高考物理闭合电路的欧姆定律解析版汇编含解析
高中物理闭合电路的欧姆定律(一)解题方法和技巧及练习题及解析

高中物理闭合电路的欧姆定律(一)解题方法和技巧及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 2=2.5Ω,滑动变阻器R 的最大阻值为10Ω,电压表为理想电表。
闭合电键S ,移动滑动变阻器的滑片P ,当滑片P 分别滑到变阻器的两端a 和b 时,电源输出功率均为4.5W 。
求 (1)电源电动势;(2)滑片P 滑动到变阻器b 端时,电压表示数。
【答案】(1) 12V E = (2) 7.5V U = 【解析】 【详解】(1)当P 滑到a 端时,21124.5RR R R R R =+=Ω+外 电源输出功率:22111(E P I R R R r==+外外外) 当P 滑到b 端时,1212.5R R R =+=Ω外电源输出功率:22222(E P I R R R r==+'外外外) 得:7.5r =Ω 12V E =(2)当P 滑到b 端时,20.6A EI R r==+'外电压表示数:7.5V U E I r ='=-2.如图(1)所示 ,线圈匝数n =200匝,直径d 1=40cm ,电阻r =2Ω,线圈与阻值R =6Ω的电阻相连.在线圈的中心有一个直径d 2=20cm 的有界圆形匀强磁场,磁感应强度按图(2)所示规律变化,试求:(保留两位有效数字)(1)通过电阻R 的电流方向和大小; (2)电压表的示数.【答案】(1)电流的方向为B A →;7.9A ; (2)47V 【解析】 【分析】 【详解】(1)由楞次定律得电流的方向为B A → 由法拉第电磁感应定律得B E nn S t t ∆Φ∆==∆∆磁场面积22()2d S π=而0.30.2/1/0.20.1B T s T s t ∆-==∆- 根据闭合电路的欧姆定律7.9EI A R r==+ (2)电阻R 两端的电压为U=IR=47V3.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s .【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .4.爱护环境,人人有责;改善环境,从我做起;文明乘车,低碳出行。
高中物理闭合电路的欧姆定律题20套(带答案)含解析

高中物理闭合电路的欧姆定律题20套(带答案)含解析一、高考物理精讲专题闭合电路的欧姆定律1.手电筒里的两节干电池(串联)用久了,灯泡发出的光会变暗,这时我们会以为电池没电了。
但有人为了“节约”,在手电筒里装一节新电池和一节旧电池搭配使用。
设一节新电池的电动势E 1=1.5V ,内阻r 1=0.3Ω;一节旧电池的电动势E 2=1.2V ,内阻r 2=4.3Ω。
手电筒使用的小灯泡的电阻R =4.4Ω。
求:(1)当使用两节新电池时,灯泡两端的电压;(2)当使用新、旧电池混装时,灯泡两端的电压及旧电池的内阻r 2上的电压;(3)根据上面的计算结果,分析将新、旧电池搭配使用是否妥当。
【答案】(1)2.64V ;(2)1.29V ;(3)不妥当。
因为旧电池内阻消耗的电压U r 大于其电动势E 2(或其消耗的电压大于其提供的电压),灯泡的电压变小【解析】【分析】【详解】(1)两节新电池串联时,电流11A 2=20.6E I R r =+ 灯泡两端的电压 2.64V U IR ==(2)一新、一旧电池串联时,电流12120.3A =E E I R r r =+'++ 灯泡两端的电压 1.32V U I R '='=旧电池的内阻r 2上的电压2 1.29V r U I r ='=(3)不妥当。
因为旧电池内阻消耗的电压U r 大于其电动势E 2(或其消耗的电压大于其提供的电压),灯泡的电压变小。
2.在如图所示的电路中,电阻箱的阻值R 是可变的,电源的电动势为E ,电源的内阻为r ,其余部分的电阻均可忽略不计。
(1)闭合开关S ,写出电路中的电流I 和电阻箱的电阻R 的关系表达式;(2)若电源的电动势E 为3V ,电源的内阻r 为1Ω,闭合开关S ,当把电阻箱R 的阻值调节为14Ω时,电路中的电流I 为多大?此时电源两端的电压(路端电压)U 为多大?【答案】(1) E I R r=+ (2)0.2A 2.8V 【解析】【详解】 (1)由闭合电路的欧姆定律,得关系表达式:E I R r=+ (2)将E =3V ,r =1Ω,R =14Ω,代入上式得:电流表的示数I =3A 141+=0.2A 电源两端的电压U=IR =2.8V3.如图所示,金属导轨平面动摩擦因数µ=0.2,与水平方向成θ=37°角,其一端接有电动势E =4.5V ,内阻r =0.5Ω的直流电源。
高中物理部分电路欧姆定律试题经典含解析

高中物理部分电路欧姆定律试题经典含解析一、高考物理精讲专题部分电路欧姆定律1.如图所示,电源两端电压U 保持不变.当开关S 1闭合、S 2断开,滑动变阻器接入电路中的电阻为R A 时,电压表的示数为U 1,电流表的示数为I 1,电阻R 1的电功率为P 1,电阻R A 的电功率为P A ;当开关S 1、S 2都闭合,滑动变阻器接入电路中的电阻为R B 时,电压表的示数U 2为2V ,电流表的示数为I 2,电阻R B 的电功率为P B ;当开关S 1闭合、S 2断开,滑动变阻器滑片P 位于最右端时,电阻R 2的电功率为8W .已知:R 1:R 2=2:1,P 1:P B =1:10,U 1:U 2=3:2.求:(1)电源两端的电压U ;(2)电阻R 2的阻值;(3)电阻R A 的电功率P A .【答案】(1)U=12V (2)R 2=2Ω (3)4.5W【解析】(1)已知: U 1∶U 2=3∶2R 1∶R 2=2∶1由图甲、乙得:U 1=I 1(R 1 + R 2 )U 2=I 2 R 2 解得:12I I =12已知:P 1∶P B =1∶10由图甲、乙得:P 1 = I 12R 1P B = I 22R B解得:R 1 =25R B 由电源两端电压U 不变 I 1(R 1+R 2+R A ) = I 2(R 2+R B )解得:R A =9R 2 由图乙得:2U U =22BR R R + U 2=2V 解得:U =12V(2)由图丙得:2U U '=212R R R +解得:U 2' = 4VP 2=8WR 2 =222U P '=2(4V)8W= 2Ω (3)由U 1∶U 2=3∶2解得:U 1=3VU A =U -U 1=9VR A =9R 2=18ΩP A =2A AU R =4.5W 【点睛】本题是有关欧姆定律、电功率的综合计算题目.在解题过程中,注意电路的分析,根据已知条件分析出各种情况下的等效电路图,同时要注意在串联电路中各物理量之间的关系,结合题目中给出的已知条件进行解决.2.在如图所示的电路中,电源内阻r =0.5Ω,当开关S 闭合后电路正常工作,电压表的读数U =2.8V ,电流表的读数I =0.4A 。
高考物理一轮复习专项训练—闭合电路的欧姆定律(含解析)

高考物理一轮复习专项训练—闭合电路的欧姆定律(含解析)1.(2022·江苏卷·2)如图所示,电路中灯泡均正常发光,阻值分别为R1=2 Ω,R2=3 Ω,R3=2 Ω,R4=4 Ω,电源电动势E=12 V,内阻不计,四个灯泡中消耗功率最大的是()A.R1B.R2C.R3D.R42.交警使用的某型号酒精测试仪如图甲所示,其工作原理如图乙所示,传感器电阻R的阻值随气体中酒精浓度的增大而减小,电源的电动势为E,内阻为r,电路中的电表均为理想电表.当一位酒驾驾驶员对着测试仪吹气时,下列说法中正确的是()A.电压表的示数变大,电流表的示数变小B.电压表的示数变小,电流表的示数变小C.酒精气体浓度越大,电源的输出功率越大D.电压表示数变化量与电流表示数变化量的绝对值之比保持不变3.在如图所示的电路中,开关S闭合后,由于电阻元件发生短路或断路故障,导致电压表和电流表的读数都增大,电压表和电流表均为理想电表,则可能出现了下列哪种故障()A.R1短路B.R2短路C.R3短路D.R1断路4.如图所示,图中的四个电表均为理想电表,当滑动变阻器的滑片P向右端移动时,下列说法中正确的是()A.电源的输出功率一定变小B.电压表V1的读数变小,电流表A1的读数变小C.电压表V2的读数变大,电流表A2的读数变小D.电压表V2的读数变小,电流表A2的读数变小5.将一电源与一电阻箱连接成闭合电路,测得电阻箱所消耗功率P与电阻箱读数R变化的曲线如图所示,由此可知()A.电源最大输出功率可能大于45 WB.电源内阻等于5 ΩC.电源电动势为45 VD.电阻箱所消耗功率P最大时,电源效率大于50%6.(2023·四川内江市第六中学月考)电源的效率定义为外电路电阻消耗的功率与电源的总功率之比.直线A、B和C分别是电源a、电源b和电阻R的U-I图线.将这个电阻R分别接到a、b两电源上,那么()A .电源a 、b 电动势一样大,b 内阻较大B .R 接到电源a 上,电路中的电流较小C .R 接到电源b 上,电源的输出功率较大D .R 接到电源b 上,电源效率较高7.(2023·江苏淮安市车桥中学高三测试)如图所示电路,电源内阻为r ,两相同灯泡L 1、L 2 电阻均为R ,D 为理想二极管(具有单向导电性),电表均为理想电表.闭合S 后,一带电油滴恰好在平行板电容器中央静止不动.现把滑动变阻器滑片向上滑动,电压表V 1、V 2 示数变化量绝对值分别为ΔU 1、ΔU 2 ,电流表示数变化量绝对值为ΔI ,则下列说法中错误的是( )A .两灯泡逐渐变亮B .油滴将向下运动 C.ΔU 2ΔI=R +r D .ΔU 2>ΔU 18.硅光电池是一种太阳能电池,具有低碳环保的优点.如图所示,图线a 是该电池在某光照强度下路端电压U 和电流I 的关系图像(电池内阻不是常量),图线b 是某电阻R 的U -I 图像.在该光照强度下将它们组成闭合回路时,硅光电池的内阻为( )A .5.5 ΩB .7.0 ΩC.12.0 Ω D.12.5 Ω9.(多选)(2023·河南三门峡市外国语高级中学高三检测)如图所示电路中,电源电动势为E,内阻为r,L为小灯泡,R为滑动变阻器,V为理想电压表.现闭合开关S,将滑动变阻器R的滑动触头P从a端向b端滑动.已知小灯泡电阻和电源内阻相等,则下列说法中正确的是()A.电压表示数先变小后变大B.小灯泡L先变暗后又变亮C.电源的输出功率先变小后变大D.电源的效率先减小后增大10.(2023·河北邯郸市模拟)如图所示,电源电动势E=6 V,内阻r=1 Ω,R0=3 Ω,R1=7.5 Ω,R2=3 Ω,R3=2 Ω,电容器的电容C=2 μF.开始时开关S处于闭合状态,则下列说法正确的是()A.开关S闭合时,电容器上极板带正电B.开关S闭合时,电容器两极板间电势差是3 VC.将开关S断开,稳定后电容器极板所带的电荷量是3.6×10-6 CD.将开关S断开至电路稳定的过程中通过R0的电荷量是9.6×10-6 C11.在如图甲所示的电路中,R1、R2均为定值电阻,且R1=100 Ω,R2阻值未知,R3是一滑动变阻器,当其滑片P从最左端滑至最右端时,测得电源的路端电压随电源中流过的电流的变化图线如图乙所示,其中A、B两点是滑片P在变阻器的两个不同端点得到的.求:(1)电源的电动势和内阻;(2)定值电阻R2的阻值;(3)滑动变阻器的最大阻值.12.如图所示,电源电动势E=2 V,内阻r=1 Ω,电阻R0=2 Ω,滑动变阻器的阻值范围为0~10 Ω.求滑动变阻器的阻值为多大时,R上消耗的功率最大,最大值为多少?1.A 2.D 3.A 4.C 5.B 6.A7.B [滑片向上滑动,滑动变阻器接入电路的阻值减小,总电阻减小,回路中电流变大,两灯泡变亮,选项A 正确;总电流增大,故内电压增大,所以外电压减小,即V 1的示数减小,而L 1两端的电压变大,所以L 2与滑动变阻器部分的电压之和减小,所以V 2的示数及电容器板间电压变小,应放电,但二极管的单向导电性使电荷不能放出,Q 不变,则由C =Q U =εr S4πkd 和E =U d 得E =4πkQ εr S ,可知E 不变,油滴静止不动,选项B 错误;把L 1的电阻R 看作电源内阻一部分,ΔU 2就是R +r 两端电压的增加量,则ΔU 2ΔI =R +r ,选项C 正确;由闭合电路欧姆定律可得ΔU 1ΔI=r ,所以ΔU 2>ΔU 1,选项D 正确.]8.A [由闭合电路欧姆定律得U =E -Ir ,当I 1=0时,E =U 1,由图线a 与纵轴的交点读出电源的电动势为E =3.6 V ,组成闭合回路时,根据两图线交点处的状态可知,电阻的电压为U 2=2.5 V ,电流为I 2=0.2 A ,则硅光电池的内阻为r =E -U 2I 2=3.6-2.50.2Ω=5.5 Ω,故A 正确.]9.BC [由电路结构可知,滑动变阻器R 的滑动触头P 两边的电阻并联,则当P 从a 端向b 端滑动时,电路的总电阻先变大后变小,则干路电流先变小后变大,故小灯泡L 先变暗后又变亮,选项B 正确;由U =E -Ir 可知路端电压先变大后变小,即电压表的示数先变大后变小,选项A 错误;因为小灯泡电阻和电源内阻相等,电路的总电阻先变大后变小,结合电源输出功率随外电路电阻变化图像可知,当内、外电阻相等时电源输出功率最大,则电源的输出功率先变小后变大,选项C 正确;电源的效率η=IUIE ×100%=R 外R 外+r×100%=11+rR 外×100%,外电路总电阻越大,电源的效率越高,故电源的效率先增大后减小,选项D 错误.] 10.D [开关S 闭合时的等效电路图如图甲所示,电容器C 两端电压等于R 3两端电压U 3,已知电路总电阻R =(R 2+R 3)R 1R 2+R 3+R 1+r =4 Ω,由闭合电路欧姆定律可知干路电流I =ER =1.5 A ,路端电压U =E -Ir =4.5 V ,则U 3=R 3R 2+R 3U =1.8 V ,此时电容器所带电荷量Q 1=CU 3=3.6×10-6 C ,且上极板带负电,下极板带正电,故A 、B 错误.开关S 断开时的等效电路图如图乙所示,稳定后电容器C 两端电压等于R 2两端电压U 2,此时U 2=E R 2+R 3+r R 2=3 V ,电容器所带电荷量Q 2=CU 2=6×10-6 C ,且上极板带正电,下极板带负电,故通过R 0的电荷量Q =Q 1+Q 2=9.6×10-6 C ,故C 错误,D 正确.]11.(1)20 V 20 Ω (2)5 Ω (3)300 Ω解析 (1)电源的路端电压随电流的变化图线斜率的绝对值等于电源的内阻,则内阻r =⎪⎪⎪⎪ΔU ΔI =16-40.8-0.2Ω=20 Ω电源的电动势为E =U +Ir取电压U 1=16 V ,电流I 1=0.2 A , 代入解得E =20 V(2)当滑片P 滑到最右端时,R 1被短路,外电路的电阻最小,电流最大.此时电压U 2=4 V ,电流I 2=0.8 A ,则定值电阻R 2=U 2I 2=5 Ω(3)当滑片P 滑到最左端时,滑动变阻器阻值最大,外电阻最大,电流最小,此时路端电压U 1=16 V , 电流I 1=0.2 A ,外电路总电阻为R =U 1I 1=80 Ω又R =R 2+R 1R 3R 1+R 3,代入解得R 3=300 Ω.12.23 Ω 23W 解析 方法一 由公式P R =U 2R,根据闭合电路的欧姆定律,路端电压U =E ·R 0R R 0+R r +R 0R R 0+R =ER 0R rR 0+rR +RR 0,所以P R =E 2R 02R (rR 0+rR +R 0R )2,代入数据整理得P R=164R +9R +12W ,当R =23 Ω时,R 上消耗的功率最大,P R max =23W.方法二 采用等效电源法分析,把电阻R 0等效到电源的内部,即把电源和电阻R 0看作等效电源,即电动势为E ′=R 0R 0+r E 、内阻为r ′=R 0r R 0+r 的电源,当R =r ′=R 0r R 0+r 时,电源对外电路R 的输出功率最大,为P R max =E ′24r ′.把数值代入各式得E ′=R 0R 0+r E =43 V ,r ′=R 0rR 0+r =23 Ω,所以R =23 Ω,P R max =E 等24r 等=23W.。
高中物理部分电路欧姆定律解析版汇编及解析

高中物理部分电路欧姆定律解析版汇编及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示,电源电压恒定不变,小灯泡L上标有“6V 3W”字样,滑动变阻器R最大阻值为36Ω,灯泡电阻不随温度变化。
闭合S、S1、S2,当滑动变阻器滑片位于最右端时,电压表示数为3V;闭合S、S1,断开S2,当滑动变阻器滑片位于最左端时,灯泡正常发光。
求:(1)电源电压;(2)R0的阻值。
【答案】(1)12V(2)【解析】【详解】(1)灯泡的电阻:;当闭合S、S1、S2,当滑动变阻器滑片位于最右端时,电路中的电流电源的电压U=I(R L+R)=0.25A×(12Ω+36Ω)=12V;(2)闭合S、S1,断开S2,当滑动变阻器滑片位于最左端时,∵灯泡正常发光,∴电路中的电流R0两端的电压U0=U-U L=12V-6V=6V,【点睛】本题考查了串联电路的特点和欧姆定律、电功率的应用,关键是开关闭合、断开时电路变化的判断和知道额定电压下灯泡正常发光。
2.以下对直导线内部做一些分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v.现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示.(1)请建立微观模型,利用电流的定义qIt=,推导:j=nev;(2)从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动.设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式.【答案】(1)j=nev(2)E jρ=【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在△t时间内以S为底,v△t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:I qjS tSVV==,其中△q=neSv△t,代入上式可得:j=nev(2)(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则UEl =;电流密度的定义为IjS =,将UIR=代入,得UjSR=;导线的电阻lRSρ=,代入上式,可得j、ρ、E三者间满足的关系式为:Ejρ=【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.3.有人为汽车设计的一个“再生能源装置”原理简图如图1所示,当汽车减速时,线圈受到磁场的阻尼作用帮助汽车减速,同时产生电能储存备用.图1中,线圈的匝数为n,ab 长度为L1,bc长度为L2.图2是此装置的侧视图,切割处磁场的磁感应强度大小恒为B,有理想边界的两个扇形磁场区夹角都是900.某次测试时,外力使线圈以角速度ω逆时针匀速转动,电刷M 端和N 端接电流传感器,电流传感器记录的图象如图3所示(I 为已知量),取边刚开始进入左侧的扇形磁场时刻.不计线圈转动轴处的摩擦(1)求线圈在图2所示位置时,产生电动势E 的大小,并指明电刷和哪个接电源正极;(2)求闭合电路的总电阻和外力做功的平均功率;【答案】(1)nBL 1L 2ω,电刷M 接电源正极;(2)12nBL L R I ω=, 1212P nBL L I ω= 【解析】(1)有两个边一直在均匀辐向磁场中做切割磁感线运动,故根据切割公式,有 E=2nBL 1v其中v =12ωL 2 解得E=nBL 1L 2ω根据右手定则,M 端是电源正极 (2)根据欧姆定律,电流:E I R= 解得12nBL L R Iω=线圈转动一个周期时间内,产生电流的时间是半周期,故外力平均功率P =12I 2R 解得1212P nBL L I =ω4.有三盘电灯L 1、L 2、L 3,规格分别是“110V ,100W”,“110V ,60W”,“110V ,25W”要求接到电压是220V 的电源上,使每盏灯都能正常发光.可以使用一直适当规格的电阻,请按最优方案设计一个电路,对电阻的要求如何?【答案】电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A .【解析】将两个电阻较大的电灯“110V 60W”、“110V 25W”与电阻器并联,再与“110V100W”串连接在220V的电源上,电路连接如图所示,当左右两边的总电阻相等时才能各分压110V,使电灯都正常发光.由公式P=UI得L1、L2、L3的额定电流分别为:I1==A=A,I2==A=A,I3=A=A则通过电阻R的电流为 I=I1﹣I2﹣I3=A=AR==Ω=806.7Ω答:电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【点评】本题考查设计电路的能力,关键要理解串联、并联电路的特点,知道用电器在额定电压下才能正常工作,设计好电路后要进行检验,看是否达到题目的要求.5.有一个表头,其满偏电流I g=1mA,内阻R g=500Ω.求:(1)如何将该表头改装成量程U=3V的电压表?(2)如何将该表头改装成量程I=0.6A的电流表?【答案】(1)与表头串联一个2500Ω的分压电阻,并将表头的刻度盘按设计的量程进行刻度。
2025高考物理总复习闭合电路的欧姆定律

第2讲 闭合电路的欧姆定律
命题点1 闭合电路的有关计算 1. [江苏高考]如图所示的电路中,电阻R=2 Ω.断开S后,电压表的读数为3 V;闭合 S后,电压表的读数为2 V,则电源的内阻r为( A )
A. 1 Ω
B. 2 Ω
C. 3 Ω
D. 4 Ω
[解析] 当断开S时,电压表的读数等于电源的电动势,即E=3 V;当闭合S时,有
返回目录
第2讲 闭合电路的欧姆定律
方法点拨 动态分析常用方法
1. 程序法:遵循“局部—整体—局部”的思路. (1)分析步骤(如图):
(2)分析时:串联电路注意分析电压关系,并联电路注意分析电流关系.
返回目录
第2讲 闭合电路的欧姆定律
2. 结论法:“串反并同”,应用条件为电源内阻不为零. (1)所谓“串反”,即某一电阻的阻值增大时,与它串联或间接串联的电阻中的电 流、两端电压、电功率都将减小,反之则增大. (2)所谓“并同”,即某一电阻的阻值增大时,与它并联或间接并联的电阻中的电 流、两端电压、电功率都将增大,反之则减小. 3. 极限法 因滑动变阻器滑片滑动引起电路变化的问题,可将滑动变阻器的滑片分别滑至两个 极端,让接入电路中的电阻最大或为零,然后进行讨论.
返回目录
第2讲 闭合电路的欧姆定律
[解析] 由题意知,当环境中一氧化碳气体达到一定浓度时,R增大,电路中总电阻 增大,则总电流I减小,内电路电压减小,根据闭合电路欧姆定律知U3=E-Ir、U2 =E-I(r+R3)、U1=E-I(r+R3+R2),则电压表V1、V2、V3的示数均增大,选项C 正确,A错误;总电流I减小,即电流表A2的示数减小,又电压表V1的示数增大,则 通过滑动变阻器的电流增大,故通过电阻R的电流减小,则电流表A1的示数减小, 选项D正确,B错误.
2024年高考物理总复习第一部分知识点梳理第九章第2讲闭合电路的欧姆定律

第2讲闭合电路的欧姆定律整合教材·夯实必备知识一、电源电动势和内阻(必修三第十二章第2节)1.电动势(1)非静电力所做的功与所移动的电荷量之比叫电动势。
(2)物理含义:电动势表示电源把其他形式的能转化成电势能本领的大小,在数值上等于电源没有接入电路时两极间的电压。
2.内电阻:电源内部导体的电阻。
二、闭合电路欧姆定律(必修三第十二章第2节)1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;;2.公式:I=ER+r提醒:只适用于纯电阻电路。
3.其他表达形式E=U+U内或E=U外+Ir。
外提醒:适用于任意电路。
4.电源的U-I图像:(1)图像:根据U=E-Ir,图像如图所示,(2)含义:①纵轴截距:表示电路断路时的路端电压U=E。
②横轴截距:表示电路短路时的电流I=I0。
③斜率绝对值:表示电源内电阻r=EI0。
三、闭合电路的功率及效率问题(必修三第十二章第2节)1.电源的总功率(1)任意电路:P总=IE=IU外+IU内=P出+P内。
(2)纯电阻电路:P总=I2(R+r)=E 2R+r。
2.电源内部消耗的功率P内=I2r=IU内=P总-P出。
3.电源的输出功率(1)任意电路:P出=IU=IE-I2r=P总-P内。
(2)纯电阻电路:P出=I2R=E 2R(R+r)2。
4.电源的效率(1)任意电路:η=P出P总×100%=UE×100%。
(2)纯电阻电路:η=RR+r×100%。
【质疑辨析】角度1 电动势和闭合电路欧姆定律(1)电动势的大小反映了电源把电能转化为其他形式的能的本领强弱。
(×)(2)电动势就是电源的路端电压。
(×)(3)电源的重要参数是电动势和内阻。
电动势由电源中非静电力的特性决定,与电源的体积无关,与外电路无关。
(√)(4)在电源电动势及内阻恒定的闭合电路中,外电阻越大,路端电压越大。
(√)角度2电路中的功率(5)外电阻越大,电源的输出功率越大。
高考物理部分电路欧姆定律试题(有答案和解析)

高考物理部分电路欧姆定律试题(有答案和解析)一、高考物理精讲专题部分电路欧姆定律1.地球表面附近存在一个竖直向下的电场,其大小约为100V /m 。
在该电场的作用下,大气中正离子向下运动,负离子向上运动,从而形成较为稳定的电流,这叫做晴天地空电流。
地表附近某处地空电流虽然微弱,但全球地空电流的总电流强度很大,约为1800A 。
以下分析问题时假设地空电流在全球各处均匀分布。
(1)请问地表附近从高处到低处电势升高还是降低?(2)如果认为此电场是由地球表面均匀分布的负电荷产生的,且已知电荷均匀分布的带电球面在球面外某处产生的场强相当于电荷全部集中在球心所产生的场强;地表附近电场的大小用E 表示,地球半径用R 表示,静电力常量用k 表示,请写出地表所带电荷量的大小Q 的表达式;(3)取地球表面积S =5.1×1014m 2,试计算地表附近空气的电阻率ρ0的大小; (4)我们知道电流的周围会有磁场,那么全球均匀分布的地空电流是否会在地球表面形成磁场?如果会,说明方向;如果不会,说明理由。
【答案】(1)降低 (2)2ER Q k = (3)2.8×1013Ω·m (4)因为电流关于地心分布是球面对称的,所以磁场分布也必将关于地心球面对称,这就要求磁感线只能沿半径方向;但是磁感线又是闭合曲线。
以上两条互相矛盾,所以地空电流不会产生磁场【解析】试题分析:(1)沿着电场线方向,电势不断降低;(2)根据点电荷的电场强度定义式进行求解电量;(3)利用微元法求一小段空气层为研究对象,根据电阻定律和欧姆定律进行求解电阻率;(4)根据地球磁场的特点进行分析。
(1)由题意知,电场方向竖直向下,故表附近从高处到低处电势降低。
(2)由2Q E k R=,得电荷量的大小2ER Q k = (3)如图从地表开始向上取一小段高度为Δh 的空气层(Δh 远小于地球半径R )则从空气层上表面到下表面之间的电势差为·U E h =∆这段空气层的电阻0h r S ρ∆=,且U I r = 三式联立得: 0ES Iρ= 代入数据解: 130 2.810?m ρ=⨯Ω (4)方法一:如图,为了研究地球表面附近A 点的磁场情况可以考虑关于过A 点的地球半径对称的两处电流1I 和2I ,根据右手螺旋定则可以判断,这两处电流在A 点产生的磁场的磁感应强度刚好方向相反,大小相等,所以1I 和2I 产生的磁场在A 点的合磁感应强度为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理闭合电路的欧姆定律解析版汇编含解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路,A 、B 两点间接上一电动势为4V 、内电阻为1Ω的直流电源,三个电阻的阻值均为4Ω,电容器的电容为20μF ,电流表内阻不计,求: (1)闭合开关S 后,电容器所带电荷量; (2)断开开关S 后,通过R 2的电荷量。
【答案】(1)6.4×10-5C ;(2)53.210C -⨯ 【解析】 【分析】 【详解】(1)当电键S 闭合时,电阻1R 、2R 被短路,据欧姆定律得电流表的读数为34A 0.8A 14E I r R ===++ 电容器所带电荷量653320100.84C 6.410C Q CU CIR --=⨯⨯⨯=⨯==(2)断开电键后,电容器相当于电源,外电路1R 、2R 并联后与3R 串联,由于各个电阻相等,则通过2R 的电荷量为513.210C 2Q Q -==⨯'2.电源的电动势为4.8V 、外电阻为4.0Ω时,路端电压为4.0V 。
如果在外电路并联一个6.0Ω的电阻,路端电压是多大? 【答案】3.6V 【解析】 【详解】由题意可知当外电阻为4.0Ω时,根据欧姆定律可知电流4A 1.0A 4U I R ===外 由闭合电路欧姆定律()E I R r =+代入数据解得r =0.8Ω当外电路并联一个6.0Ω的电阻时462.446R ⨯==Ω+并 电路中的总电流4.8A=1.5A 2.40.8E I R r '==++并 所以路端电压1.52.4V3.6V U I R '==⨯'=并3.如图所示电路中,r 是电源的内阻,R 1和R 2是外电路中的电阻,如果用P r ,P 1和P 2分别表示电阻r ,R 1,R 2上所消耗的功率,当R 1=R 2= r 时,求: (1)I r ∶I 1∶I 2等于多少 (2)P r ∶P 1∶P 2等于多少【答案】(1)2:1:1;(2)4:1:1。
【解析】 【详解】(1)设干路电流为I ,流过R 1和R 2的电流分别为I 1和I 2。
由题,R 1和R 2并联,电压相等,电阻也相等,则电流相等,故I 1=I 2=12I 即I r ∶I 1∶I 2=2:1:1(2)根据公式P =I 2R ,三个电阻相等,功率之比等于电流平方之比,即P r :P 1:P 2=4:1:14.如图所示,电源的电动势110V E =,电阻121R =Ω,电动机绕组的电阻0.5R =Ω,开关1S 始终闭合.当开关2S 断开时,电阻1R 的电功率是525W ;当开关2S 闭合时,电阻1R 的电功率是336W ,求:(1)电源的内电阻r ;(2)开关2S 闭合时电动机的效率。
【答案】(1)1Ω;(2)86.9%。
【解析】 【详解】(1)S 2断开时R 1消耗的功率为1525P =W ,则2111E P R R r ⎛⎫= ⎪+⎝⎭代入数据得r =1Ω(2)S 2闭合时R 1两端的电压为U ,消耗的功率为2336P =W ,则221U P R =解得U =84V由闭合电路欧姆定律得E U Ir =+代入数据得I =26A设流过R 1的电流为I 1,流过电动机的电流为I 2,则114UI R ==A 又12I I I +=解得I 2=22A则电动机的输入功率为M 2P UI =代入数据解得M 1848P =W 电动机内阻消耗的功率为2R 2P I R =代入数据解得R 242P =W 则电动机的输出功率M R P P P '=-=1606W所以开关2S 闭合时电动机的效率M100%86.9%P P η'=⨯=5.如图所示,合上电键S 1。
当电键S 2闭合时,电流表的示数为0.75A ;当电键S 2断开时,电流表的示数为0.5A ,R 1=R 2=2Ω。
求电源电动势E 和内电阻r 。
【答案】E =1.5V r =1Ω。
【解析】 【详解】当电键S 2闭合时,电流表的示数为0.75A ,有:111()2R E I R r I r =+=+并()当电键S 2断开时,电流表的示数为0.5A ,有:E =I 2(R 1+r )代入数据解得E =1.5V r =1Ω。
6.如图所示,电阻R1=4Ω,R2=6Ω,电源内阻r=0.6Ω,如果电路消耗的总功率为40W ,电源输出功率为37.6W ,则电源电动势和R 3的阻值分别为多大?【答案】20V【解析】电源内阻消耗的功率为,得:由得:外电路总电阻为,由闭合电路欧姆定律得:。
点睛:对于电源的功率要区分三种功率及其关系:电源的总功率,输出功率,内电路消耗的功率,三者关系是。
7.如图,电源电动势ε=10V ,内阻不计,R 1=4Ω,R 2=6Ω,C=30μF . (1)闭合电键S ,求稳定后通过R 1的电流.(2)然后将电键S 断开,求这以后流过R 1的总电量【答案】(1)1A (2)1.2×10-4 C 【解析】 【详解】(1)闭合开关S ,当电路达到稳定后,电容器相当于开关断开,根据闭合电路欧姆定律得:1210=A 1A +46I R R ε==+ (2)闭合开关S 时,电容器两端的电压即电阻R 2两端的电压,为:22==6V U IR开关S 断开后,电容器两端的电压等于电源的电动势,为=10V ε,则通过电阻R 1的电荷量为:()()542==310106C 1.210C Q C E U ---⨯⨯-=⨯8.如图所示,电源电动势E =15V ,内阻r =0.5Ω,电阻R 1=3Ω,R 2=R 3=R 4=8Ω,一电荷量q =+3×10-5C 的小球,用长l =0.1m 的绝缘细线悬挂于竖直放置足够大的平行金属板中的O 点。
电键S 合上后,小球静止时细线与竖直方向的夹角θ=37°,已知两板间距d =0.1m ,取重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
求: (1)两板间的电场强度的大小; (2)带电小球的质量;(3)现剪断细线,并在此瞬间使小球获得水平向左的初速度,则小球刚好运动到左极板,求小球到达左极板的位置与O 点的距离L 。
【答案】(1)140V/m (2)45.610m kg -=⨯(3)0.16m 【解析】 【详解】(1)电阻连接后的总外电阻为:231237ΩR R R R R R =+=+干路上的电流:2A EI R r==+ 平行板电容器两板间电压:14V U IR ==电场强度:140V/m UE d== (2)由小球的受力情况知:tan θEq mg =解得:45.610kg m -=⨯(3)剪断细线后,在水平方向上做匀减速直线运动21sin θ2l at = Eq a m=竖直方向做自由落体运动:212h gt =解得:0.08m h =小球与左板相碰的位置为:cos θ0.16m L h l =+=9.用电流传感器和电压传感器等可测干电池的电动势和内电阻.改变电路的外电阻,通过电压传感器和电流传感器测量不同工作状态的端电压和电流,输入计算机,自动生成U -I 图线,由图线得出电动势和内电阻.(1)记录数据后,打开“坐标绘图”界面,设x 轴为“I ”,y 轴为“U ”,点击直接拟合,就可以画出U -I 图象,得实验结果如图甲所示.根据图线显示,拟合直线方程为:________,测得干电池的电动势为________V ,干电池的内电阻为________Ω.(2)现有一小灯泡,其U -I 特性曲线如图乙所示,若将此小灯泡接在上述干电池两端,小灯泡的实际功率是多少?(简要写出求解过程;若需作图,可直接画在方格图中). 【答案】(1)y =-2x +1.5 1.5 2 (2)0.27W 【解析】(1)设直线方程为y =ax +b ,把坐标(0,1.5)和(0.75,0)代入方程解得:a =-2,b =1.5,得出直线方程为:y =-2x +1.5;由闭合电路的欧姆定律得:E =IR +Ir =U +Ir ,对比图象可得:E =1.5V ,r =2Ω.(2)作出U =E -Ir 图线,可得小灯泡工作电流为0.30A ,工作电压为0.90V ,因此小灯泡的实际功率为:P =UI =0.30×0.90W =0.27W.10.如图甲所示,水平面上放置一矩形闭合线框abcd , 已知ab 边长l 1=1.0m 、bc 边长l 2=0.5m ,电阻r =0.1Ω。
匀强磁场垂直于线框平面,线框恰好有一半处在磁场中,磁感应强度B 在0.2s 内随时间变化情况如图乙所示,取垂直纸面向里为磁场的正方向。
线框在摩擦力作用下保持静止状态。
求: (1)感应电动势的大小; (2)线框中产生的焦耳热; (3)线框受到的摩擦力的表达式。
【答案】(1)0.25V ;(2)0.125J ;(3)()1.250.1t +N 【解析】 【分析】本题考查法拉第电磁感应定律及能量守恒定律的应用 【详解】(1)由题意可知,线框在磁场中的面积不变,而磁感应强度在不断增大,会产生感应电动势,根据法拉第电磁感应定律知12=B bc abB S E n t t t∆⋅⋅∆Φ∆⋅==∆∆∆ Bt∆∆等于乙图象中B-t 图线的斜率1T/s ,联立求得感应电动势0.25V E = (2)因磁场均匀变化,故而产生的感应电动势是恒定,根据闭合电路欧姆定律知,在这0.2s 内产生的感应电流2.5A EI r== 再根据焦耳定律有2=0.125J Q I rt =(3)水平方向上线框受到静摩擦力应始终与所受安培力二力平衡,有=(0.1)2.50.5N 1.25(0.1)N f F BIL t t ==+⋅⋅=+安11.如图所示,三个电阻R 1、R 2、R 3的阻值均等于电源内阻r ,电键S 打开时,有一质量为m ,带电荷量为q 的小球静止于水平放置的平行板电容器的中点.现闭合电键S ,这个带电小球便向平行板电容器的一个极板运动,并和该板碰撞,碰撞过程小球没有机械能损失,只是碰后小球所带电荷量发生变化,碰后小球带有和该板同种性质的电荷,并恰能运动到另一极板处.设电容器两极板间距为d ,求: (1)电源的电动势E ;(2)小球与极板碰撞后所带的电荷量/q .【答案】(1)E mgdq=(2)2q q ¢= 【解析】 【分析】 【详解】(1)当S 打开时,电容器电压等于电源电动势E ,即: U=E小球静止时满足:qUmg d= 由以上两式解得:mgdE q=; (2) 闭合S ,电容器电压为'U ,则:22333E E EU R r R R r r =⨯=⨯'=++对带电小球运动的全过程,根据动能定理得:02U q U mg q--''='由以上各式解得:2q q '= .12.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】(1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】(1)电动机正常工作时,总电流为:I=1U RI=3.01.5A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ;电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ;电动机将电能转化为机械能的功率,据能量守恒为:P 机=P 电﹣P 热 P 机=(12﹣4)W=8 W ; 【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.。