机械设计基础-10. 4齿轮传动的计算载荷

合集下载

机械设计-齿轮传动

机械设计-齿轮传动

二、齿轮传动的缺点 制造及安装精度要求高 成本高、价格较贵 三、齿轮传动的分类 按装臵形式的不同分:
§10-1 齿轮传动概述
不适宜于远距离传动。
开式
半开式 闭式 软齿面 硬齿面
按齿面硬度的不同分:
根据使用情况的不同:还有高速、低速;重载、轻载齿轮 传动等之分。
§10-2 齿轮传动的失效形式及设计准则
问题:σF1和σF2是否是作用力和反作用力的关系 σF1≠σF2 不是作用力和反作用力的关系,位臵不同,大小不 同。
标准直齿圆柱齿轮强度计算
三、齿面接触疲劳强度计算
基本公式──赫兹应力计算公式,即:
sH =
1 1 Fca ± ) ( r1 r 2 L 2 1 - m 12 1 - m 2 p( + ) E1 E
常用材料
三、齿轮材料选用的基本原则

齿轮材料必须满足工作条件的要求;


应考虑齿轮尺寸大小,毛坯成型方法及热处理和制造工艺;
钢制软齿面齿轮,配对两轮齿面的硬度差应保持在30~50HBS或更多。
§10-4 齿轮传动的计算载荷
在进行齿轮传动的强度计算时,为了方便计算,所用的载荷通 常取沿齿面接触线上单位长度所受的平均载荷作为计算依据,即: Fn p = 单位长度载荷 L Fn 为轮齿所受的公称法向载荷。 实际传动中,由于原动机、工作机性能以及齿轮的制造误差的影 响,法向载荷会有所增大,而且沿接触线分布不均匀。引入一个系数K。 修正后的接触线单位长度上载荷Pca——计算载荷为: KFn Pca = KP = L K为载荷系数,其值为:K=KA Kv Kα Kβ
§10-3齿轮的材料及其选择原则
一、对齿轮材料性能的要求 齿轮的齿根应有较高的抗折断能力,齿面应有较强的抗点蚀、 抗

2024年机械设计基础课件齿轮传动

2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

齿轮传动

齿轮传动

Kα取决于轮齿刚度、pb误差、修缘量等。
KHα——用于σH KFα ——用于σF
10-4 齿轮传动的计算载荷
26
4、齿向载荷分配系数Kβ 考虑使轮齿沿接触线产生载荷分布不均匀现象。 制造方面:齿向误差 影响因素 安装方面:轴线不平行等 使用方面:轴变形、轮齿变形、支承变形等
讨论:
a)轴承作非对称布置时, 弯曲变形对Kβ的影响。
10-2 齿轮传动的失效形式及设计准则 6
失效形式
齿轮的失效发生在轮齿,其它部分很少失效。
失效形式
轮齿折断 齿面损伤
齿面接触疲劳磨损(齿面点蚀) 齿面胶合 齿面磨粒磨损
齿面塑性流动 一、轮齿折断
常发生于闭式硬齿面或开式传动中。
现象:①局部折断 ②整体折断
10-2 齿轮传动的失效形式及设计准则 7
3、有良好的加工工艺性,便于齿轮加工。 1)大直径d>400 用ZG 2)大直径齿轮:齿面硬度不宜太高,HB<200,以免中途换刀
4、材料易得、价格合理。 举例:起重机减速器:小齿轮45钢调质 HB230~260 大齿轮45钢正火 HB180~210 机床主轴箱:小齿轮40Cr或40MnB 表淬 HRC50~55 大齿轮40Cr或40MnB 表淬 HRC45~50
第十章 齿 轮 传 动
§10-1 齿轮传动概述 §10-2 齿轮传动的失效形式及设计准则 §10-3 齿轮的材料及其选择原则 §10-4 齿轮传动的计算载荷 §10-5 标准直齿圆柱齿轮传动的强度计算 §10-6 齿轮传动设计参数、许用应力与精度选择 §10-7 标准斜齿圆柱齿轮传动的强度计算 §10-8 标准锥齿轮传动的强度计算 §10-9 齿轮的结构设计 §10-10 齿轮传动的润滑
动载系数

齿轮传动的作用力及计算

齿轮传动的作用力及计算

11-4直齿圆柱‎齿轮传动的‎作用力及计‎算载荷:一、齿轮上的作‎用力:为了计算齿‎轮的强度,设计轴和选‎用轴承,有必要分析‎轮齿上的作‎用力。

当不计齿面‎的摩擦力时‎,作用在主动‎轮齿上的总‎压力将垂直‎于齿面,(因为齿轮传‎动一般都加‎以润滑,齿轮在齿啮‎合时,摩擦系数很‎小,齿面所受的‎摩擦力相对‎载荷很小,所以不必考‎虑),即为P17‎5图11-5b所示的‎F n(沿其啮合线‎方向),Fn可分解‎为两个分力‎:圆周力:Ft=2T1/d1 N径向力:Fr=Fttgα‎ N而法向力:Fn=Ft/cosα NT1:小齿轮上的‎扭矩 T1=95500‎00p/n1 n·mmP:传递的功率‎(KW) d1:小齿轮分度‎圆直径 mmα:压力角 n1:小齿轮的转‎速(r·p·m)Ft1:与主动轮运‎动方向相反‎;Ft2与从‎动轮运动方‎向一致。

各力的方向‎ Fr:分别由作用‎点指向各轮‎轮心。

Fn:通过节点与‎基圆相切(由法切互为‎性质)。

根据作用力‎与反作用力‎的关系,主从动轮上‎各对的应力‎应大小相等‎,方向相反。

二、计算载荷:Fn是根据‎名义功率求‎得的法向力‎,称为名义载‎荷,理论上Fn‎沿齿宽均匀‎分布,但由于轴和‎轴承的变形‎,传动装置的‎制造安装误‎差等原因,载荷沿齿宽‎的分布并不‎均匀,即出现载荷‎集中现象(如P176‎图11-6所示,齿轮相对轴‎承不对称布‎置,由于轴的弯‎曲变形,齿轮将相互‎倾斜,这时,轮齿左端载‎荷增大,轴和轴承刚‎度越小,b越宽,载荷集中越‎严重。

此外,由于各种原‎动机和工作‎机的特性不‎同,齿轮制造误‎差以及轮齿‎变形等原因‎,还会引起附‎加动载荷。

精度越低,圆周速度V‎越大,附加载荷越‎大。

因此在计算‎强度时,通常以计算‎载荷K·Fn代替名‎义载荷Fn‎,以考虑上两‎因素的影响‎。

K—载荷系数表达式11‎-311-5 直齿圆柱齿‎轮的齿面接‎触强度计算‎:一、设计准则:齿轮强度计‎算是根据齿‎轮失效形式‎来决定的,在闭式传动‎中,轮齿的失效‎形式主要是‎齿面点蚀,开式传动中‎,是齿轮折断‎,在高速变截‎的齿轮传动‎中,还会出现胶‎合破坏,因胶合破坏‎的计算方法‎有待进一步‎验证和完善‎。

机械设计基础第10章

机械设计基础第10章


相信相信得力量。20.12.202020年12月 20日星 期日2时45分44秒20.12.20
谢谢大家!

踏实,奋斗,坚持,专业,努力成就 未来。20.12.2020.12.20Sunday, December 20, 2020

弄虚作假要不得,踏实肯干第一名。02:45:4402:45:4402:4512/20/2020 2:45:44 AM
(N / mm2 )
10
10
10
二、齿面接触疲劳强度计算
⒈计算依据 H HP
⒉齿面接触应力计算
H0
11
Fn 1 2
b 1 12 1 22
E1
E2
整理后,齿面接触疲劳的理论应力
H0 ZEZH
Ft u 1 bd1 u
10
10
小轮 大轮
H1 ZBZH ZEZ
2KT1 u 1
d d13 u
机械设计基础
第十章 齿 轮 传 动
第一节 齿轮传动的失效形式和计算准则 第二节 齿轮的材料及热处理 第三节 齿轮传动的精度 第四节 直齿圆柱齿轮传动的作用力及计算载荷 第五节 直齿圆柱齿轮传动的强度计算 第六节 斜齿圆柱齿轮传动的强度计算 第七节 直齿圆锥齿轮传动的强度计算 第八节 齿轮的结构 第九节 齿轮传动的润滑及效率 第十节 圆弧齿轮传动简介 第十一节 渐开线圆柱齿轮传动计算辅助设计简介
1
3)比渐开线齿轮具有较高的抗疲劳点蚀能力。 4)有利于油膜形成,齿面磨损小,磨擦损失小,传动效率高。 5)无根切现象,小齿轮齿数可以很少,因此可减少齿轮尺寸。 6)加工主要为滚切,且只需一把滚刀。
二、双圆弧齿轮传动
10
10
第十一节 渐开线圆柱齿轮传动计算机辅助设计(CAD)简介

《机械设计基础》教学课件主题10 齿轮传动

《机械设计基础》教学课件主题10 齿轮传动

单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
1、轮齿折断 轮齿就好像一个悬臂梁,在外载荷作用下,在其轮齿根部产生的 弯曲应力最大。同时,在齿根部位过渡尺寸发生急剧变化,以及加工时 沿齿宽方向留下加工刀痕而造成应力集中的作用,当轮齿重复受载,在 脉动循环或对称循环应力作用下,弯曲应力超过弯曲疲劳极限时,在齿 轮根部会产生疲劳裂纹,如图(a)所示。随着裂纹的逐步扩展,最终 引起断裂,如图(b)所示。
轮齿折断都是其弯曲应力超过了材料相应的极限应力,是最危险 的一种失效形式。一旦发生断齿,传动立即失效。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
2、齿面点蚀 在润滑良好的闭式齿轮传动中,由于齿面材料在交变接触应力 作用下,因为接触疲劳产生贝壳形状凹坑(麻点)的破坏形式称为点 蚀。点蚀也是常见的一种齿面破坏形式。齿面上最初出现的点蚀随材 料不同而不同,一般出现在靠近节线的齿根面上,如图所示,最初为 细小的尖状麻点。当齿面硬度较低、材料塑性良好,齿面经跑合后, 接触应力趋于均匀,麻点不再继续扩展,这是一种收敛性点蚀,不会 导致传动失效。但当齿面硬度较高、材料塑性较差时,点蚀就会不断 扩大,这是一种破坏性点蚀,是一种危险的失效形式。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
3、齿面胶合 对于某些高速重载的齿轮传动(如航空发动机的主传动齿轮), 齿面间的压力大,瞬时温度高,油变稀而降低了润滑效果,导致摩擦增 大,齿面温度升高,将会使某些齿面上接触的点熔合,焊在一起,在两 齿面间相对滑动时,焊在一起的地方又被撕开。于是,在齿面上沿相对 滑动的方向形成伤痕,如图所示,这种现象称为胶合。
机械设计基础
主题10 齿轮传动
单元1 单元2 单元3 单元4 单元5 单元6

机械设计基础考试大纲

机械设计基础考试大纲
2、 回转件的静平衡和动平衡
课程内容
9-1机械零件设计概述
9-2机械零件的强度
9-3机械零件的接触强度
9-4机械零件的耐磨性
9-5机械制造常用材料及选择
考核知识点和考核要求
1、 应力种类;许用应力、安全系数的概念;影响机械零件疲劳强度的主要因素
1、 棘轮机构的组成、工作原理和基本类型;主要特点和应用
2、 槽轮机构的组成、工作原理和基本类型;主要特点和应用
第7章 机械运转速度波动的调节
课程内容
7-1机械运转速度波动调节的目的和方法
7-2飞轮设计的近似方法
7-3飞轮主要尺寸的确定
考核知识点和考核要求
1、 周期性速度波动和非周期性速度波动的概念;平均角速度和不均匀系数的概念;周期性速度波动和非周期性速度波动的调节概念
第12章 蜗杆传动
课程内容
12-1蜗杆传动的特点和类型
12-2圆柱蜗杆传动的主要参数和几何尺寸
12-3蜗杆传动的失效形式、材料和结构
12-4圆柱蜗杆的受力分析
12-5圆柱蜗杆传动的强度计算
12-6圆柱蜗杆传动的效率、润滑和热平衡计算
考核知识点和考核要求
1、 蜗杆传动的特点和类型;普通圆柱蜗杆传动的中间平面的含义;蜗杆分度圆直径取标准值的意义;普通圆柱蜗杆传动的正确啮合条件、几何尺寸计算
第11章 齿轮传动
课程内容
11-1轮齿的失效形式
11-2齿轮材料及热处理
11-3齿轮传动的精度
11-4直齿圆柱齿轮传动的作用力及计算载荷
11-5直齿圆柱齿轮传动的齿面接触强度计算
11-6直齿圆柱齿轮传动的轮齿弯曲强度计算

齿轮传动的计算载荷

齿轮传动的计算载荷
§10—4 齿轮传动的计算载荷
一、轮齿的受力分析 忽略摩擦力,法向力F 沿啮合线作用于节点处(将分布力简化为集中力) 忽略摩擦力,法向力 n沿啮合线作用于节点处(将分布力简化为集中力) Fn与过节点 的圆周切向成角度。Fn可分解为 t和Fr 与过节点P的圆周切向成角度 的圆周切向成角度。 可分解为F 1、力的大小 、 圆周力 Ft=2π/d1 径向力 Fr=Ft/tgα Ft1=-Ft2 Fr1=-Fr2 大小相等, 大小相等,方向相反
3 齿间载荷分配系数 α 考虑齿轮付双齿啮合时各 齿间载荷分配系数K
齿对载荷分配不均匀的影响 齿对载荷分配不均匀的影响 分配不均匀 影响因素:齿轮的精度、齿面硬度 均匀的影响 均匀的影响 影响因素:精度、齿面硬度 、齿宽、齿轮相对轴 承的位置
4 齿向载荷分布系数 β 考虑轮齿沿齿宽载荷分布不 齿向载荷分布系数K 考虑轮齿沿齿宽载荷分布不
计算载荷: 计算载荷: Fnc = K Fn 载荷系数: 载荷系数: 1 使用系数 A 使用系数K K=KAKVKαKβ
Fn
考虑外部因素引起的附加动载荷影响 影响因素:原动机、工作机的机械特性
2 动载荷系数 V 考虑齿轮付本身因误差、变形带来 动载荷系数K 考虑齿轮付本身因误差、
冲击而引起的附加动载荷影响 影响因素:齿轮的精度n1=-Fn2 T1——小齿轮上传递的扭矩(N.mm) 小齿轮上传递的扭矩( 小齿轮上传递的扭矩 ) α=20° ° 2、力的方向 、 Ft——“主反从同”,Fr——指向轴线 外齿轮 主反从同” 指向轴线—外齿轮 主反从同 指向轴线 背向轴线—内齿轮 背向轴线 内齿轮 d1——小齿轮上的直径(mm), 小齿轮上的直径( 小齿轮上的直径 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 齿轮传动的计算载荷
齿轮传动强度计算中所用的载荷,通常取沿齿面接触线单位长度上所受的载荷进行计算。

沿齿面接触线单位长度上的平均载荷p(单位为N/mm)为,即:
F n 为轮齿所受的公称法向载荷。

实际传动中由于原动机、工作机性能的影响以及制造误差的影响,载荷会有所增大,且沿接触线分布不均匀。

接触线单位长度上的最大载荷为:
K 为载荷系数,其值为:K =K A K v K α K β
式中:K A ─使用系数 K α─齿间载荷分配系数 K v ─动载系数 K β─齿向载荷分布系数
1、KA--使用系数
使用系数KA 是考虑齿轮啮合时外部因素引起的附加动载荷影响的系数。

这种动载荷取决于原动机和工作机的特性,质量比,联轴器类型以及运行状态等。

KA 的使用值应针对设计对象,通过实践确定。

表10-2
2、Kv--动载系数
动载系数Kv 是考虑齿轮副本身的啮合误差(基节误差、齿形误差、轮齿受载变形等)所引起的啮入、啮出冲击和振动而产生内部附加动载荷影响的系数。

影响动载系数Kv 的主要因素:
1)基节误差和齿形误差
由于制造及装配的误差,轮齿受载后弹性变形的影响,使啮合轮齿的法向齿距Pb1与Pb2不相等,因而轮齿就不能正确的啮合传动,瞬时传动比就不是定值,从动齿轮在运转中就会产生角加速度,于是引起了动载荷或冲击。

L
F p n =L
KF Kp p n ca ==
2)轮齿变形和刚度大小的变化
对于直齿轮传动,轮齿在啮合过程中,不论是由双对齿啮合过
渡到单对齿啮合,或是由单对齿啮合过渡到双对齿啮合的期间,由
于啮合齿对的刚度变化,也要引起动载荷。

为了计及动载荷的影响,
引入了动载系数Kv。

3)齿轮转速的高低及变化
齿轮的制造精度及圆周速度对轮齿啮合过程中产生动载荷的大小影响很大。

减小动载荷的措施:
1)提高制造精度,以减小基节误差和齿形误差,减小齿轮直径以
降低圆周速度;
2)对轮齿进行修缘,以减小轮齿的啮入、啮出冲击;
对轮齿进行齿顶修缘,即把齿顶的小部分齿廓曲线(分度圆压
力角α=20°的渐开线)修正成α>20°的渐开线。

因Pb2>Pb1,则
后一对轮齿在未进入啮合区时就开始接触,从而产生动载荷。

为此
将从动轮2进行齿顶修缘,图中从动轮2的虚线齿廓即为修缘后的齿廓,实线齿廓则为未经修缘的齿廓。

由图明显地看出,修缘后的轮齿齿顶处的法节P'b2<Pb1,因此当Pb2>Pb1时,对修缘了的轮齿,在开始啮合阶段(如图),相啮合的轮齿的法节差就
小一些,啮合时产生的动载荷也就小一些。

若Pb1>Pb2,则在后一对齿已进入啮合区时,其主动齿齿根与
从动齿齿顶还未啮合。

要待前一对齿离开正确啮合区一段距离以后,
后一对齿才能开始啮合,在此期间,仍不免要产生动载荷。

若将主
动轮1也进行齿顶修缘,即可减小这种载荷。

高速齿轮传动或齿面经硬化的齿轮,轮齿应进行修缘。

但应注意,若修缘量过大,不仅重合度减小过多,而且动载荷也不一定就相应减小,故轮齿的修缘量应定得适当。

3)增大轴和轴承的刚度,以减小系统的变形。

3、K --齿间载荷分配系数
齿间载荷分配系数Ka是考虑同时啮合的各对轮齿间载荷分配不均匀影响的系数。

影响Ka的主要因素:
1)齿轮在啮合线上不同啮合位置,轮齿的弹性变形及刚度大小变化的影响;
2)齿轮制造误差,特别是基节误差,使载荷在齿间分布不均匀;
一对相互啮合的斜齿圆柱齿轮,如果在啮合区中有两对齿同时工作时,则载荷应分配在这两对齿上。

两对齿同时啮合的接触线总长
L=PP'+QQ'。

但由于基节误差及弹性变形等原因,总载荷Fn
并不是按PP'/QQ'的比例分配在PP'及QQ'这两条接触线上。

一条接触线上的平均单位载荷可能会大于p,而另一条上的则
可能小于p。

进行强度计算时应按平均单位载荷大于p的值计算。

为此,引入齿间载荷分配系数Ka。

表10-3
4、Kβ--齿向载荷分布系数
齿向载荷分布系数Kβ是考虑沿齿宽方向载荷分布不均影响的系数。

影响Kβ的主要因素:
1)齿轮的制造与安装误差
当轴承相对于齿轮作不对称配置时,受载前,轴无弯曲变形,轮齿啮合正常,两个节柱恰好相切;受载后,轴产生弯曲变形,轴上的齿轮也就随之偏斜,这就使作用在齿面的载荷沿接触线分布不均匀。

2)轴的弯曲变形与扭转变形
轴的扭转变形,轴承、支座的变形也会使齿面上载荷分布不
均。

3)齿宽的大小选择不当。

这些因素都会引起齿向载荷分布不均(也称“偏载”)。

减小齿轮传动偏载的的措施:
1)提高轴及支承(轴承、箱体)的刚度,减小变形;
2)综合考虑弯曲变形与扭转变形的影响,齿轮在轴上尽可能对
称布置,并尽可能将齿轮布置在远离转矩输入端,以缓和载荷分布不均匀现象;
3)针对不同工况,恰当选择齿宽;
4)提高制造与安装精度;
5)对齿轮进行沿齿宽方向修形。

齿向载荷分布系数Kβ可分为KHβ和KFβ。

其中KHβ为按齿面接触疲劳强度计算时所用的系数,而KFβ为按齿根弯曲疲劳强度计算时所用的系数。

表10-4是用于圆柱齿轮(包括直齿及斜齿)的齿向载荷分布系数KHβ。

可根据齿轮在轴上的支承情况,齿轮的精度等级,齿宽b与齿宽系数φd从下表种查取。

齿轮的K Fβ可根据KHβ之值,齿宽b与齿高h之比值b/h从图10-13弯曲疲劳强度计算用齿向载荷分布系数KFβ查得。

相关文档
最新文档