初中数学建模
初中数学建模举例

初中数学建模举例(一)所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。
现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。
求所挂重物重量为6kg时弹簧的长度。
既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。
可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。
求解二元一次方程组,得出k=0.3,b=6。
从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。
于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。
这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。
但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。
二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。
小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。
求解二元一次方程组,得解k=0.5,b=5。
得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。
从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。
本例至此,似乎已经解决了问题。
但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。
因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。
初中数学中的数学建模如何应用数学解决实际问题

初中数学中的数学建模如何应用数学解决实际问题数学建模是数学教育中的一项重要内容,它将数学的知识与实际问题相结合,通过运用数学方法的建模过程,解决实际问题,并提高学生的综合素质。
在初中数学中,数学建模的应用十分重要,它能够培养学生的创新思维、实际应用能力和团队合作精神。
本文将介绍初中数学中的数学建模在实际问题中的应用。
一、数学建模在交通出行中的应用交通出行是我们日常生活中关系到方便快捷的问题,而数学建模可以帮助我们解决交通出行中的一些实际难题。
比如,我们可以利用数学模型来分析交通流量,预测交通状况,为城市交通规划提供科学依据;还可以通过数学模型来设计交通信号灯的配时方案,优化交通运行效果,减少交通拥堵。
二、数学建模在环境保护中的应用环境保护是当今社会的一个重要课题,而数学建模可以帮助我们分析环境问题,提供解决方案。
例如,我们可以利用数学模型来研究空气质量,分析污染物的扩散规律,为环境监测和治理提供依据;还可以通过数学模型来优化垃圾处理系统,合理规划垃圾收集和处理的路线,减少环境污染。
三、数学建模在经济管理中的应用经济管理是社会运行的基础,而数学建模可以帮助我们分析经济问题,制定有效的管理策略。
举例来说,我们可以利用数学模型来分析市场供求关系,预测产品销售量,为企业的生产计划和市场决策提供参考;还可以通过数学模型来优化生产过程,降低生产成本,提高企业效益。
四、数学建模在社会调查中的应用社会调查是了解社会现象和社会问题的重要手段,而数学建模可以帮助我们统计调查数据,分析得出结论。
例如,我们可以利用数学模型来分析人口统计数据,揭示人口的增长趋势和分布规律,为城市规划和社会保障提供参考;还可以通过数学模型来分析社会心理调查数据,了解人们对特定问题的态度和观点,为社会问题的解决提供建议。
综上所述,初中数学中的数学建模能够应用数学方法解决实际问题,并为实际应用提供科学依据。
通过数学建模的学习,可以培养学生的创新思维和实际应用能力,提高他们解决实际问题的能力。
初中教材数学建模教案

初中教材数学建模教案一、教学目标1. 让学生了解数学建模的基本概念和方法,培养学生的数学应用意识。
2. 通过对购物预算的实际问题进行分析,培养学生运用数学知识解决实际问题的能力。
3. 培养学生团队合作精神,提高学生的沟通与表达能力。
二、教学内容1. 数学建模的基本概念和方法。
2. 线性方程组的应用。
3. 购物预算问题的实际分析。
三、教学过程1. 导入:通过一个实际购物场景,引导学生思考如何制定购物预算,引出本节课的主题——数学建模。
2. 知识讲解:(1)介绍数学建模的基本概念和方法,让学生了解数学建模的意义和应用。
(2)讲解线性方程组的解法,为学生解决购物预算问题打下基础。
3. 实例分析:(1)给出一个购物预算的实际问题,让学生分组讨论,分析问题并建立数学模型。
(2)引导学生运用线性方程组的知识,求解购物预算问题。
4. 实践操作:让学生分组进行实践活动,每组选取一个购物预算问题,运用所学知识进行分析和求解。
5. 成果展示:各组汇报自己的研究成果,其他组进行评价和讨论。
6. 总结提升:总结本节课所学内容,强调数学建模在实际生活中的应用。
四、教学评价1. 学生对数学建模的基本概念和方法的理解程度。
2. 学生运用线性方程组解决实际问题的能力。
3. 学生在团队合作中的表现,包括沟通、表达和协作能力。
五、教学资源1. 购物预算问题的实际案例。
2. 数学建模的基本概念和方法的PPT。
3. 线性方程组的解法教程。
4. 实践活动所需的各种购物预算问题。
六、教学建议1. 注重培养学生的数学应用意识,让学生认识到数学建模在实际生活中的重要性。
2. 引导学生积极参与实践活动,提高学生的动手能力和实际问题解决能力。
3. 鼓励学生在团队合作中发挥自己的特长,培养学生的团队合作精神。
4. 注重教学评价,及时发现和纠正学生在学习过程中的错误,提高学生的学习效果。
初中数学知识归纳数学建模的典型题型与解法

初中数学知识归纳数学建模的典型题型与解法数学建模是一门将数学知识应用于实际问题求解的学科,它不仅要求运用各种数学工具和方法,还需要掌握各类数学题型的解法。
对于初中生而言,熟悉数学建模中典型题型的解法是提高数学水平和解决实际问题的重要途径。
本文将介绍几个初中数学建模中常见的典型题型及其解法。
1. 购物结账问题购物结账问题是数学建模中常见的一个题型。
考虑到实际购物场景,我们可以使用代数表达式来解决这类问题。
假设购物清单中有n个商品,每个商品的价格分别为p1, p2, ..., pn,购买的数量分别为q1, q2, ..., qn。
那么购物的总费用可以表示为:总费用 = p1*q1 + p2*q2 + ... + pn*qn在解决具体问题时,可以根据实际情况确定商品的价格和购买数量,然后代入上述表达式计算总费用。
2. 几何图形的面积与体积计算几何图形的面积与体积计算是数学建模中经常遇到的问题。
常见的图形包括矩形、三角形、圆形、立方体等。
对于矩形、三角形和圆形,我们可以通过应用相应的公式来计算其面积。
例如,矩形的面积等于宽度乘以长度,三角形的面积等于底边乘以高度的一半,圆形的面积等于半径的平方乘以π。
对于立方体或其他几何体的体积计算,需要确定其形状和尺寸。
例如,一个立方体的体积等于边长的立方。
通过掌握这些几何图形的面积与体积计算方法,可以在实际问题中准确求解图形的大小和容积。
3. 概率与统计问题概率与统计问题在数学建模中也是常见的一个题型。
例如,在一次抛掷硬币的实验中,我们关注的是正面朝上的概率。
通过进行多次实验并记录结果,可以确定正面朝上的频率,并据此计算概率。
另一个例子是统计一组数据的平均数。
假设有n个数据,分别为x1, x2, ..., xn,那么它们的平均数可以计算为:平均数 = (x1 + x2 + ... + xn) / n在解决概率与统计问题时,需要根据实际情况选择合适的统计方法,并运用数学知识进行数据分析和计算。
初中的数学建模方法与实例

数学建模是数学教学中的重要环节,通过数学建模,学生可以将数学知识应用到实际问题中,培养解决问题的能力和创新思维。在初中阶段,数学建模的方法与实例也逐渐引起了人们的关注。本文将介绍初中的数学建模方法与实例,帮助读者更好地理解和运用数学建模。
一、初中的数学建模方法
1.问题提出:在数学建模中,首先要明确问题,了解问题的背景和内容。学生可以自己提出问题,也可以选择老师或教材上的问题进行建模。在问题提出阶段,要尽量将问题简化,明确对象和变量。
3.几何形状问题:假设有一块土地,要将其分为两个相等的部分,且每部分围成的形状相同。问土地的形状是什么?通过建立几何模型和利用几何性质等知识,可以解决这个问题。
4.数列问题:假设有一个等差数列,已知前两项的和为5,问这个数列的通项公式是什么?通过建立数学模型和利用等差数列的性质等知识,可以求解这个问题。
二、初中的数学建模实例
1.汽车加速问题:假设小明开车行驶,刚开始起步时速度为0,然后按照一定的加速度加速。问题是给定小明的加速度和起始速度,求小明行驶一定距离后的速度。通过建立速度函数和运用运动学等知识,可以求解小明的速度。
2.人口增长问题:假设某地的人口每年增长一定的百分比,问经过多少年,人口将达到某一规定的数量。通过建立人口增长模型和运用指数函数等知识,可以计算出需要的年数。
5.概率问题:假设有一批产品,其中有一定比例的次品。问若从中随机抽取一件产品,它是次品的概率是多少?通过建立概率模型和利用概率知识等,可以计算次品的概率。
通过以上实例,我们可以看到初中的数学建模方法是多样的,可以应用到不同的问题中。数学建模的过程既培养了学生的数学思维能力,也提高了他们的问题解决能力和创新思维。因此,在数学教学中,我们应该注重培养学生的数学建模能力,通过实际问题的探究,激发学生对数学的兴趣和学习的动力。
如何培养七年级学生的数学建模能力

如何培养七年级学生的数学建模能力数学建模能力是指能够把实际问题转化为数学问题,并运用数学知识和方法解决问题的能力。
对于七年级的学生来说,正处于从小学到初中的过渡阶段,培养他们的数学建模能力至关重要。
这不仅有助于他们更好地理解数学知识,提高数学应用能力,还能为今后的学习和生活打下坚实的基础。
一、激发学生的学习兴趣兴趣是最好的老师,只有让学生对数学建模产生浓厚的兴趣,他们才会主动去学习和探索。
在教学过程中,可以引入一些生动有趣的实际问题,如购物优惠方案的选择、行程问题、工程问题等,让学生感受到数学在生活中的广泛应用。
同时,可以通过数学故事、数学游戏等方式,激发学生的好奇心和求知欲,让他们在轻松愉快的氛围中学习数学。
例如,在讲解有理数的运算时,可以设计一个“超市购物”的情境:小明去超市买东西,苹果每斤 3 元,香蕉每斤 2 元,小明买了 2 斤苹果和 3 斤香蕉,请问他一共花了多少钱?通过这样的问题,让学生在实际情境中运用有理数的运算解决问题,从而提高他们的学习兴趣和积极性。
二、注重基础知识的教学扎实的基础知识是培养数学建模能力的前提。
七年级的数学知识包括有理数、整式、一元一次方程等,这些知识是后续学习和建模的基础。
在教学过程中,要让学生理解和掌握这些知识的概念、性质和运算方法,注重知识的系统性和连贯性。
比如,在学习一元一次方程时,要让学生明白方程的定义、方程的解以及解方程的步骤。
通过大量的练习,让学生熟练掌握解方程的方法。
只有当学生掌握了这些基础知识,才能在遇到实际问题时,迅速将其转化为数学模型,并运用所学知识进行求解。
三、培养学生的问题意识问题意识是数学建模的核心。
要鼓励学生多观察、多思考,善于发现生活中的数学问题,并尝试用数学的方法去解决。
在课堂教学中,可以设置一些开放性的问题,引导学生自主探究,培养他们的创新思维和问题解决能力。
例如,在学习三角形的内角和时,可以让学生自己动手剪拼三角形的三个内角,探究它们的和是否为 180 度。
培养初中学生数学建模能力的方法

培养初中学生数学建模能力的方法一、问题驱动,培养兴趣培养学生对数学建模的兴趣是培养他们数学建模能力的前提。
可以通过设置有趣、实际、有挑战性的数学建模问题,激发学生的学习兴趣,提高他们参与数学建模活动的积极性。
可以利用一些真实生活案例,让学生去发现数学问题、提出问题、研究解决问题的方法。
二、项目实践,培养动手能力通过数学建模项目实践,让学生参与到实际问题的建模过程中,提高他们的动手能力和创新精神。
可以组织学生进行实地调研,收集数据,提出问题,选择合适的数学模型,构建模型,进行数值仿真,分析模型的合理性和可行性,并提出解决方案。
通过实践项目,学生能够更深入地理解数学知识,在实践中培养数学建模的能力。
三、跨学科教学,拓宽思维数学建模活动可以和其他学科相结合,拓宽学生的思维。
可以与科学、物理、地理等学科进行跨学科的教学。
如在地理学科中,可以引导学生运用数学建模方法,分析地震活动的规律;在科学学科中,可以让学生运用数学建模方法,研究物体的运动规律等。
这样能够让学生将数学知识运用到实际问题中,拓宽他们的思维。
四、研讨活动组织学生参与数学建模的研讨活动,培养他们的合作精神和团队意识。
可以将学生分为小组,给予他们不同的角色,让他们共同完成一项数学建模任务。
通过小组合作,学生可以互相交流、分享、讨论,不仅可以加深对问题的理解,还能够培养合作解决问题的能力。
五、数学思维训练,提高抽象思维能力数学建模活动要求学生具备一定的抽象思维能力,因此可以通过一些数学思维训练来提高学生的抽象思维能力。
可以运用数学游戏、数学竞赛、数学推理等方式,培养学生的逻辑思维、分析问题的能力。
例如,可以通过解决一些数学难题,培养学生的问题解决能力和数学思维能力。
综上所述,培养初中学生数学建模能力是一个综合性的过程,需要从问题驱动、项目实践、跨学科教学、研讨活动和数学思维训练等多个方面进行培养。
通过这些方法的实施,可以激发学生的学习兴趣,提高他们参与数学建模活动的积极性,培养他们的动手能力、创新精神、抽象思维能力和合作精神,从而提高他们的数学建模能力。
初中数学建模知识点

初中数学建模知识点1.变量和函数:了解变量和函数的概念,学会用变量和函数来描述和分析问题,从而构建数学模型。
2.图形与数据的表示与分析:学习使用图表和数据来表示和分析问题。
常见的图表包括折线图、柱状图、饼图等,用于展示数据的分布、变化和比较。
3.数据统计与概率:学习如何收集和整理数据,了解常用的统计方法,如平均数、中位数、众数等。
概率是指根据已知信息,对事件发生的可能性进行估计和计算。
4.几何与图形:学习几何图形的性质、分类和测量方法,如直角三角形、平行四边形、圆等,以及面积、周长、体积等概念。
同时,还需要学习如何将几何图形应用到实际问题中,如计算房屋的面积、建筑物的体积等。
5.代数方程与不等式:学习解一元一次方程、一元二次方程和简单的不等式,掌握解方程和不等式的方法和技巧。
同时,还需要学习如何将实际问题转化为代数方程或不等式,并解决它们。
6.线性关系与函数:学习线性函数和一些常见的非线性函数,如二次函数、指数函数和对数函数等。
掌握函数的特性、图像和性质,学会将实际问题转化为函数的描述和应用。
7.最优化问题:学习如何寻找最优解,如最大值、最小值等。
学习使用函数模型和约束条件来描述最优化问题,并运用数学方法求解这些问题。
8.抽象建模与推理:学习如何抽象具体问题,建立抽象模型,并运用推理方法解决问题。
学习逻辑推理、思维导图等工具,将繁杂的问题简化,分解,找到解决问题的思路和方法。
9.数学工具的应用:学习如何使用数学工具解决实际问题,如计算器、电脑软件、数学仿真等。
同时,还需要学习正确使用数学工具,合理选择工具,并对结果进行合理的解读和分析。
10.数学建模的思维方法:学习数学建模的思维方法和策略,如拆解问题、归纳和演绎法等。
培养分析问题、提炼问题、解决问题的能力,还要培养创新思维,培养独立思考和解决问题的能力。
以上是初中数学建模的一些重要知识点,通过学习和掌握这些知识点,能够更好地应用数学知识解决实际问题,提高数学建模的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学建模教学有感摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1].对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴.数学建模的基本过程大致为:一、初中数学建模教学宜低起点、小步子、多活动过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维.[案例1]销售中的盈亏问题的建模教学1、背景问题某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页)2、数学建模(1)问题分析①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元?②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元?(2)模型建立问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?归纳盈利:销售价>进价问题2你认为销售价与进价之间具有怎样的关系时是亏损的?归纳亏损:销售价<进价问题3你认为销售价与进价之间具有怎样的关系时不亏不盈?归纳不盈不亏:销售价=进价问题4你发现利润、销售价、进价之间有怎样的关系?归纳利润=销售价-进价问题5 你发现利润、进价、利润率之间有怎样的关系?归纳利润=进价×利润率问题6你发现销售价、进价、利润率之间有怎样的关系?归纳销售价-进价=进价×利润率(3)模型求解设盈利25%的那件衣服的进价是x元,那么它的利润就是0.25x元,根据销售价、进价和利润之间的关系,列方程600.25-=,解得48x=.x x设亏损25%的那件衣服的进价是y元,那么它的利润就是0.25x-元,根据销售价、进价和利润之间的关系,列方程600.25y=.-=-,解得80y y于是x y+=48+80=128>120,所以卖出这两件衣服总的是盈利的.(4)模型应用应用 1 “打折销售”是商家进行促销活动的常用手法之一,商家常常将“打折销售”说成是“亏本大甩卖”.电器商场的一种新型电子产品按每件600元卖出时,可获利50%.在促销活动中该电子产品按标价的七折售出,商场卖出该电子产品亏本了吗?说说你的理由.应用2某件商品进价为250元,按标价的九折销售时,利润为15.2%,这件商品的标价是多少?应用3一商场将每台彩电先按进价提高40%标出售价,然后广告宣传将以80%的优惠价出售,结果每台彩电赚了300元,则经销这种商品的利润率是多少?应用4某件商品进价是3 000元,标价为4 500元,商场规定该商品售出时利润率不低于5%.那么售货员在出售该商品时最多可以打几折?销售中的盈亏问题的数学建模教学中,先将背景问题分解成2个小问题进行分析,降低教学的起点,以便全体学生从课堂教学的一开始都能真正进入到教学活动中去.紧跟其后的6个小问题带动学生拾级而上,引导学生在数学学习活动中探索规律、“创造”数学模型,使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.数学模型中的量既可以是确定的固定的量,也可以是相对变化的量.通过对数学模型的量作了适当的处置,可以解决原本需要用不等式解决的“应用4”.通过建立数学模型、应用数学模型,学生的数学知识结构和数学思想方法的认识上升一个新台阶.二、初中数学建模教学应突出数学思想方法数学思想是数学知识的结晶,是高度概括的数学理论.数学方法是数学思想在数学活动中的反映和体现,它贯穿在知识的汲取、储存、加工、运用的全过程.在数学学习活动中,认识问题和解决问题,都是知识与方法相互作用的结果[4].初中数学中重要的数学思想有:字母代数的思想、转化与化归的思想、数形结合思想、分类的思想、方程与函数的思想、公理化思想等.数学方法有:类比法、归纳法、演绎法、配方法、换元法、待定系数法、数形结合法等.这些思想方法相互联系,相互渗透,相互补充,将整个数学知识构成一个有机和谐统一的整体.数学建模教学要重视数学知识,更应突出数学思想方法.[案例2] 圆周角定理的建模教学1、背景问题(1)如图1所示,ACB∠是⊙O中的 AB所对的两个圆周角,∠、ADB分别量出这两个圆周角的度数,比较一下它们的大小.再变动点C在圆周上的位置,这时圆周角的度数有没有变化?你能发现什么规律吗?(2)再量出图中 AB所对的圆心角AOB∠的度数,你又有什么发现?(人教版数学九年级上册第91页)2、模型建立(1)模型猜想同弧所对的圆周角的度数相等,都等于这条弧所对的圆心角的度数的一半.(2)验证猜想问题1你选择先证明“同弧所对的圆周角相等”,还是先证明“弧所对的圆周角的度数等于这条弧所对的圆心角的度数的一半”?说说你的理由?归纳选择先证明“弧所对的圆周角的度数等于这条弧所对的圆心角的度数的一半”.因为①随着C在圆周上的位置发生变化,得到许多个圆周角,而这条弧所对的圆心角只有一个;②如果“弧所对的圆周角的度数等于这条弧所对的圆心角的度数的一半”成立,那么“同弧所对的圆周角的度数相等”自然成立.问题2按照圆心与圆周角的位置关系,变动C在圆周上的位置时所得到许多个圆周角可以分成几种情况?归纳按照圆心与圆周角的位置关系,圆周角分三种情况:(1)圆心在圆周角的一边上;(2)圆心在圆周角的内部;(3)圆心在圆周角的外部.问题3在这三种情况中,你选择先证明哪一种情况?说说你的理由.归纳选择先证明“圆心在圆周角一边上”的.因为此时AC为圆的直径,这是一种特殊情况.问题4 如图2所示,圆心在圆周角的一条边AC 上,你怎样证明12ACB AOB ∠=∠? 归纳 转化为证明2AOB ACB ∠=∠.问题 5 如图3所示,圆心O 在圆周角ACB ∠的内部,你怎样证明12ACB AOB ∠=∠? 归纳 因为“圆心在圆周角的一条边上”时,“弧所对的圆周角的度数等于这条弧所对的圆心角的度数的一半”.所以作过圆周角的顶点C 的直径CD ,将“圆心O 在圆周角的内部”的情况转化为“圆心在圆周角的一条边上”的情况来证明.问题6 如图4所示,圆心O 在圆周角ACB ∠的外部,你怎样证明12ACB AOB ∠=∠? 归纳 与证明“圆心在圆周角的内部” 的情况类似,作过圆周角的顶点C 的直径CD ,将“圆心O 在圆周角的外部”的情况转化为“圆心在圆周角的一条边上”的情况来证明.(3)建立模型① 因为在 “圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部”三种情况下,“弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半”都成立, 所以“同弧所对的圆周角都相等”.② 问题 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角有怎样的关系?想一想,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心周有怎样的关系?③圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角的相等,都等于这条弧所对的圆心角的一半.3、模型应用应用1半圆所对的圆周角等于多少度?说说你的理由.应用290O的圆周角所对的弦一定是直径吗?为什么?应用3如果三角形一边上的中线等于这边的一半,那么这个三角形一定是直角三角形吗?为什么?应用4在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?应用5已知⊙O的直径AB为10cm,弦AC为6cm,ACB的平分线交⊙O于D,求BC、AD、BD的长(图略).圆周角定理的数学建模教学中,首先动手实验,再对实验进行分析研究,然后才猜测存在的规律,培养学生实验、观察、分析、猜测、推理能力.“问题1”对验证猜想的方法的“研究”,首先解决主要矛盾(次要矛盾将迎刃而解),渗透辩证法思想.“问题2”引领学生观察、分析、归纳得出圆心与圆周角的三种情况,渗透分类思想.“问题3”渗透算法程序化思想.“问题4”至“问题6”在引领学生验证猜想,突出分类数学思想的同时,突出了转化与化归的数学思想.模型应用中前4个问题,实际上是圆周角定理的拓展,体现了公理化思想.圆周角定理的数学建模教学过程体现了初中数学建模“低起点、小步子、多活动”的特点.学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,领会了数学思想方法,增长了数学知识,提高了数学技能.参考文献[1]中华人民共和国教育部.数学课程标准[M].北京:北京师范大学出版社,2001:94.[2]徐斌艳.新课标与“数学教学内容”[M].南宁:广西教育出版社,2004:192-195.[3]颜冠群.在中学开展数学建模的初步思考[J].中小学数学,2004(7-8):4-5[4]毛鸿翔,高明,毛鸿翱.数学学习的理论与实践[M].上海:同济大学出版社,1991:183-184.。