声速测定实验报告

合集下载

声速测量实验报告 声速测量实验数据

声速测量实验报告 声速测量实验数据

声速测量实验报告声速测量实验数据一、实验目的1、了解声速测量的基本原理和方法。

2、学习使用驻波法和相位比较法测量声速。

3、掌握示波器和信号发生器的使用方法。

二、实验原理1、驻波法声波在介质中传播时,在入射波和反射波相遇处会形成驻波。

驻波的相邻波腹(或波节)之间的距离为半波长。

通过测量相邻两个波腹(或波节)之间的距离,就可以计算出声波的波长。

已知声波的频率,由公式$v =fλ$ (其中$v$ 为声速,$f$ 为频率,$λ$ 为波长)即可求出声速。

2、相位比较法当发射波和接收波之间存在相位差时,通过示波器可以观察到李萨如图形。

改变接收端的位置,使相位差发生变化。

当相位差变化一个周期,即李萨如图形从直线变为椭圆再变回直线时,接收端移动的距离等于一个波长。

三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法连接实验仪器,将信号发生器的输出端连接到声速测量仪的发射端,将示波器的 CH1 通道连接到声速测量仪的接收端。

调节信号发生器的频率,使其在声速测量仪的谐振频率附近,观察示波器上的波形,找到最大振幅对应的频率,即为谐振频率。

缓慢移动声速测量仪的接收端,观察示波器上驻波的形成,记录相邻两个波腹(或波节)之间的距离。

重复测量多次,取平均值计算波长,进而求出声速。

2、相位比较法连接实验仪器,将信号发生器的输出端同时连接到示波器的 CH1和 CH2 通道,将声速测量仪的接收端连接到示波器的 CH2 通道。

调节信号发生器的频率为声速测量仪的谐振频率。

缓慢移动声速测量仪的接收端,观察示波器上的李萨如图形,记录李萨如图形变化一个周期时接收端移动的距离。

重复测量多次,取平均值计算波长,求出声速。

五、实验数据1、驻波法测量数据|测量次数|相邻波腹(或波节)距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|2、相位比较法测量数据|测量次数|李萨如图形变化一个周期时接收端移动距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|六、数据处理1、驻波法计算相邻波腹(或波节)距离的平均值:$\overline{d} =\frac{d_1 + d_2 + d_3 + d_4 + d_5}{5}$波长:$λ = 2\overline{d}$声速:$v =fλ$ (其中$f$ 为谐振频率)2、相位比较法计算李萨如图形变化一个周期时接收端移动距离的平均值:$\overline{D} =\frac{D_1 + D_2 + D_3 + D_4 + D_5}{5}$波长:$λ =\overline{D}$声速:$v =fλ$ (其中$f$ 为谐振频率)七、误差分析1、系统误差仪器本身的精度限制,如声速测量仪的刻度误差、示波器的测量误差等。

测量声速实验报告

测量声速实验报告

测量声速实验报告第1篇:测量声速这事儿,听起来挺高大上的,其实操作起来还挺接地气的。

那天,我们物理课上就来了一波实践操作,老师说这能帮我们更好地理解声速这个概念,我心想,这不就是玩儿嘛,谁不喜欢动手啊。

实验开始前,老师先给我们普及了声速的基本知识,原来声音在空气中的传播速度大约是340米每秒。

这数字听着没啥感觉,直到老师说:“如果你们在百米赛跑中,听到枪声再起跑,那估计冠军都到终点了。

”这话一出,大家立刻来了精神,想着得好好做这个实验,看看这声速到底有多快。

我们的实验工具很简单,就是一把尺子、一个计时器和两个木块。

老师让我们两个人一组,一个人负责敲击木块发出声音,另一个人则用计时器记录从看到敲击动作到听到声音的时间差。

我跟小明一组,他负责敲击,我负责计时。

一开始,我还担心自己反应慢,结果发现这事儿比想象中容易多了。

我们选择了一个比较长的走廊来做实验,这样可以尽可能地减少误差。

小明站得远远的,我站在起点,准备好了计时器。

随着小明的一声敲击,我按下了计时器,然后等着声音传到我的耳朵里。

那一刻,我突然有种穿越时空的感觉,就像是在等待着一个来自远方的信息。

虽然实际上只是一两秒的事儿,但那种期待的心情,让我觉得这声速实验也挺有意思的。

经过几轮的测量和计算,我们终于得到了声速的一个大概值。

虽然跟标准值有点差距,但老师说这是正常的,毕竟我们用的是最简单的工具,加上环境因素的影响,能有这样的结果已经很不错了。

最重要的是,通过这次实验,我们对声速有了更直观的认识。

实验结束后,我跟小明还在讨论,如果用不同的材料做实验,比如水或者金属,声速会不会不一样呢?这又激起了我对物理的好奇心,原来学习也可以这么好玩,既能动手又能动脑,真是太棒了。

说真的,这次测量声速的实验给我留下了深刻的印象,不仅仅是因为它让我了解到了声速的概念,更重要的是,它教会了我如何用实践去验证理论,这种体验是书本上学不到的。

以后要是有机会,我还想尝试更多这样的实验,探索科学的奥秘。

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。

通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。

1.2 实验原理声速是指在某种介质中,声波传播的速度。

声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。

声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。

因此,声速的测量实际上是测量介质中分子振动速度的过程。

二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。

2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。

这些材料都是常见的介质,可以用于测量声速。

三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。

2) 将玻璃和铝箔分别放在水中。

3) 用麦克风分别对玻璃和铝箔进行录音。

4) 使用计时器记录每次录音所需的时间。

5) 重复以上步骤多次,以获得较为准确的数据。

6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。

3.2 数据处理我们需要计算每次录音所需的时间。

由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。

接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。

通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。

四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。

通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。

大物实验报告声速的测定

大物实验报告声速的测定

大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。

1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。

当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。

因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器S2的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声速的测定实验报告

声速的测定实验报告

声速的测定实验报告(一)1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。

(2)进一步掌握示波器、低频信号发生器的使用方法。

(3)学会用逐差法处理数据。

2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。

3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。

如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。

常用的测量声速的方法有以下两种。

3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。

当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。

驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。

在示波器上得到的信号幅度最大。

当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。

移动S 2,可以连续地改变L 的大小。

由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。

此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。

3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。

其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)【引言】多普勒效应是声波传播中较为重要的现象之一,广泛应用于医疗、气象、地质探测、防护等领域。

本实验通过制作测声速设备,利用多普勒效应来测量声速,并探讨了声速和温度、同济和介质类型的关系。

经过实验测量和数据处理,得出了一定的结论和启示。

【实验原理】在测量声速时,可以利用声波的多普勒效应来获得,即声波在静止的观测者听到的频率与声波源相对运动的速度有关,可表示为:f’ = f * (1 + v / V)其中f’为观测者听到的频率,f为声波源的频率,v为观测者和声波源之间的相对速度,V为声波在介质中的传播速度。

因此,通过测量声波在不同条件下的频率和相对速度,可以求出声速的大小。

【实验设备和方法】1. 实验设备(1)多功能信号源(2)示波器(3)麦克风(4)各种电缆及连接器(5)热水杯2. 实验方法(1)设置多功能信号源为振幅调制模式,调节频率为2kHz,输出一个正弦波信号。

(2)将麦克风稳定地放置在恒温水杯中,使水杯内的水温保持在40℃左右。

(3)将麦克风接到示波器上,将示波器设置为 X-Y 模式。

(4)调整多功能信号源的振幅和频率,使其输出符合要求。

(5)通过调节热水杯的温度,改变介质的密度和声速,记录各个状态下的频率、相对速度等数据。

(6)根据测量的数据计算声速,并探讨声速和温度、同济和介质类型的关系。

通过实验,我们得到了如下的实验数据:| 温度℃ | 频率f(Hz) | 相对速度v(m/s)||:--------:|:-----------:|:----------------:|| 30 | 1999.6 | 1.2 || 35 | 1999.8 | 1.4 || 40 | 2000.0 | 1.6 || 45 | 2000.2 | 1.8 || 50 | 2000.4 | 2.0 |根据公式f’ = f * (1 + v / V)和测量的数据可以计算出室温下的声速约为332.88 m/s,温度对声速的影响符合一定的规律:随温度升高,声速也会相应地升高。

声速测量实验报告_公式

声速测量实验报告_公式

一、实验目的1. 掌握声速测量的基本原理和方法。

2. 了解声波在空气中的传播特性。

3. 学会使用声速测量仪器,提高实验技能。

二、实验原理声速是指声波在介质中传播的速度。

在空气中,声速受温度、湿度等因素的影响。

声速的测量方法主要有共振干涉法、相位法、时差法等。

本实验采用共振干涉法进行声速测量。

共振干涉法的基本原理是:当声波在两个平行平板之间传播时,声波会在平板间产生驻波,当驻波的波长相等时,声波达到共振,此时声波的能量达到最大。

根据共振条件,可以计算出声速。

声速的公式如下:\[ v = \frac{f \lambda}{2} \]其中,\( v \) 为声速,\( f \) 为声源振动频率,\( \lambda \) 为声波波长。

三、实验仪器1. 超声波发射器2. 超声波接收器3. 低频信号发生器4. 示波器5. 驻波干涉仪6. 温度计7. 相对湿度计四、实验步骤1. 将超声波发射器和接收器分别固定在驻波干涉仪的两个臂上。

2. 开启低频信号发生器,调节频率至超声波发射器的共振频率。

3. 将信号发生器的输出端与超声波发射器的输入端连接,同时将超声波接收器的输出端与示波器的输入端连接。

4. 调节驻波干涉仪,使声波在两个平板间形成驻波。

5. 观察示波器,当声波达到共振时,记录此时的振动波形。

6. 根据共振条件,计算声速。

五、数据处理1. 记录实验过程中超声波发射器的共振频率 \( f \)。

2. 记录实验过程中驻波干涉仪的臂长 \( L \)。

3. 根据公式 \( v = \frac{f \lambda}{2} \) 计算声速 \( v \)。

4. 将实验数据整理成表格,进行误差分析。

六、实验结果与分析1. 计算声速的平均值和标准差。

2. 分析实验误差产生的原因,如仪器误差、操作误差等。

3. 将实验结果与理论值进行比较,讨论实验误差对结果的影响。

七、结论通过本次实验,掌握了声速测量的基本原理和方法,了解了声波在空气中的传播特性。

声速的实验报告结论

声速的实验报告结论

一、实验目的本次实验旨在通过实际操作,测量声波在空气中的传播速度,加深对声学基础理论的理解,掌握实验操作技能,并提高数据处理和分析的能力。

二、实验原理声波在空气中的传播速度可以通过以下公式计算:\[ v = \frac{L}{t} \]其中,\( v \) 为声速,\( L \) 为声源与接收器之间的距离,\( t \) 为声波传播所需时间。

在标准大气条件下,干燥空气中的声速约为 343 m/s。

实际测量时,还需考虑环境温度、湿度和气压等因素对声速的影响。

三、实验器材1. 超声波发射器2. 超声波接收器3. 示波器4. 函数信号发生器5. 测量尺6. 秒表7. 计时器8. 温度计9. 气压计四、实验步骤1. 准备实验器材,将超声波发射器与接收器固定在预定距离的位置。

2. 使用示波器和函数信号发生器设置声波发射器的频率和波形。

3. 在发射器与接收器之间测量距离 \( L \)。

4. 记录环境温度、湿度和气压等参数。

5. 使用秒表或计时器记录声波从发射器到接收器的时间 \( t \)。

6. 重复步骤 3-5,至少测量 3 次以确保实验结果的准确性。

7. 使用逐差法对实验数据进行处理,减少偶然误差。

五、实验结果与分析通过实验,我们得到了声波在空气中的传播速度 \( v \) 的测量值。

根据实验数据和理论计算,我们对实验结果进行了以下分析:1. 实验测量值与理论计算值存在一定误差,这是由于实验条件与标准大气条件存在差异,以及实验操作中可能出现的误差所导致的。

2. 实验过程中,环境温度、湿度和气压等因素对声速的影响不可忽视。

根据理论公式,我们可以计算出修正后的声速值,以更接近实际声速。

3. 实验过程中,超声波发射器和接收器的距离、频率和波形等参数对实验结果有一定影响。

通过调整这些参数,我们可以进一步优化实验结果。

六、结论通过本次实验,我们成功测量了声波在空气中的传播速度,并了解了影响声速的因素。

实验结果表明,声速的测量是一个复杂的过程,需要综合考虑多种因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【实验目的】
1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。

3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。

【实验原理】
在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ•=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。

常用的方法有共振干涉法与相位比较法。

声波传播的距离L 与传播的时间t 存在下列关系:t V L •= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。

1.共振干涉法(驻波法)测量声速的原理:
当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。

对于波束1:)/X 2t cos(A F 1λ•π-ω•=、波束2:()λ•π+ω•=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω•λ•π•=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。

由此可见,叠加后的声波幅度,随距离按()λ•π/X 2cos 变化。

如图28.1所示。

压电瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。

声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。

我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。

移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。

根据波的干涉理论可以知道:任何二相邻的振幅最
大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为2/λ。

为测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓
图 28.1 共振干涉法原理图
慢的改变1S 和2S 之间的距离。

示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间2S 移动过的距离亦为2/λ。

超声换能器2S 至1S 之间的距离的改变可通过转动螺杆的鼓轮来实现,而超声波的频率又可由声波测试仪信号源频率显示窗口直接读出。

在连续多次测量相隔半波长的2S 的位置变化及声波频率f 以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。

2.相位法测量原理
声源1S 发出声波后,在其周围形成声场,声场在介质中任一点的振动相位是随时间而变化的。

但它和声源的振动相位差∆Φ不随时间变化。

设声源方程为: t cos F F 011ω•=
距声源X 处2S 接收到的振动为:)Y
X t (cos F F 022-ω•= 两处振动的相位差: Y
X ω=∆Φ 当把1S 和2S 的信号分别输入到示波器X 轴和Y 轴,那么当λ•=n X 即π=∆Φn 2时,合振动为一斜率为正的直线,当()2/1n 2X λ+=,即()π+=∆Φ1n 2时,合振动
为一斜率为负的直线,当X为其它值时,合成振动为椭圆(如图28.2)。

图28.2 接收信号与发射信号形成萨如图
3.时差法测量原理
以上二种方法测声速,是用示波器观察波谷和波峰,或观察二个波的相位差,原理是正确的,但存在读数误差。

较精确测量声速的方法是采用声波时差法,时差法在工程中得到了广泛的应用。

它是将经脉冲调制的电信号加到发射换能器上,声波在介质中传播,经过时间t后,到达距离为L处的接收换能器,那么可以用以下公式求出声
V 。

波在介质中传播的速度,速度为t/L
图28.3 相位法原理图
【实验仪器】
实验仪器采用精科仪器生产的6SV 型声速测量组合仪及5SV 型声速测定专用信号源各一台,其外形结构见图28.4。

图28.4 SV6型声速测量组合仪实物照片
组合仪主要由储液槽、传动机构、数显标尺、两副压电换能器等组成。

储液槽中的压电换能器供测量液体声速用,另一副换能器供测量空气及固体声速用。

作为发射超声波用的换能器 1S 固定在储液槽的左边,另一只接收超声波用的接收换能器2S 装在可移动滑块上。

上下两只换能器的相对位移通过传动机构同步行进,并由数显表头显示位移的距离。

1S 发射换能器超声波的正弦电压信号由5SV 声速测定专用信号源供给,换能器2S 把接收到的超声波声压转换成电压信号,用示波器观察;时差法测量时则还要接到专用信号源进行时间测量,测得的时间值具有保持功能。

实验时用户需自备示波器一台;mm 300游标卡尺一把,用于测量固体棒的长度。

图28.5 共振干涉法、相位法(上)、时差法(下)测量连线图
【实验容】
1. 声速测量系统的连接
声速测量时,5SV 专用信号源、6SV 测试仪、示波器之间,连接方法见图
28.5。

2. 谐振频率的调节
根据测量要求初步调节好示波器。

将专用信号源输出的正弦信号频率调节到换能器的谐振频率,以使换能器发射出较强的超声波,能较好地进行声能与电能的相互转换,以得到较好的实验效果,方法如下:
(1)将专用信号源的“发射波形”端接至示波器,调节示波器,能清楚地观察到同步的正弦波信号;
(2)专用信号源的上“发射强度”旋钮,使其输出电压在P P V 20-左右,然后将换能
器的接收信号接至示波器,调整信号频率()kHz 45~kHz 25,观察接收波的电压幅度变化,在某一频率点处(kHz 5.39~kHz 5.34之间,因不同的换能器或介质而异)电压幅度最大,此频率即是压电换能器1S 、2S 相匹配频率点,记录此频率i f 。

(3)改变1S 、2S 的距离,使示波器的正弦波振幅最大,再次调节正弦信号频率,直至示波器显示的正弦波振幅达到最大值。

共测5次取平均频率f 。

3. 共振干涉法、相位法、时差法测量声速的步骤
(1)共振干涉法(驻波法)测量波长
将测试方法设置到连续方式。

按前面实验容二的方法,确定最佳工作频率。

观察示波器,找到接收波形的最大值,记录幅度为最大时的距离,由数显尺上直接读出或在机械刻度上读出;记下2S 位置0X 。

然后,向着同方向转动距离调节鼓轮,这时波形的幅度会发生变化(同时在示波器上可以观察到来自接收换能器的振动曲线波形发生相移),逐个记下振幅最大的1X ,2X ,…9X 共10个点,单次测量的波长1i i i X X 2--•=λ 。

用逐差法处理这十个数据,即可得到波长λ 。

(2)相位比较法(萨如图法)测量波长
将测试方法设置到连续波方式。

确定最佳工作频率,单踪示波器接收波接到“Y ”,发射波接到“EXT ”外触发端;双踪示波器接收波接到“1CH ”,发射波接到“2CH ”,打到“Y X -” 显示方式,适当调节示波器,出现萨如图形。

转动距离调节鼓轮,观察波形为一定角度的斜线,记下2S 的位置0X ,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,这时来自接收换能器2S 的振动波形发生了π2相移。

依次记下示波器屏上斜率负、正变化的直线出现的对应位置1X ,2X ,…9X 。

单次波长1i i i X X 2--•=λ 。

多次测定用逐差法处理数据,即可得到波长λ。

相关文档
最新文档