开关电源EMI滤波器原理与设计研究

合集下载

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。

3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。

传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。

开关电源所产生的干扰以共模干扰为主。

产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。

注意:1. 避免电流过大而造成饱和。

2.Choke 温度系数要小,对高频阻抗要大。

3.感应电感要大,分布电容要小。

4.直流电阻要小。

B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究
EMI滤波器工作原理
被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配

EMI滤波器的设计原理

EMI滤波器的设计原理

EMI滤波器的设计原理2008-06-04 19:17电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。

它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。

1 电磁干扰滤波器的构造原理及应用1.1 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。

根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。

这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。

若从形成特点看,噪声干扰分串模干扰与共模干扰两种。

串模干扰是两条电源线之间(简称线对线)的噪声。

共模干扰则是两条电源线对大地(简称线对地)的噪声。

因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。

此外,电磁干扰滤波器就对串模、共模干扰都起到抑制作用.1.2 基本电路及其典型应用电磁干扰滤波器的基本电路如图1所示。

该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。

电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。

L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。

它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。

L的电感量与EMI滤波器的额定电流I有关,参见表1。

需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。

此外,适当增加电感量,可改善低频衰减特性。

EMI滤波器的设计原理分析

EMI滤波器的设计原理分析

EMI滤波器的设计原理分析随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。

特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。

电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。

它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。

1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。

根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。

这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。

若从形成特点看,噪声干扰分串模干扰与共模干扰两种。

串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。

因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。

此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。

1.2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。

该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。

电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。

L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。

它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。

开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。

EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。

EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。

EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。

不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。

2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。

选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。

3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。

4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。

此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。

总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。

EMI滤波器的设计原理及参数计算方法

EMI滤波器的设计原理及参数计算方法

EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。

特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。

电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。

它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。

1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。

根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。

这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。

若从形成特点看,噪声干扰分串模干扰与共模干扰两种。

串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。

因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。

此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。

1.2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。

该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。

电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。

L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。

它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源EMI滤波器原理与设计研究开关电源EMI滤波器原理与设计研究魏应冬,吴燮华(浙江大学电气工程学院,浙江杭州 310027)摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。

在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。

关键词:开关电源;EMI滤波器;共模;差模0 引言高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。

在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。

同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。

从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。

减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。

除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。

EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。

本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。

1 EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。

所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。

设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。

基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。

在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。

简言之,EMI滤波器设计可以理解为要满足以下要求:1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);2)对电网频率低衰减(满足规定的通带频率和通带低衰减);3)低成本。

1.1 常用低通滤波器模型EMI滤波器通常置于开关电源与电网相连的前端,是由串联电抗器和并联电容器组成的低通滤波器。

如图1所示,噪声源等效阻抗为Z source、电网等效阻抗为Z sink。

滤波器指标(f stop和H)可以由一阶、二阶或三阶低通滤波器实现,滤波器传递函数的计算通常在高频下近似,也stop就是说对于n阶滤波器,忽略所有ωk相关项(当k<n),只取含ωn相关项。

表1列出了几种常见的滤波器拓扑及其传递函数。

特别要注意的是要考虑输入、输出阻抗不匹配给滤波特性带来的影响。

图1 滤波器设计等效电路表1 几种滤波器模型及传递函数1.2 EMI滤波器等效电路传导型EMI噪声包含共模(CM)噪声和差模(DM)噪声两种。

共模噪声存在于所有交流相线(L、N)和共模地(E)之间,其产生来源被认为是两电气回路之间绝缘泄漏电流以及电磁场耦合等;差模噪声存在于交流相线(L、N)之间,产生来源是脉动电流,开关器件的振铃电流以及二极管的反向恢复特性。

这两种模式的传导噪声来源不同,传导途径也不同,因而共模滤波器和差模滤波器应当分别设计。

显然,针对两种不同模式的传导噪声,将其分离并分别测量出实际水平是十分必要的,这将有利于确定那种模式的噪声占主要部分,并相应地体现在对应的滤波器设计过程中,实现参数优化。

在文献[6]和[7]中,提供了两种用于区分共模和差模噪声的噪声分离器,他们能有选择地对共模或差模噪声至少衰减50dB,因而可有效地测量出共模和差模成分。

分离器的原理和使用超出了本文的讨论范围,详细内容可见参考文献[6]和[7]。

以一种常用的滤波器拓扑〔图2(a)〕为例,分别对共模、差模噪声滤波器等效电路进行分析。

图2(b)及图2(c)分别代表滤波器共模衰减和差模衰减等效电路。

分析电路可知,C x1和C x2只用于抑制差模噪声,理想的共模扼流电感L C只用于抑制共模噪声。

但是,由于实际的L C绕制的不对称,在两组L C之间存在有漏感L g也可用于抑制差模噪声。

C y即可抑制共模干扰、又可抑制差模噪声,只是由于差模抑制电容C x2远大于C y,C y对差模抑制可忽略不计。

同样,L D既可抑制共模干扰、又可抑制差模干扰,但L D远小于L C,因而对共模噪声抑制作用也相对很小。

(a)常用的滤波器拓扑(b)共模衰减等效电路(c)差模衰减等效电路图2 一种常用的滤波器拓扑由表1和图2可以推出,对于共模等效电路,滤波器模型为一个二阶LC型低通滤波器,将等效共模电感记为L CM,等效共模电容记为C CM,则有L=L C+L D(1)CMC=2C y(2)CM对于差模等效电路,滤波器模型为一个三阶CLC型低通滤波器,将等效差模电感记为L DM,等效差模电容记为C DM(令C x1=C x2且认为C y/2<<C x2),则有L=2L D+L g(3)DMC=C x1=C x2(4)DML型滤波器截止频率计算公式为Cf=(5)R,CM将式(1)及式(2)代入式(5),则有f=≈(L C>>L D)(6)R,CMCLC型滤波器截止频率计算公式为f=(7)R,DM将式(3)及式(4)代入式(7),则有f=(8)R,DM在噪声源阻抗和电网阻抗均确定,且相互匹配的情况下,EMI滤波器对共模和差模噪声的抑制作用,如图3所示。

图3 滤波器差模与共模衰减2 设计EMI滤波器的实际方法2.1 设计中的几点考虑EMI滤波器的效果不但依赖于其自身,还与噪声源阻抗及电网阻抗有关。

电网阻抗Z sink 通常利用静态阻抗补偿网络(LISN)来校正,接在滤波器与电网之间,包括电感、电容和一个50Ω电阻,从而保证电网阻抗可由已知标准求出。

而EMI源阻抗则取决于不同的变换器拓扑形式。

以典型的反激式开关电源为例,如图4(a)所示,其全桥整流电路电流为断续状态,电流电压波形如图5所示。

对于共模噪声,图4(b)所示Z source可以看作一个电流源I S和一个高阻抗Z并联;图4(c)中对于差模噪声,取决于整流桥二极管通断情况,Z source有两种状态:当其中任P意两只二极管导通时,Z source等效为一个电压源V S与一个低值阻抗Z S串连;当二极管全部截止时,等效为一个电流源I S和一个高阻抗Z P并联。

因而噪声源差模等效阻抗Z source以2倍工频频率在上述两种状态切换[2]。

(a)典型反激式开关电源(b)共模噪声源等效电路(c)差模噪声源等效电路图4 典型反激式开关电源及其噪声源等效电路图5 电源输入端电压、电流波形在前述设计过程中,EMI滤波器元件(电感、电容)均被看作是理想的。

然而由于实际元件存在寄生参数,比如电容的寄生电感,电感间的寄生电容,以及PCB板布线存在的寄生参数,实际的高频特性往往与理想元件仿真有较大的差异。

这涉及到EMC高频建模等诸多问题,模型的参数往往较难确定,所以,本文仅考虑EMI滤波器的低频抑制特性,而高频建模可参看文献[8]等。

故Z S及Z P取值与这些寄生电容、电感以及整流桥等效电容等寄生参数有关,直接采用根据电路拓扑及参数建模的方案求解源阻抗难以实现,因而,在设计中往往采用实际测量Z source。

2.2 实际设计步骤EMI滤波器设计往往要求在实现抑制噪声的同时,自身体积要尽可能小,成本要尽可能低廉。

同时,滤波效果也取决于实际的噪声水平的高低,分析共模和差模噪声的干扰权重,为此,在设计前要求确定以下参量,以实现设计的优化。

1)测量干扰源等效阻抗Z source和电网等效阻抗。

实际过程中往往是依靠理论和经验的指导,先作出电源的PCB板,这是因为共模、差模的噪声源和干扰途径互不相同,电路板走线的微小差异都可能导致很大EME变化。

2)测量出未加滤波器前的干扰噪声频谱,并利用噪声分离器将共模噪声V MEASUREE,CM和差模噪声V measure,CM分离,做出相应的干扰频谱。

接着就可以进行实际的设计了,仍以本文中提出的滤波器模型为例,步骤如下。

(1)依照式(9)计算滤波器所需要的共模、差模衰减,并做出曲线V measure,CM-f和V measure,-f,其中V measure,CM和V measure,DM已经测得,V standard,CM和V standard,DM可参照传导EMI干扰国标设定。

加DM上3dB的原因在于用噪音分离器的测量值比实际值要大3dB。

(V req,CM)dB=(V measure,CM)-(V standard,CM)+3dB(V req,DM)dB=(V measure,DM)-(V standard,DM)+3dB(9)(2)由图3可知,斜率分别为40dB/dec和60dB/dec的两条斜线与频率轴的交点即为f和f R,DM。

作V measure,CM-f和V measure,DM-f的切线,切线斜率分别为40dB/dec和60dB/dec,比较R,CM可知,只要测量他们与频率轴的交点,即可得出f R,CM和f R,DM,图6所示为其示意图。

(a)实线为共模目标衰减;虚线为斜率为40dB/dec切线(b)实线为差模目标衰减;虚线为斜率为60dB/dec切线图6f R,DM与f R,CM的确定(3)滤波器元件参数设计——共模参数的选取C y接在相线和大地之间,该电容器容量过大将会造成漏电流过大,安全性降低。

对漏电流要求越小越好,安全标准通常为几百μA到几mA。

EMI对地漏电流I y计算公式为I=2πfCV c(10)y式中:f为电网频率。

在本例中,V c是电容C y上的压降,f=50Hz,C=2C y,V c=220/2=110V,则C=(11)y若设定对地漏电流为0.15mA,可求得C y≈2200pF。

将C y代入步骤(2)中求得f R,CM值,再将f R,CM 代入式(6)中可得L=(12)c——差模参数选取由式(8)可知,C x1,C x2,以及L D的选取没有唯一解,允许设计者有一定的自由度。

由图2可知,共模电感L c的漏感L g也可抑制差模噪声,有时为了简化滤波器,也可以省去L D。

经验表明,漏感L g量值多为L c量值的0.5%~2%。

L g可实测获得。

此时,相应地C x1、C cx2值要更大。

相关文档
最新文档