更高更妙的物理 竞赛课件5:物系相关速度(去密码版)

合集下载

高中物理竞赛课件5:关联速度29页PPT

高中物理竞赛课件5:关联速度29页PPT
ห้องสมุดไป่ตู้
高中物理竞赛课件5:关联速度
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

高中物理竞赛课件5:关联速度共29页文档

高中物理竞赛课件5:关联速度共29页文档


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
高中物理竞赛课件5:关联速度
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
29

物系相关速物理竞赛必看PPT学习教案

物系相关速物理竞赛必看PPT学习教案
物系相关速物理竞赛必看
会计学
1
例 如图,一个球以速度v沿直角斜槽ACB的棱角做无滑动的滚动. AB等效于球的瞬时转轴.试问球上哪些点的速度最大?这最大速度 为多少?
本题属刚体各点速度问题
球心速度为v, 则对瞬时转轴AB:
v 2 R
2
则球角速度
2v R
根据刚体运动的速度法则:
OR
A
45
B
C
球表面与瞬时转轴距离最大的点有最大速度!
第2页/共12页
vt
θ vn v
vn
A
v1
Oαvv2D1dBd v1d
C
v2
v0
v2d
例1
如图所示,AB杆的A端以匀速v运动,在运动时杆恒与一
半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及
杆上与半圆相切点C的速度.
这是杆约束相关速度问题
考察杆切点C,由于半
B
圆静止,C点速度必沿
另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交 叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个 轴环紧傍第一个轴环.
本题求线状交叉物系交叉点A速度
A
轴环O2速度为v,将此速度沿轴 环O1、O2的交叉点A处的切线方
O2 O1
O2
dv
向分解成v1、v2两个分量:
v2
由线状相交物系交叉点相关
杆与凸轮接触点有相同的法向速度!
根据接触物系触点速度相关特
征,两者沿接触面法向的分速度相
同,即
α
ωr
r sin v杆 cos
v杆 r tan
B
v杆K
A rα
nM

高中物理竞赛课件5:物系相关速度[兼容模式]

高中物理竞赛课件5:物系相关速度[兼容模式]

研究对象A B C D αv 2v 2d v 1v 1d O 在同一时刻必具有相同的沿杆、绳方向的分速度.沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交双方沿对方切向运动分速度的矢量和.杆或绳约束物系各点速度的相关特征是:接触物系接触点速度的相关特征是:线状相交物系交叉点的速度是:v 1θv 0v 2v 1θθv v t v n v n v 1d v 2dB 2A 2v A 1v 11v 'D vR rOCαCA C v n v Cn vO 1O 2速度顶杆动.凸轮绕O 轴以匀角速A 接触处法线n 与MnαA Bv r一人身高行走.如图所示,设灯距地面高度为点沿地面移动的速度如图所示v0拉出,这时线轴沿水平面无滑动地滚动.求线轴中心线与水平方向的夹角A O V:CvR α+图中的B两固定轴在同一竖直面上转动,转动方向已在图上示出.小环套在两杆上,t =0AB αβC DM 60°OlR θ2θ3lω动的滚动.AB等效于球的瞬时转轴.试问球上哪些点的速度最大?这最大速度为多少?C BO R45环半径为R 1,在二环之间分布的小圆球(滚珠)半径为方向转动,而内环则以线速度ωv r ωB速度相同:v a =v b =v ,且方向均沿板面;同时还发现板上倍,c 点到a 、b 两点距离等于vvcab=2vv cn =l ωV=3vv n =x ωxxB、C出发,以相同的速率问经多少时间三人相聚?每个演员跑了多少路程?其母线AB 长为L ,放置在水平地面上,推动它以后,它自身以角速度ω旋转,整体绕A BLR v AR,放在与水平面成α为ω(此时绳未松驰),试求此刻圆筒与绳分离处Av nC以速度v =10cm/s 滑动,离棒的中心距离墙相撞,试问棒的角速度5π2π一块坯料夹在两导板之间,导板水平运动.上板向右,速度为v1,下板向左,速度为如图所示.请作图指出该时刻坯料上速度大小分别为和CD上,一根不可伸长的绳子一端系在上.若环以恒定速度O'h.轨道上有两个物体连接.物体A在下面的轨道上以匀速率OC上的小环M运动.运动开始时,沿OC杆滑动的速度;⑵小环为R,圆心在导杆BC曲柄与水平线交角θ=30O。

更高更妙的物理冲刺全国高中物理竞赛-专题5-物系相关速度

更高更妙的物理冲刺全国高中物理竞赛-专题5-物系相关速度
v m ax 2 R 1 2

2 1 v

如图,由两个圆环所组成的滚珠轴承,其内环半径为R2,外 环半径为R1,在二环之间分布的小圆球(滚珠)半径为r,外环以线速度v1顺时针 方向转动,而内环则以线速度v2顺时针方向转动,试求小球中心围绕圆环的中心顺 时针转动的线速度v和小球自转的角速度ω,设小球与圆环之间无滑动发生.
2
R co s
如图所示,合页构件由三个菱形组成,其边长之比为 3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶 点B2的速度vB2. B1 B2 这是杆约束相关速度问题 B3 v 分析顶点A2、A1的速度: A1 A2 A3 A
0
专题5-例2
v1
2 2
v A1
v2
v=rω,r是对基点的转动半径,ω是刚体转动角速度. 刚体各质点自身转动角速度总相同且与基点的选择无关.
杆或绳约束物系各点速度的相关特征是: 在同一时刻必具有相同的沿 杆、绳方向的分速度.
v2 v0
θ
θ
v1
接触物系接触点速度的相关特征是: 沿接触面法向的分速度必定相 同,沿接触面切向的分速度在 无相对滑动时相同.
A O C α v0 V α
B
v0
V0
vn
VA
V0
v 0 R V 0 cos
由于纯滚动,有

v0 r cos R V0 r r cos R v0
V0 r
图中的AC、BD两杆以匀角速度ω分别绕相距为l的A、 B两固定轴在同一竖直面上转动,转动方向已在图上示出.小环M 套在两杆上,t=0时图中α=β=60°,试求而后任意时刻t(M未落地) M运动的速度大小.

高中物理专题:物系相关速度PPT30页

高中物理专题:物系相关速度PPT30页
事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
高中物理专题:物系相关速 度
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
55、 为 中 华 之 崛起而 读书。 ——周 恩来

人教版高中物理课件-物系相关速度

人教版高中物理课件-物系相关速度

根據接觸物系觸點速度相關特 徵,兩者沿接觸面法向的分速度相 同,即
vA cos v0 sin
vA v0 tan
vA
α PA α O
α
v0
v0
專題5-例5 如圖所示,纏線上軸上的繩子一頭搭在牆上的光
滑釘子A上,以恒定的速度v拉繩,當繩與豎直方向成α角時,求線
軸中心O的運動速度v0.線軸的外徑為R、內徑為r,線軸沿水平面做 無滑動的滾動.
3∶2∶1,頂點A3以速度v沿水準方向向右運動,求當構件所有角都為直角時,頂
點B2的速度vB2.
這是杆約束相關速度問題
分析頂點A2、A1的速度:
A0
B1 A1
B2
B3
A2 A3
v
2
2
v1 2 vA1 v2 2 vA2
頂點B2,既是A1B2杆上的點,
v1 v 2
又是A2B2杆上的點,分別以A1、 A2為基點,分析B2點速度:
A
軸環O2速度為v,將此速度沿軸環 O1、O2的交叉點A處的切線方向
O2 O1
O2
dv
分解成v1、v2兩個分量:
v2
由線狀相交物系交叉點相關
速度規律可知,交叉點A的速度
A v
即為沿對方速度分量v1! 由圖示幾何關係可得:
R
θ
vA
v
2 sin
v 2
R
O1 θ
v1
d
R2
d 2
2
R v
4R2 d 2
O2
頂杆AB可在豎直滑槽K內滑動,其下端由凸輪M推 動.凸輪繞O軸以勻角速ω轉動,在圖示時刻,OA=r,凸輪輪緣與 A接觸處法線n與OA之間的夾角為α,試求頂杆的速度.

全国中学生物理竞赛5物系相关速度

全国中学生物理竞赛5物系相关速度
线状相交物系交叉点的速度是:
相交双方沿对方切向运动分速 度的矢量和.
vt
θ vn v
vn
A
v1
Oαvv2D1dBd v1d
C v2
v0
v2d 3
专题5-例1 如图所示,AB杆的A端以匀速v运动,在运动时杆恒及一
半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及 杆上与半圆相切点C的速度.
本题属刚体各点速度及接触点速度问题
已知滚珠球心速度为v,角速度为ω,
r ωB
根据刚体运动的速度法则:
ωA r
滚珠及内环接触处A速度
vA vr v 2
R1
R2 v2 vω v1
滚珠及外环接触处B速度
vB vr v 1
∵滚珠及两环无滑动,∴两环
v v1 v2 2
与珠接触处A、B切向速度相同
v1 v2
对方切向运动分速度的矢量和,
滑环速度即为杆沿圆圈切向分速
度:
v u
sin
φ
u
10
专题5-例8 如图所示,直角曲杆OBC绕O轴在图示平面内转
动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10 cm,
曲杆的角速度ω=0.5 rad/s,求φ=60°时,小环M的速度.
这是线状交叉物系交叉点相关速度问题
根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
vAcosv0sin
vA v0tan
vA
α PA α O
α
v0
v0
7
专题5-例5 如图所示,缠在线轴上的绳子一头搭在墙上的光
滑钉子A上,以恒定的速度v拉绳,当绳及竖直方向成α角时,求线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考察板、轴接触的切点C速度
C
vn BC R cot 2
vn
A
v
B
α
vCn
C
C
vn v0 sin
vn
α
v0 r R v0
v
线轴为刚体且作纯滚动,故以线轴 与水平面切点为基点,应有
v0 v R v0 v Rr R Rr
1 cos v Rr
D
l
如图,一个球以速度v沿直角斜槽ACB的棱角作无滑 动的滚动.AB等效于球的瞬时转轴.试问球上哪些点的速度最大? 这最大速度为多少?
本题属刚体各点速度问题
球心速度为v, 则对瞬时转轴AB:
则球角速度
2 v R 2
2v R
A
O
R
45
B C
根据刚体运动的速度法则: 球表面与瞬时转轴距离最大的点有最大速度!
v2
v
O2
顶杆AB可在竖直滑槽K内滑动,其下端由凸轮M推 动.凸轮绕O轴以匀角速ω转动,在图示时刻,OA=r,凸轮轮缘与 A接触处法线n与OA之间的夹角为α,试求顶杆的速度.
杆与凸轮接触点有相同的法向速度! 根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
B
v杆K
α
r sin v杆 cos
考虑A处舞者沿AO方向分运动,到达O点历时
O
vt C
B
2l t 3v v cos 30
由于舞者匀速率运动,则
AO
2l s vt 3
如图所示,一个圆台,上底半径为r,下底半径为R 其母线AB长为L,放置在水平地面上,推动它以后,它自身以角速 度ω旋转,整体绕O点作匀速圆周运动,若接触部分不打滑,求旋转 半径OA及旋转一周所需时间T.
v1 vn
θ
v1 A C
vt v
vn
线状相交物系交叉点的速度是:
相交双方沿对方切向运动分速 度的矢量和.
v1CD α D Ov Bv v2
2AB 1CD
vO
v2AB
如图所示,AB杆的A端以匀速v运动,在运动时杆恒与一 半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及 杆上与半圆相切点C的速度.
R

A
r
H h
α
vA
α
由几何关系
R
M
R H r H h
v影 vn
v影
H vA H h
如图所示,缠在线轴A上的线被绕过滑轮B以恒定速率 v0拉出,这时线轴沿水平面无滑动地滚动.求线轴中心O点的速度随 线与水平方向的夹角α的变化关系.线轴的内、外半径分别为R与r.
考察绳、轴接触的切点A速度 轴上A点具有对轴心的转动速度 V=Rω和与轴心相同的平动速度V0: 绳上A点具有沿绳方向速度v0和 与轴A点相同的法向速度vn: 由于绳、轴点点相切,有
本题属刚体各点速度及接触点速度问题
滚珠球心速度为v,角速度为ω,
根据刚体运动的速度法则:
滚珠与内环接触处A速度 滚珠与外环接触处B速度
v A v r v 2 v B v r v1
R1
r ω B ω A r R2 v ω v2
v1
∵滚珠与两环无滑动,∴两环 与珠接触处A、B切向速度相同
本题属线状交叉物系交叉点速度问题
因两杆角速度相同,∠AMB=60°不变 套在两杆交点的环M所在圆周半径为
D
C M R θβ B l
杆D转过θ圆周角,M点转过同弧上2θ的圆心角 A
l l R 2cos 30 3

60° O
α
环M的角速度为2ω! 环M的线速度为
vM
2 3 2 l 3 3
专题5-例4
这是接触物系接触点相关速度问题 根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
vA
P
B
α A v0
v A cos v0 sin
α v0
α
O
v A v0 tan
如图所示,缠在线轴上的绳子一头搭在墙上的光 滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线 轴中心O的运动速度v0.线轴的外径为R、内径为r,线轴沿水平面做 无滑动的滚动.
2 2
2 v1 v A1 2
2 v2 v A2 2
0
v1 v 2
v1
A1
B2
v1
vB2 vA2 vA1 A2
2 2 vB 2 2 v A1 2 v A 2 由几何关系 v A1 v , v A 2 5 v
专题5-例1
这是杆约束相关速度问题
考察杆切点C,由于半圆 静止,C点速度必沿杆! 杆A点速度必沿水平! B C R θ A v2 θ v
以C为基点分解v:
由杆约束相关关系:
v c v1 v cos
v2是A点对C点的转动速度,故
v sin Rcot
v sin R cos
v
b
c
v
xa x
根据刚体运动的速度法则,C点 速度为:
vC v vCn
2
同理,速度为3v的点满足
3 2v v l 2 2v 板角速度 l
2 2
vcn= v
3 l 2
vn=xω
vc=2v V=3v
3v
2
v x
v1 v2 v 2 v1 v2 2r
一片胶合板从空中下落,发现在某个时刻板上a 点速度和b点 速度相同:va=vb=v,且方向均沿板面;同时还发现板上c点速度大小比速度v大一 倍,c点到a、b两点距离等于a、b两点之间距离.试问板上哪些点的速度等于3v?
本题属刚体各点速度问题
∵板上a、b两点速度相同,故a、 b连线即为板瞬时转动轴!
2 6
17 vB 2 v 6
如图所示,物体A置于水平面上,物A前固定有动滑轮B,D 为定滑轮,一根轻绳绕过D、B后固定在C点,BC段水平,当以速度v拉绳头时, 物体A沿水平面运动,若绳与水平面夹角为α,物体A 运动的速度是多大? v D
专题5-例3
这是绳约束相关速度问题
绳BD段上各点有与绳端D相同 的沿绳BD段方向的分速度v; A 设A右移速度为vx,即相对于 A,绳上B点是以速度vx从动 滑轮中抽出的,即 v BA v x
专题5-例5
考察绳、轴接触的切点B速度 轴上B点具有与轴心相同的平动 速度v0与对轴心的转动速度rω: 绳上B点具有沿绳方向速度v和 与轴上B点相同的法向速度vn: 由于绳、轴点点相切,有
线轴沿水平面做纯滚动
A α R r O α v
v0
C
v v0 sin r v0 R
若线轴逆时针滚动,则
vmax 2 R1 2

2 1 v

如图,由两个圆环所组成的滚珠轴承,其内环半径为R2,外 环半径为R1,在二环之间分布的小圆球(滚珠)半径为r,外环以线速度v1顺时针 方向转动,而内环则以线速度v2顺时针方向转动,试求小球中心围绕圆环的中心顺 时针转动的线速度v和小球自转的角速度ω,设小球与圆环之间无滑动发生.
专题5-例9
本题求线状交叉物系交叉点A速度
轴环O2速度为v,将此速度沿轴环 O1、O2的交叉点A处的切线方向 分解成v1、v2两个分量:
O2 O1
A
O2 d v
由线状相交物系交叉点相关 A 速度规律可知,交叉点A的速度 即为沿对方速度分量v1! R θ 由图示几何关系可得: v1 O1 θ v v R vA d 2 2sin 2 R 2 d v R 2 4 R2 d 2
R v0 v O R sin r rω R v0 v r R sin
α
vn v0
B
如图所示,线轴沿水平面作无滑动的滚动,并且 线端A点速度为v,方向水平.以铰链固定于B点的木板靠在线轴上, 线轴的内、外径分别为r和R.试确定轴上C 点有相同的法向速度vn, 且板上vn正是C点关于B轴的转动速度 : 线轴上C点的速度:它应是C点对轴心 O的转动速度vCn和与轴心相同的平动速度 vO的矢量和,而vCn是沿C点切向的,则C 点法向速度vn应是 :
ωr
A

n
M
v杆 r tan
一人身高h ,在灯下以匀速率vA沿水平直线 行走.如图所示,设灯距地面高度为H,求人影的顶端M 点沿地面移动的速度 . 借用绳杆约束模型 设人影端点M移动速度为v影 ,以光源为基点,将vA和v影 分解为沿光线方向“伸长速度”和对基点的“转动速度” 由一条光线上各点转动角速 度相同: r v An v影 sin v sin
A O C
v0 α
V
B
v0
V0
α
vn
VA
V0
v0 R V0 cos
由于纯滚动,有
V0 r
v0 r cos R
r V0 v0 r cos R
图中的AC、BD两杆以匀角速度ω分别绕相距为l的A、 B两固定轴在同一竖直面上转动,转动方向已在图上示出.小环M 套在两杆上,t=0时图中α=β=60°,试求而后任意时刻t(M未落地) M运动的速度大小.
M B
φ O
φ
u v sin
u
如图所示,直角曲杆OBC绕O轴在图示平面内转 动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10 cm, 曲杆的角速度ω=0.5 rad/s,求φ=60°时,小环M的速度. C 这是线状交叉物系交叉点相关速度问题 C M O vMAA O A 由于刚性 曲杆 OBC以O为 60° 轴 转 动 , 故 BC 上 与 OA 直 vMB 30° 杆交叉点M的速度方向垂 vBCM B 直于转动半径OM、大小是: B
相关文档
最新文档