length and diameter.Indeed,the three QTLs for fruit size (fszg08.8.1,fszg08.8.3,and fszg08.8.4)completely overlapped QTLs for fruit length (flg08.8.1,flg08.8.3,and flg08.8.4),and those for fruit diameter (fdg08.8.1,fdg08.8.3,and fdg08.8.4).In ‘Telamon’and ‘Braeburn’progeny,QTLs for apple weight,height,and diameter on LG17partially overlapped with QTLs for fruit height and diameter on LG2.Furthermore,year-stable QTLs for fruit weight and diameter overlapped on LG10of the two par-ents (Kenis et al.,2008).Similarly,the QTL for FSI (fsij08.4)precisely overlapped the one for fruit length (flj08.4),whereas fsij09.9and fsij08.17for FSI were closely linked to fdj09.9and flj08.17,respec-tively.These co-localizations confirmed the correlation analysis that indicated that fruit length strongly affects FSI.In our hybrid population,QTLs for fruit length (on LGs 15and 17)and diameter(on LGs 2,5,and 9)were located on the same LGs as QTLs in the ‘Telamon’בBraeburn’cross (Kenis et al.,2008).Using two map-ping populations,Devoghalaere et al.(2012)identified six QTLs for fruit size,on LGs 5,8,11,15,16,and 17;of these,QTLs on LGs 8and 15were conserved across both populations.In hybrid populations derived from European and Chinese pears,QTLs for FSI,weight,and length co-localized on LG8;interestingly,some QTLs clustered on LG7of the female parent (Zhang et al.,2013).However,we did not detect significant correlations between FSI and fruit size.Thus,the QTLs for these traits did not map close to each other on the same chromosomes.Rather,QTLs for FSI over-lapped with or were linked to QTLs for fruit length and diameter on chromosomes that were not linked to fruit size,thus demonstrat-ing that FSI and fruit size are controlled by different genes.Such independent genetic control differs fundamentally from other fruit species,such as pear (Zhang et al.,2013).In muskmelon (Cucumis melo L.),the major QTL for fruit shape (fs2.2)is co-localized with a major gene (andromonoecious );this effect is detectable in com-parisons of ovary and fruit length,but not ovary and fruit width (Périn et al.,2002).Another major QTL for fruit shape,fs12.1,co-segregates with another major gene,pentamerous ,and this effect is detectable in comparisons of ovary and fruit width,but not ovary and fruit length (Périn et al.,2002).Y.Chang et al./Scientia Horticulturae174(2014)126–132131We observed a significant correlation between fruit length and diameter,and a close relationship between fruit diameter and size. Four QTLs for fruit diameter,compared with only one QTL for fruit length,co-segregated with or closely linked to QTLs for fruit size. Four QTLs also contributed simultaneously to fruit size,length, and diameter.Instability of QTLs between different years of detec-tion has been reported for many species(Liebhard et al.,2003; Zhang et al.,2013).However,only two QTLs,fsij08.11.2/fsij09.11 and fsig08.15/fsig09.15.1,were stable across the two-year study.The variation in fruit length and diameter between the sampling years indicates that environmental effects or genotype–environment interactions affect the robustness of QTLs between years.Kenis et al.(2008)also observed that QTLs for fruit weight,diameter,and height differed among years.QTL-mapping software provides a powerful tool for detecting major genes for qualitative and quantitative traits(Jones et al., 1997).Our previous study used the same data sets to identifyfive major gene loci involved in apple FSI(Sun et al.,2012).Of thesefive loci,F11-1(Fig.2),flanked by CH02d08and CH04a12,mapped to the same region as the year-stable QTL fsij08.11.2/fsij09.11at7.371 cM on chromosome11of the female parent‘Jonathan’,closest to CH02d12.The major gene locus F13was located in the same region as the QTL fsij09.13(Sun et al.,2012).In the apple genome,more than10genes related to fruit growth and development,including genes involved in cell division and auxin signaling,are scattered in the region of CH02d12,at7.371 cM on LG11.An auxin response factor gene,ARF106,which modu-lates cell division and expansion,is co-localized with a stable QTL for fruit weight in duplicated regions on LGs8and15of the apple genome(Devoghalaere et al.,2012).In conclusion,45QTLs for apple fruit size,shape,length,and diameter were identified from a‘Jonathan’×’Golden Delicious’population.Of the19QTLs for fruit length and diameter,12over-lapped with or tightly linked to QTLs for fruit size,and another three co-localized with QTLs for fruit shape.None of the QTLs for fruit size mapped to the same region as QTLs for fruit shape,indicating that fruit size and shape are under independent genetic control.AcknowledgmentsThis work was supported by the Hi-Tech Research and Devel-opment(863)Program of China(2011AA001204);National Special Funds for Scientific Research on Public Causes(Agriculture)Project 200903044;Modern Agricultural Industry Technology System (Apple)(CARS-28);and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Nutrition and Physiology), Ministry of Agriculture,P.R.China.Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at /10.1016/j.scienta. 2014.05.019.ReferencesAlspach,P.A.,Oraguzie,N.C.,2002.Estimation of genetic parameters of apple(Malus domestica)fruit quality from open-pollinated families.New Zeal.J.Crop Hortic.Sci.30,219–228.Baldi,P.,Patocchi,A.,Zini,E.,Toller,C.,Velasco,R.,Komjanc,M.,2004.Cloning and linkage mapping of resistance gene homologues in apple.Theor.Appl.Genet.109,231–239.Brewer,M.T.,Lang,L.,Fujimura,K.,Dujmovic,N.,Gray,S.,Van der Knaap,E.,2006.Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species.Plant Physiol.141,15–25. Brown,A.G.,1960.The inheritance of shape,size and season of ripening in progenies of the cultivated apple.Euphytica9,327–337.Calenge,F.,Faure,A.,Goerre,M.,Gebhardt,C.,Van de Weg,W.E.,Parisi,L.,Durel,C.E.,2004.Quantitative trait loci(QTL)analysis reveals both broad-spectrumand isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis.Phytopathology94,370–379.Conner,P.J.,Brown,S.K.,Weeden,N.F.,1997.Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars.J.Am.Soc.Hortic.Sci.122, 350–359.Curry,E.A.,Williams,M.W.,1983.Promalin or GA increase pedicel and fruit length and leaf size of‘Delicious’apples treated with paclobutrazol.Hortscience18, 214–215.Currie,A.J.,Ganeshanandam,S.,Noiton,D.A.,Garrick,D.,Shelbourne,C.J.A.,Oraguzie, N.,2000.Quantitative evaluation of apple(Malus×domestica Borkh.)fruit shape by principal component analysis of Fourier descriptors.Euphytica111,221–227. Dash,M.,Malladi,A.,2012.The AINTEGUMENTA genes,MdANT1and MdANT2,are associated with the regulation of cell production during fruit growth in apple (Malus×domestica Borkh.).BMC Plant Biol.12,98.Denne,M.P.,1963.Fruit development and some tree factors affecting it.New Zeal.J.Bot.1,265–294.Devoghalaere,F.,Doucen,T.,Guitton,B.,Keeling,J.,Payne,W.,Ling,T.J.,Ross,J.J., Hallett,I.C.,Gunaseelan,K.,Dayatilake,G.A.,Diak,R.,Breen,K.C.,Tustin,D.S., Costes,E.,Chagne,D.,Schaffer,R.J.,David,K.M.,2012.A genomics approach to understanding the role of auxin in apple(Malus×domestica)fruit size control.BMC Plant Biol.12,7.Durel,C.E.,Laurens,F.,Fouillet,A.,Lespinasse,Y.,1998.Utilization of pedigree infor-mation to estimate genetic parameters from large unbalanced data sets in apple.Theor.Appl.Genet.96,1077–1085.Eccher,T.,Boffelli,G.,1981.Effect of dose and time of application of GA on russeting fruit set and shape of Golden Delicious apple.Sci.Hortic.14, 307–314.Fernández-Fernández,F.,Evans,K.M.,Clarke,J.B.,Govan,C.L.,James,C.M.,Mariˇc,S., Tobutt,K.R.,2008.Development of an STS map of an interspecific progeny of Malus.Tree Genet.Genomics4,469–479.Gao,Z.S.,Van de Weg,W.E.,Schaart,J.G.,Van der Meer,I.M.,Kodde,L.,Laimer,M., Breiteneder,H.,Hoffmann-Sommergruber,K.,Gilissen,L.J.W.J.,2005.Linkage map positions and allelic diversity of two Mal d3(non-specific lipid transfer protein)genes in the cultivated apple(Malus domestica).Theor.Appl.Genet.110,479–491.Garcia-Martinez,J.L.,Sponsel,V.M.,Gaskin,P.,1987.Gibberellins in developing fruits of Pisum sativum cv.Alaska:studies on their role in pod growth and seed devel-opment.Planta170,130–137.Greene,D.W.,1986.Effect of paclobutrazol and analogs on growth yield,fruit quality, and storage of‘Delicious’apples.J.Am.Soc.Hortic.Sci.111,328–332. Gonzalo,M.J.,Brewer,M.T.,Anderson,C.,Sullivan,D.,Gray,S.,Van der Knaap,E.,2009.Tomato fruit shape analysis using morphometric and morphologyattributes implemented in tomato analyzer software program.J.Am.Soc.Hortic.Sci.134,77–87.Hemmat,M.,Weeden,N.F.,Manganaris,A.G.,Lawson,D.M.,1994.Molecular marker linkage map for apple.J.Hered.85,4–11.Jones,N.,Ougham,H.,Thomas,H.,1997.Markers and mapping:we are all geneticists now.New Phytol.137,165–177.Kenis,K.,Keulemans,J.,Davey,M.W.,2008.Identification and stability of QTLs for fruit quality traits in apple.Tree Genet.Genomes4,647–661.Lerceteau-Köhler,E.,Moing,A.,Guérin,G.,Renaud,C.,Petit,A.,Rothan,C.,Denoyes,B.,2012.Genetic dissection of fruit quality traits in the octoploid cultivatedstrawberry highlights the role of homoeo-QTL in their control.Theor.Appl.Genet.124,1059–1077.Liebhard,R.,Gianfranceschi,L.,Koller,B.,Ryder,C.D.,Tarchini,R.,Van De Weg,E., Gessler,C.,2002.Development and characterisation of140new microsatellites in apple(Malus×domestica Borkh.).Mol.Breeding10,217–241.Liebhard,R.,Kellerhals,M.,Pfammatter,W.,Jertmini,M.,Gessler,C.,2003.Mapping quantitative physiological traits in apple(Malus×domestica Borkh.).Plant Mol.Biol.52,511–526.Maliepaard,C.,Alston,F.H.,Van Arkel,G.,Brown,L.M.,Chevreau,E.,Dunemann,F., Evans,K.M.,Gardiner,S.,Guilford,P.,Van Heusden,A.W.,Janse,J.,Laurens,F., Lynn,J.R.,Manganaris,A.G.,Den Nijs,A.P.M.,Periam,N.,Rikkerink,E.,Roche, P.,Ryder,C.,Sansavini,S.,Schmidt,H.,Tartarini,S.,Verhaegh,J.J.,Vrielink-van Ginkel,M.,King,G.J.,1998.Aligning male and female linkage maps of apple (Malus pumila Mill.)using multi-allelic markers.Theor.Appl.Genet.97,60–73. Meneses,C.,Orellana,A.,ing genomics to improve fruit quality.Biol.Res.46,347–352.Oraguzie,N.C.,Hofstee,M.E.,Brewer,L.R.,Howard,C.,2001.Estimation of genetic parameters in a recurrent selection program in apple.Euphytica118,29–37. Paterson,A.H.,Damon,S.,Hewitt,J.D.,Zamir,D.,Rabinowitch,H.D.,Lincoln,S.E., Lander,E.S.,Tanksley,S.D.,1991.Mendelian factors underlying quantitative traits in tomato:comparison across species,generations,and environments.Genetics127,181–197.Périn,C.,Hagen,L.S.,Giovinazzo,N.,Besombes,D.,Dogimont,C.,Pitrat,M.,2002.Genetic control of fruit shape acts prior to anthesis in melon(Cucumis melo L.).Mol.Genet.Genomics266,933–941.Sadrnia,H.,Rajabipour,A.,Jafary,A.,Javadi,A.,Mostofi,A.,2007.Classification and analysis of fruit shapes in long type watermelon using image processing.Int.J.Agric.Biol.9,68–70.Shaw,J.K.,1914.A study in variation in apples.Mass.Agric.Exp.Stn.Bull.149,21–36. Silfverberg-Dilworth,E.,Matasci,C.L.,Van de Weg,W.E.,Van Kaauwen,M.P.W., Walser,M.,Kodde,L.P.,Soglio,V.,Gianfranceschi,L.,Durel, C.E.,Costa, F., Yamamoto,T.,Koller,B.,Gessler,C.,Patocchi,A.,2006.Microsatellite markers spanning the apple(Malus×domestica Borkh.)genome.Tree Genet.Genomes2, 202–224.。
Infoprint 250 導入と計画の手引き 第 7 章ホスト

SUBNETMASK
255.255.255.128
Type of service...............: TOS
*NORMAL
Maximum transmission unit.....: MTU
*LIND
Autostart.....................:
AUTOSTART
*YES
: xx.xxx.xxx.xxx
: xx.xxx.xxx.xxx
*
(
)
IEEE802.3
60 1500
: xxxx
48 Infoprint 250
31. AS/400
IP
MTU
1
1
IPDS TCP
CRTPSFCFG (V3R2)
WRKAFP2 (V3R1 & V3R6)
RMTLOCNAME RMTSYS
MODEL
0
Advanced function printing............:
AFP
*YES
AFP attachment........................:
AFPATTACH
*APPC
Online at IPL.........................:
ONLINE
FORMFEED
*CONT
Separator drawer......................:
SEPDRAWER
*FILE
Separator program.....................:
SEPPGM
*NONE
Library.............................:
jq命令用法 -回复

jq命令用法-回复JQ命令的用法是什么?JQ是一个实用的命令行工具,用于处理和转换JSON数据。
它提供了一组强大的功能,可以通过简洁的命令实现对JSON数据的查询、过滤、转换等操作。
无论是处理单个JSON对象还是大量JSON数据,JQ都能够高效地完成任务。
在本文中,我们将一步一步地介绍JQ命令的用法。
我们将从安装JQ开始,然后学习如何进行基本的JSON查询和过滤,接着探讨如何使用JQ进行JSON数据转换和格式化,最后介绍一些高级用法和技巧。
第一步:安装JQ在使用JQ之前,我们需要先安装它。
JQ可在多个操作系统上安装,包括Linux、macOS和Windows。
下面是在一些常见操作系统上安装JQ的方法:- 对于Ubuntu或Debian系统,可以使用以下命令安装JQ:sudo apt-get install jq- 对于CentOS或Fedora系统,可以使用以下命令安装JQ:sudo yum install jq- 对于macOS系统,可以使用以下命令通过Homebrew安装JQ:brew install jq- 对于Windows系统,可以从JQ的官方网站(安装完成后,可以通过在终端中输入以下命令来验证JQ是否安装成功:jq version如果成功安装,将显示JQ的版本信息。
第二步:基本查询和过滤现在让我们来学习一些最基本的JQ查询和过滤操作。
假设我们有一个名为data.json的JSON文件,其中包含了一些用户的个人信息,其中一个示例数据如下:{"users": [{"name": "Alice","age": 28,"email": "alice@example"},{"name": "Bob","age": 32,"email": "bob@example"},{"name": "Charlie","age": 45,"email": "charlie@example"}]}要从这个JSON数据中提取特定的信息,我们可以使用JQ的查询语法。
jq命令用法 -回复

jq命令用法-回复jq是一个强大的命令行工具,用于处理和转换JSON数据。
它提供了一个简洁、灵活和高效的方式来查询、修改和过滤JSON数据。
本文将介绍jq 命令的用法,并以中括号内的内容为主题,逐步回答问题。
[jq命令的安装]首先,我们需要安装jq命令。
jq是一个跨平台的工具,可以在Linux、Mac和Windows上使用。
在大多数Linux发行版上,可以通过包管理器进行安装:sudo apt-get install jq (Debian或Ubuntu)sudo yum install jq (CentOS或Red Hat)在Mac上,可以使用Homebrew进行安装:brew install jq在Windows上,可以从官方网站([jq命令的基本用法]安装完jq命令后,我们可以开始使用它了。
jq命令的基本用法是通过管道将JSON数据传递给jq命令,并使用过滤器对数据进行处理。
以下是一个简单的示例:echo '{"name": "John", "age": 30}' jq '.name'上述命令的输出结果为:"John"在这个示例中,JSON数据是通过echo命令传递给jq命令的。
jq命令使用了一个过滤器'.name',它表示要提取JSON数据中的"name"字段。
[jq命令的查询功能]jq命令提供了灵活的查询功能,可以按照不同的条件进行数据过滤和提取。
以下是一些常用的jq查询示例:1. 使用点操作符(.)提取字段:echo '{"name": "John", "age": 30}' jq '.name'输出结果为:"John"2. 使用多级点操作符提取嵌套字段:echo '{"person": {"name": "John", "age": 30}}' jq ''输出结果为:"John"3. 使用多个字段提取多个值:echo '{"name": "John", "age": 30, "address": "New York"}' jq '.name, .age'输出结果为:"John"304. 使用通配符(*)提取所有值:echo '[{"name": "John", "age": 30}, {"name": "Jane", "age": 25}]' jq '.[]'输出结果为:{"name": "John", "age": 30}{"name": "Jane", "age": 25}5. 使用条件查询:echo '[{"name": "John", "age": 30}, {"name": "Jane", "age": 25}]' jq 'map(select(.age > 28))'输出结果为:[{"name": "John","age": 30}]在这个示例中,使用了条件表达式`.age > 28`来筛选年龄大于28的数据。
jq命令用法 -回复

jq命令用法-回复"jq命令用法"是一款非常强大的命令行工具,用于处理和转换JSON数据。
它具有简单直观的语法和强大的功能,使得处理JSON数据变得非常灵活和高效。
在本文中,我将一步一步回答关于jq命令用法的常见问题,并为读者提供具体的示例和使用指南。
1. jq命令的安装与基础用法首先,我们需要在本地系统中安装jq命令。
jq是一个跨平台的工具,可以在Linux、Mac和Windows系统上运行。
你可以从jq官方网站(安装完成后,我们可以通过命令行窗口输入"jq"命令来验证是否安装成功。
如果出现帮助文档,说明jq命令已经安装成功。
2. 从JSON文件读取数据在使用jq命令处理JSON数据之前,首先要了解如何从JSON文件中读取数据。
假设我们有一个名为"data.json"的JSON文件,其中包含以下数据:{"name": "John","age": 25,"city": "New York"}我们可以使用以下命令从JSON文件中读取数据:jq '.' data.json这条命令中的句点(.)表示选择所有数据。
上述命令将输出整个JSON文件的内容,即:{"name": "John","age": 25,"city": "New York"}3. 选择特定的JSON字段有时候我们只关心JSON数据中的某个特定字段。
在jq命令中,可以使用"."后面跟上字段名的方式来选择某个特定字段。
例如,我们想获取上述JSON数据中的"name"字段的值,可以使用以下命令:jq '.name' data.json输出结果为:"John"同样的方式也适用于选择嵌套的字段。
jq命令用法 -回复

jq命令用法-回复jq命令是一款流行的命令行工具,用于处理和转换JSON数据。
它提供了丰富的功能和灵活的语法,使得对JSON数据进行筛选、修改和重构变得非常容易。
本文将详细介绍jq命令的用法,以及如何使用jq命令来处理不同主题的JSON数据。
一、jq命令的基本用法1. 安装jq命令:首先,我们需要安装jq命令。
如果你使用的是Linux系统,可以通过包管理器直接安装。
例如,使用apt-get命令在Debian或Ubuntu上安装jq:`sudo apt-get install jq`。
对于其他操作系统,你可以在jq的官方网站上找到相关的安装指南和二进制文件。
2. 检查jq版本:安装完成后,我们可以使用`jq version`命令来检查jq的版本信息,以确保安装正确。
如果输出了版本号,说明jq已经成功安装。
3. 基本用法:jq命令的基本用法是通过管道将JSON数据传递给jq命令,然后jq命令会根据你提供的过滤条件来处理JSON数据。
以下是一个简单的示例,演示了如何使用jq命令从JSON数据中提取特定字段:echo '{"name":"John","age":30,"city":"New York"}' jq '.name' "John"上述例子中,我们使用echo命令将JSON数据作为字符串传递给jq命令,然后使用jq命令的语法`.name`来提取name字段的值。
结果会被打印到终端上。
二、使用jq命令处理JSON数组jq命令不仅适用于处理单个JSON对象,它同样适用于处理包含多个JSON对象的数组。
以下是一些常用的jq命令来处理JSON数组的示例:1. 过滤数组:使用jq命令的`.[index]`语法,可以根据数组的索引来提取特定元素。
例如,假设我们有一个JSON数组,其中包含了多个员工的信息:echo '[{"name":"John","age":30,"city":"NewYork"},{"name":"Amy","age":25,"city":"Chicago"}]' jq '.[0]'{"name": "John","age": 30,"city": "New York"}在上述示例中,我们使用了jq命令的`.0`语法来提取数组的第一个元素。
LTE系统消息翻译

系统消息解析1 MIB (Master Information Block)解析MIB主要包含系统带宽、PHICH配置信息、系统帧号。
(下图为实测信令)➢DL_Bandwidth系统带宽,范围enumerate(1.4M(6RB,0),3M(15RB,1),5M(25RB,2),10M(50RB,3),15M(75RB,4),20M(100RB,5)),上图为n100,对应的系统带宽为20M(100RB,带宽索引号为5)。
➢Phich_Duration当该参数设置为normal时,PDCCH占用的OFDM符号数可以自适应调整;当该参数设置为extended时,若带宽为1.4M,则PDCCH占用的OFDM符号数可以取3或4,对于其他系统带宽下,PDCCH占用的符号数只能为3。
➢PHICH-Resource该参数用于计算小区PHICH信道的资源;➢SystemFrameNumber系统帧号。
系统帧号,用于UE获取系统时钟。
实际SFN位长为10bit,也就是取值从0-1023循环。
在PBCH的MIB广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。
PBCH 的40ms窗口手机可以通过盲检确定。
➢Spare:预留的,暂时未用2 SIB1 (System Information Block Type1)解析SIB1上主要传输评估UE能否接入小区的相关信息及其他系统消息的调度信息。
主要包括4部分:➢小区接入相关信息(cell Access Related Info)➢小区选择信息(cell Selection Info)➢调度信息(scheduling Info List)➢TDD配置信息(tdd-Config)SIB1消息解析(UE侧):RRC-MSG..msg....struBCCH-DL-SCH-Message......struBCCH-DL-SCH-Message........message..........c1............systemInformationBlockType1..............cellAccessRelatedInfo//小区接入相关信息................plmn-IdentityList//PLMN标识列表..................PLMN-IdentityInfo....................plmn-Identity ......................mcc//460 ........................MCC-MNC-Digit:0x4 (4) ........................MCC-MNC-Digit:0x6 (6) ........................MCC-MNC-Digit:0x0 (0) ......................mnc//00 ........................MCC-MNC-Digit:0x0 (0) ........................MCC-MNC-Digit:0x0 (0) ....................cellReservedForOperatorUse:notReserved (1) ................trackingAreaCode:11100(890C)//TAC跟踪区(890C)为16进制数,转换成十进制为35084,查TAC在该消息中可以查到,此条信元重要。
jq find原生写法 -回复

jq find原生写法-回复jq是一个轻量级的命令行工具,用于处理和转换JSON数据。
它允许按照特定的查询语法来查找、过滤和操作JSON数据。
本文将介绍jq的基本使用和常见用法,帮助读者了解如何使用jq进行JSON数据处理。
步骤一:安装jq首先,在使用jq之前,需要在本地机器上安装jq工具。
jq是一个开源的工具,可以从官方网站或开源代码托管平台(如GitHub)下载并安装。
也可以使用包管理工具来安装jq,比如在Ubuntu上可以通过apt-get 命令进行安装,或者在macOS上使用Homebrew进行安装。
步骤二:了解jq的查询语法jq的查询语法基于一系列的过滤器和操作符。
查询语句由点(.)开头,表示查询的起点是整个JSON对象。
可以使用点操作符(.)访问对象的属性,也可以使用方括号([])来访问对象的数组属性。
此外,jq还支持一些内置函数和操作符,如map、reduce等。
步骤三:按照需求编写jq查询语句根据实际需求,可以使用jq来获取、过滤和操作JSON数据。
以下是一些常见的jq查询示例:1. 获取JSON对象的某个属性值:echo '{"name":"John","age":30}' jq '.name'输出:"John"2. 过滤JSON数组中满足特定条件的元素:echo '[{"name":"John","age":30},{"name":"Mary","age":25}]' jq '.[] select(.age > 28)'输出:{"name":"John","age":30}3. 使用map函数对JSON数组进行转换:echo '[1,2,3,4,5]' jq 'map(. * 2)'输出:[2,4,6,8,10]4. 使用reduce函数对JSON数组进行聚合计算:echo '[1,2,3,4,5]' jq 'reduce .[] as item (0; . + item)'输出:15步骤四:实践jq查询示例接下来,我们将在一个真实的JSON数据集上应用jq查询。