必修四③三角函数图像与性质
高中数学必修4三角函数的图像与性质

高一数学辅导三角函数(四)【三角函数的图像与性质】考点1求与三角函数有关的函数的定义域【例1】(1)求下列函数的定义域:①y=错误!+错误!;②y=错误!;③y=lgsin(cos x).(2)已知f(x)的定义域为[0,1),求f(cos x)的定义域.解析:(1)①错误!未定义书签。
错误!0<x<错误!或错误!未定义书签。
≤4,所以函数的定义域是错误!未定义书签。
∪[π,4].②sin(cos x)≥00≤cos x≤12kπ-错误!未定义书签。
≤x≤2kπ+错误!未定义书签。
,k∈Z,所以函数的定义域是错误!未定义书签。
.③由sin(cosx)>02kπ<cosx<2kπ+π(k∈Z),又∵-1≤cos x≤1,∴0<cos x≤1,∴所求定义域为错误!未定义书签。
,k∈Z.(2)0≤co s x <12k π-\f (π,2)≤x ≤2k π+错误!未定义书签。
,且x≠2k π(k ∈Z ),∴所求函数的定义域为错误!未定义书签。
∪(2kπ,2k π+错误!],k∈Z.考点2 求三角函数的单调区间【例2】 求下列函数的单调区间:(1)y=\f(1,2)sin错误!; (2)y=-错误!未定义书签。
.解析:(1)∵y=错误!sin 错误!未定义书签。
=-错误!未定义书签。
si n错误!,且函数y=sin x 的单调递增区间是错误!未定义书签。
,单调递减区间是错误!未定义书签。
(k ∈Z).∴由2k π-\f(π,2)≤错误!未定义书签。
-π4≤2k π+错误!未定义书签。
3k π-错误!未定义书签。
≤x ≤3kπ+9π8(k ∈Z), 由2k π+错误!≤错误!-错误!≤2k π+错误!未定义书签。
3k π+错误!未定义书签。
≤x≤3k π+\f (21π,8)(错误!Z),即函数的单调递减区间为[3k π-3π8,3k π+9π8](k ∈Z),单调递增区间为[3k π+9π8,3k π+错误!]错误!(2)作出函数y =-错误!未定义书签。
必修四第一章第3节 三角函数的图象和性质(一)周期性与图象

年级高一学科数学版本苏教版课程标题必修四第一章第3节三角函数的图象和性质(一)周期性与图象编稿老师王东一校林卉二校黄楠审核王百玲一、考点突破1. 掌握正弦、余弦、正切三角函数的图象和性质,会作三角函数的图象。
通过三角函数的图象研究其性质。
2. 注重函数与方程、转化与化归、数形结合思想等数学思想方法的运用。
3. 掌握正弦型函数y=A sin(ωx+φ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题。
高考命题趋势考查内容1. 对三角函数图象的考查多以选择题、填空题为主。
对数形结合思想的考查主要通过三角函数图象和单位圆中的三角函数线等来体现。
2. 三角函数的性质是考查的重点,这类题目概念性强,具有一定的综合性与难度。
能力要求熟练掌握基本技能与基本方法。
难度与赋分高考中以三基为主,多为基础题目,每年分值约为8分。
二、重难点提示重点:正弦、余弦、正切函数的周期性、图象及性质;函数y=A sin(ωx+φ)的图象及参数对函数图象变化的影响。
难点:周期函数的概念;画三角函数的图象;函数y=A sin(ωx+φ)的图象与正弦曲线的关系。
一、知识脉络图正弦函数y=sinx三角函数的图象余弦函数y=cosx正切函数y=tanxy=Asin(ωx+φ)作图象描点法(五点作图法)几何作图法性质定义域、值域单调性、奇偶性、周期性对称性最值二、知识点拨1. 正弦、余弦、正切函数的主要性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:)(0,2Zkk∈⎪⎭⎫⎝⎛+ππ无对称轴对称中心:⎝⎛⎭⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间⎣⎡2kπ-π2,2kπ+⎦⎤π2(k∈Z);单调减区间⎣⎡2kπ+π2,2kπ+⎦⎤3π2(k∈Z)单调增区间[2kπ-π,kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间⎝⎛kπ-π2,kπ+⎭⎫π2(k∈Z)奇偶性奇偶奇2. 函数y=A sin(ωx+φ)(1)用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找到五个特征点。
必修四三角函数的图象与性质总结

2013年普通高考数学科一轮复习精品学案第23讲 三角函数的图象与性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
数学(浙江专用)总复习教师用书:第四章 三角函数、解三角形 第讲 三角函数的图象与性质

第3讲三角函数的图象与性质最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2。
理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
知识梳理1。
用五点法作正弦函数和余弦函数的简图(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)函数y=sin x y=cos x y=tan x图象定义域R R{x错误!错误!值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数1。
判断正误(在括号内打“√”或“×")(1)由sin错误!=sin 错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期。
( )(2)余弦函数y=cos x的对称轴是y轴.()(3)正切函数y=tan x在定义域内是增函数.( )(4)已知y=k sin x+1,x∈R,则y的最大值为k+1。
( )(5)y=sin|x|是偶函数。
()解析(1)函数y=sin x的周期是2kπ(k∈Z).(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.(3)正切函数y=tan x在每一个区间错误!(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数。
(4)当k〉0时,y max=k+1;当k<0时,y max=-k+1.答案(1)×(2)×(3)×(4)×(5)√2。
(2015·四川卷)下列函数中,最小正周期为π的奇函数是( )A。
y=sin错误!B。
y=cos错误!C.y=sin 2x+cos 2xD.y=sin x+cos x解析y=sin错误!=cos 2x是最小正周期为π的偶函数;y=cos错误!=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=2sin错误!是最小正周期为π的非奇非偶函数;y=sin x+cos x=错误!sin错误!是最小正周期为2π的非奇非偶函数.答案B3。
三角函数的图像与性质说课课件

二.学 情 分 析
(1)高一学生有一定的抽象思维能力,而形象思
维在学习中占有不可替代的地位,所以本节要紧 紧抓住数形结合方法进行探索.
(2)本班学生对数学科特别是函数内容的学
可知:正弦函数图像每经过 2k (k Z) 单位长度就重复出现,所以
...... 6 ,4 ,2 ,2 ,4 ,6..... 都是函数的周期.
2k(kZ)
最小正周期:如果周期函数f(x)的所有周期中存在一个最小整数, 那么这个最小整数就叫做f(x)的最小正周期 根据上述定义,我们有:
正弦函数是周期函数,2k (k Z且k 0) 都是它的周期,最小正周期为2
1
6
4
2
0
2
4
x
-1
1、定义域 3、最小正周期 4、单调性 : 增区间 5、最值 当x=
余弦曲线
2、值域
减区间
时,ymin
当x= 6、奇偶性
时,ymax
[设计意图]:通过把学习任务转移给学生,激发学生的主体意识和成就 动机,通过自主探索,给予学生解决问题的自主权,促进生生交流 ,最 终使学生成为独立的学习者 ,随着问题的解决,学生的积极性将被调动
单调区间为
2k
2
,2k
2
(k
Z
)
【设计意图】:通过列举正弦函数的几个
单调区间,最后归纳出函数所有的单调区 间,体现从特殊到一般的知识认识程 ,
培养学生观察、归纳的学习能力,有助于 以后理解记忆正弦型函数的相关性质.
思考:正弦函数的减区间是? 当x取何值时,y取最值?
人教版高中数学必修四第一章三角函数图像变换

人教版高中数学必修四第一章三角函 数图像 变换
总结: y=sinx
y=Asin(x+)
方法1:(按 ,ω, A 顺序变换)
y=sinx
向左>0 (向右<0) 平移||个单位
y=sin(x+)
横坐标缩短>1 (伸长0<<1)到原来的1/倍
纵坐标不变
y=sin(x+)
横坐标不变
y=Asin(x+)
纵坐标伸长A>1 (缩短0<A<1)到原来的A倍
课后作业
1、指出函数y=2/5sin3x的振幅、周期,并画出其图象。 2、作出y=2sin1/2x的简图。
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
谢谢莅临指导! 再见!
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
教学重点: “用五点法”作函数y=Asinx和y=sinωx的简图及振 幅、周期对正弦函数图象的影响。
教学难点:在直角坐标中会寻找“五点”的位置及由y=sinx的 图象变为y=Asinωx的图象规律。
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
导入课题:
解:∵函数y=sin4x的周期T=/2 ∴在[0, /2]上作图
令Z=4x 则x=Z/4 从而sinZ=sin4x
x
0
8
4
3
8
2
4x 0
2
3 2
2
sin 4 x 0 1 0 -1 0
y
1
y sin 4 x
人教版高数必修四第4讲:三角函数的图像与性质(教师版)

三角函数的图像与性质一、三角函数的图像:1. 正弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP ry==αsin ,向线段MP 叫做角α的正弦线, 2.用单位圆中的正弦线作正弦函数y=sinx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 叫做正弦曲线-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()3.用五点法作正弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: 1、用单位圆中的余弦线作余弦函数的图象(几何法): 为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.2、余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 现在把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=cosx ,x ∈R 的图象,-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3、正切函数x y tan =的图象: 我们可选择⎪⎭⎫⎝⎛-2,2ππ的区间作出它的图象根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”(0,0) (2π,1) (π,0) (23π,-1) (2π,0)二、三角函数的性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+时,max1y=;当22x kππ=-时,min1y=-.当2x kπ=时,max1y=;当2x kππ=+时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦上是减函数.在[]2,2k kπππ-上是增函数;在[]2,2k kπππ+上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭上是增函数.对称性对称中心(),0kπ对称轴2x kππ=+对称中心,02kππ⎛⎫+⎪⎝⎭对称轴x kπ=对称中心,02kπ⎛⎫⎪⎝⎭无对称轴类型一、三角函数的图像:例1. 作出函数xy2cos1-=的图象分析:首先将函数的解析式变形,化为最简形式,然后作出函数的图象。
高中数学必修四 第一章三角函数 1.4.2.2 正弦函数、余弦函数的性质

题型一 题型二 题型三 题型四 题型五
解:(1)定义域为 R.
f(-x)=sin(-x)cos(-x)=-sin xcos x=-f(x),
∴f(x)是奇函数.
(2)要使函数有意义,自变量 x 的取值应满足 1+sin x≠0,∴sin
x≠-1.∴x≠2kπ−
π 2
,
������
∈Z.
∴函数的定义域为
2������-
π 4
的单调递增区间是
������π-
π 8
,������π
+
3π 8
, ������∈
Z.
(2)由 2kπ≤3x+ π6≤2kπ+π,得
2������ 3
π
−
1π8≤x≤23������
π
+
5π 18
,
������∈Z,
所以函数 y=cos
3������
+
π 6
的单调递减区间是
2������ 3
x
在(0,π)上单调递减,
∴cos
π 8
>
cos
π 7
,
即cos
-
π 8
> cos 137π.
(2)sin
21π 5
=
sin
4π
+
π 5
= sin π5,
sin
42π 5
=
sin
8π
+
2π 5
= sin 25π.
∵0<
π 5
<
2π 5
<
π 2
,
且y=sin
x在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四③三角函数图像与性质————————————————————————————————作者: ————————————————————————————————日期:ﻩ三角函数图象与性质基础梳理1.“五点法”描图(1)y=sin x的图象在[0,2π]上的五个关键点的坐标为(0,0),错误!,(π,0),错误!,(2π,0).(2)y=cos x的图象在[0,2π]上的五个关键点的坐标为(0,1),错误!,(π,-1),错误!,(2π,1).2.三角函数的图象和性质函数性质y=sin x y=cos xy=tanx定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:错误!(k∈Z)周期2π2ππ单调性单调增区间错误!,2kπ+错误!(k∈Z);单调减区间错误!,2kπ+错误!(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间错误!,kπ+错误!(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为\f(2π,|ω|),y=tan(ωx+φ)的最小正周期为\f(π,|ω|).(2)奇偶性三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=Acos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sinx、cos x的有界性;(2)形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sinx或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.题型分析1、与三角函数有关的函数的定义域※相关链接※(1)与三角函数有关的函数的定义域①与三角函数有关的函数的定义域仍然是使函数解析式有意义的自变量的取值范围; ②求此类函数的定义域最终归结为用三角函数线或三角函数的图象解三角不等式。
(2)用三角函数线解sinx>a(c os x>a )的方法①找出使sinx =a(c osx=a)的两个x 值的终边所丰位置; ②根据变化趋势,确定不等式的解集。
(3)用三角函数的图象解sin x>a (cos x>a ,tanx>a)的方法①作直线y=a,在三角函数的图象了找出一个周期内(不一定是[0,2π])在直线y=a上方的图象;②确定s inx=a(c osx=a ,tan x=a)的x 值,写出解集。
注:关于正切函数的不等式tanx>a(tanx<a),常用图象求解。
※例题解析※〖例〗求下列函数的定义域:(1)求y=l g(sinx -cosx)的定义域;(2)求函数lg(2sin 1)12cos y x x =-+-的定义域。
思路分析:(1)第(1)小题实际就是求使s in x>cosx 的x 的集合,可用图象或三角函数线解决;(2)第(2)小题实际就是求使2sin 1012cos 0x x ->⎧⎨-≥⎩成立的x 的值,可用图象或三角函数线解决。
解答:(1)要使函数有意义,必须使sinx -co sx>0方法一:利用图象。
在同一坐标系中画出[0,2π]上y =sinx 和y=co sx 的图象,如图所示:在[0,2π]内,满足sinx =cosx 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以定义域为5{|22,}44x k x k k Z ππππ+<<+∈方法二、利用三角函数线,如图,,M N为正弦线,OM 为余弦线,要使si nx>cosx ,即MN>O M,则5()44x πππ<<在[0,2]内。
∴定义域为 5{|22,}44x k x k k Z ππππ+<<+∈ 方法三:sinx -co sx=2sin(x-4π)>0,将x-4π视为一个整体,由正弦函数y=sinx 的图象和性质可知2k π< x-4π<π+2k π,解得2k π+4π<x <54π+2kπ,k∈Z .∴定义域为5{|22,}44x k x k k Z ππππ+<<+∈(2)要使函数有意义,必须有2sin 1012cos 0x x ->⎧⎨-≥⎩,即1sin x 21cos 2x ⎧>⎪⎪⎨⎪≤⎪⎩,解得5226652233k x k k Z k x k ππππππππ⎧+<<+⎪⎪∈⎨⎪+≤≤+⎪⎩,∴522()36k x k k Z ππππ+≤<+∈故所求函数的定义域为52,2()36k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭2、三角函数单调区间的求法 ※相关链接※(1)准确记忆三角函数的单调区间是求复合三角函数单调区间的基础;(2)形如y=A si n(ωx+φ)(A>0,ω>0)的函数的单调区间,基本思路是把ωx+φ看作一个整体,由22()22k x k k Z πππωφπ-+≤+≤+∈求得函数的增区间,由322()22k x k k Z πππωφπ+≤+≤+∈求得函数的减区间。
(3)形如y=A sin(-ωx+φ)(A>0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y=-Asin(ωx -φ),由22()22k x k k Z πππωφπ-+≤-≤+∈得到函数的减区间,由322()22k x k k Z πππωφπ+≤-≤+∈得到函数的增区间。
注:对于函数y=A cos(ωx +φ),y=At an(ωx+φ)产单调区间的求法与y=Asi n(ωx+φ)的单调区间的求法相同。
※例题解析※〖例〗(1)求函数sin(2),3y x π=-[,]x ππ∈-的单调递减区间;(2)求3tan()64xy π=-的周期及单调区间。
思路解析:题目所给解析式中x 的系数都为负,把x的系数变为正数,解相应不等式求单调区间。
解答:(1)由sin(2),3y x π=-得sin(2)3y x π=--,由222232k x k πππππ-+≤-≤+得5,,1212k x k k Z ππππ-+≤≤+∈又x ∈[-π,π],∴-π≤x ≤712π-,51212x ππ-≤≤,1112x ππ-≤≤.∴函数sin(2),3y x π=- x ∈[-π,π]的单调递减区间为[-π,712π-],[12π-,512π],[1112π,π]。
(2)函数3tan()64xy π=-的周期T=414ππ=-。
由3tan()64xy π=-得3tan(),46x y π=--由2462x k k πππππ-+<-<+得4844,33k x k k Z ππππ-+<<+∈,∴函数3tan()64xy π=-的单调递减区间为484,433k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭。
3、三角函数的值域与最值〖例1〗已知函数()2sin(2)3f x a x b π=-+的定义域为0,2π⎡⎤⎢⎥⎣⎦,函数的最大值为1,最小值为-5,求a 和b 的值。
思路解析:求出23x π-的范围→a>0时,利用最值求a、b → a <0,利用最值求a 、b解答:∵0≤x ≤2π,∴22333x πππ-≤-≤,∴3sin(2)123x π-≤-≤,若a>0,则2135a b a b +=⎧⎪⎨-+=-⎪⎩,解得126323123a b ⎧=-⎪⎨=-+⎪⎩;若a<0,则2531a b a b +=-⎧⎪⎨-+=⎪⎩,解得126319123a b ⎧=-+⎪⎨=-⎪⎩。
综上可知,1263a =-,23123b =-+或1263a =-+,19123b =- 注:解决此类问题,首先利用正弦函数、余弦函数的有界性或单调性求出y =Asi n(ωx+φ)或y=A cos(ωx+φ)的最值,再由方程的思想解决问题。
〖例2〗求函数3cos 2cos xy x-=-的值域思路解析:(1)因x ∈R 时,cos ∈[-1,1],可利用分离参数法求解; (2)利用cos x的有界性,把c os x用y 表示出来解。
解答:方法一:函数的定义域为R,y=1+12cos x -,∵-1≤cosx ≤1,∴当c osx=-1时,2-co sx 有最大值3,此时min14133y =+=;当cos x=1时,2-cosx 有最小值1,此时max 2y =,∴函数的值域为[43,2]。
方法二:由3cos 2cos xy x-=-解出cos x得23cos 1y x y -=-。
∵-1≤c osx ≤1,∴23111y y --≤≤-,即23||11y y -≤-,也即|23||1|(1),y y y -≤-≠两边同时平方得22(23)(1)(1)y y y -≤-≠,即231080(1),y y y -+≤≠∴(y -2)(3y-4)≤0,∴423y ≤≤,∴函数的值域为[43,2]注:求三角函数的值域主要有三条途径:(1)将si nx或co sx 用所求变量y 来表示,如sinx=f(y ),再由|s inx|≤1得到一个关于y 的不等式|f(y)|≤1,从而求得y的取值范围;(2)将y 用sinx 或cos x来表示,或配方或换元或利用函数的单调性或基本不等式来确定y 的取值范围;(3)利用数形结合或不等式法求解。
在解答过程中,注意化归思想的应用以及应用过程中的等价转化。