解同学,列一元一次方程解应用题的一般步骤
七年级列方程解应用题的一般步骤

列方程解应用题的一般步骤解题思路1审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系找出等量关系.2设—设出未知数:根据提问,巧设未知数.3列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.4解——解方程:解所列的方程,求出未知数的值.5答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.注意带上单位二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题生产、做工等各类问题,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等;第一类、行程问题基本的数量关系:1路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系即在某段路程上所对应的速度和时间各是多少常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然;6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析;常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒1.一列火车通过隧道,从车头进入道口到车尾离开隧道共需45秒,当整列火车在隧道里需32秒,若车身长为180米,隧道x米,可列方程为_______________;2.火车匀速通过隧道隧道长等于火车长时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是3.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟4.一列匀速前进的火车,从它进入320m长的隧道到完全通过隧道经历了18s的时间,隧道顶部一盏固定的灯光在火车上,垂直照射的时间为10s,问这列火车的长为多少米5.在一段双轨铁道上,两列火车相向驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B 列车全长160米,求两列车从相遇到相离所要的时间;6.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,小红:火车从开始进入隧道到完全开出隧道共用30秒;小南:整列火车完全在隧道里的时间是20秒;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500米;求出这列火车的长;7.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度;8.在6点和7点之间,什么时刻时钟的分针和时针重合9.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离;10某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离;.。
列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤
嘿,咱来说说列一元一次方程解应用题的一般步骤哈!
首先啊,那得仔细审题,就像警察破案一样,不放过任何一个小细节。
比如说,小明天天上学走路,突然有一天走路时间变长了,咱就要搞清楚为啥会这样啊。
然后呢,设未知数,这可太关键啦!就好比给这个问题找个主角一样。
像是上面小明的例子,咱可以设他原来的速度是 x 呀。
接着就是找等量关系啦,这就如同找到了解题的钥匙!好比说他平时走这段路用的时间和现在走这段路用的时间有个关联呀。
随后列出方程,哇塞,这就是把你的思路转化成数学语言啦!
再然后解方程呀,一步步算出答案,就像挖宝藏一样有成就感。
最后一定要检验答案是不是合理,别弄出个荒唐的结果来。
这就像做菜,做好了总得尝尝味道对不对嘛!
比如说商店卖东西,已知进价和利润,让你求售价,那咱就可以按这些步骤来啊!先审题,知道进价和利润的具体数值;设售价为 x;找等量关系就是进价加上利润等于售价呀;列出方程,求解方程,最后检验一下,看看这个售价合不合理。
怎么样,是不是挺有意思的?你也快去试试吧!。
(最新整理)列一元一次方程解实际问题的一般方法

2021/7/26
31
知1-讲
(1)审题:审清题意,找出已知量和未知量; (2)设未知数:设该年级的男生有x人,那么女生有
__(_1_7_0_-__x_)_人; (3)列方程:根据相等关系,列方程为__3_x_=__7_(_1_7_0_-__x_)_; (4)解方程,得x=___1_1_9___,则女生有___5_1__人; (5)检验:将解得的未知数的值放入实际问题中进行验证; (6)作答:答:该年级有男生__1_1_9__人,女生__5_1___人.
当x=3时,130-30 x =2, 20
运费为3×500+2×400=2 300(元)<2 500(元).
故安排3辆甲种货车和2辆乙种货车,运费最省,
需2 300元.
2021/7/26
12
例6 某景点的门票价格如下表:
购票人数/人 1~50 51~100 100以上
每人门票价/元 12
10
8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班 人数少于50人,(2)班人数多于50人且少于100人,如果 两班都以班为单位单独购票,则一共支付1 118元;如果 两班联合起来作为一个团体购票,则只需花费816元. (1)两个班各有多少名学生? (2)团体购票与单独购票相比较,两个班各节约了多少钱?
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电
风扇,商场获利多少元?
2021/7/26
9
解:(1)设第一次购进电风扇x台, 则第二次购进电风扇(x-10)台. 由题意可得150x=180(x-10),解得x=60. 则x-10=60-10=50. 所以第一次购进电风扇60台,第二次购进电 风扇50台.
初中数学列方程解应用题

列方程解应用题一元一次方程应用题:1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?:2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?二元一次方程组应用题:一分配(配套)问题1.一张方桌由一个桌面和四个桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作2.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?3.将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数。
列一元一次方程解应用题题型归纳 詹洪

一元一次方程解应用题题型归纳共乐初中詹洪列一元一次方程解应用题是初一年级数学教学中的一大重点,又是学生从小学升入初中后第一次接触到用代数的方法处理应用题,所以也是一大难点。
认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题、列不等式(组)解应用题及函数应用题大有帮助。
因此将列一元一次方程解应用题的步骤、几种常见题型及其特点归纳如下:一、列方程解应用题的步骤:(1)读懂题意,正确理解.(2)弄清数量关系:准确把握题目条件中的已知量和未知量,必要时可用图表辅助分析. (3)找出:正确找出等量关系。
(4)列方程:设出未知数,将题设条件中的语句都“翻译”成含有“字母”的代数式,根据等量关系列出方程。
(5)解方程并检验:检验所求的未知数的值是否是所列方程的解,受否符合题意;(6)答:根据题意写出答案.二、常见题型及其特点:A.和差倍分问题和差倍分在列方程时,即可表示运算关系,又可表示相等关系。
在解决这类问题时,要特别注意关键词的含义,如:多、少、快、慢、提前、推迟、提高x%(几倍)、降低x%(几份之几)、提高到x%等。
用和、差、几倍、几分之几……它可以指导我们正确地列代数式或列方程。
例: 有一根铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩2.5m,这根铁丝原来有多长?1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。
一元一次方程应用题(常见类型题)

一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
【典型例题】例1.x 的43与1的和为8,求x ?例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。
例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。
类型二:数字问题一般可设个位数字为a ,十位数字为b ,百位数字为c①两位数可表示为:10b a + ②三位数可表示为:10010c b c ++然后抓住数字间或新数、原数之间的关系找等量关系列方程。
【典型例题】例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l ,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型三:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:①利润=卖的钱—成本 ②利润=成本X 利润率注意打几折是按原价的百分之几十出售。
一般的相等关系:卖的钱—成本=成本X 利润率【典型例题】例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?例5.商店对某种商品进行调价,决定按原价的九折出售,此时该商品的利润率是15℅,已知这种商品每件的进货价为1800元,求每件商品的原价。
一元一次方程的应用

一元一次方程的应用一、列方程解应用题的一样步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,能够直截了当设未知数,也能够间接设未知数;3.列出方程中的有关的代数式;4.依照题中的相等关系列出方程;5.解方程;6.答题。
二、列方程解应用题的关键是找出题中的等量关系三、常见的应用题类型有:行程问题:1)追击问题:a、两个物体在同一地点不同时刻同向动身最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时刻=乙速度×(甲时刻+乙先走的时刻)b、两个物体从不同地点同时同向动身最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点动身相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时刻+乙速度×相遇时刻=原两地的路程3)一样行程问题:等量关系:速度×时刻=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1.一猎狗发觉在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?2.一部队从军部动身行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部动身追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再动身,问甲动身后几小时与乙相遇?4.学生队伍以每小时5千米的速度外出春游,他们从学校动身走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时刻赶上学生队伍?5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,通过多少小时快车可追上慢车?6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒钟,甲通过几秒能够追上乙?8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时能够追上?9.一般飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,假如喷气式飞机的速度是一般飞机的3倍,求一般飞机和喷气式飞机的速度?10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向动身,通过多少分钟两人相遇?11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,通过几小时快车能够追上慢车?12.小红和小军两人同时从各自的家里动身去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用1小时在途中某点相遇,则小军每分钟走多少米?613.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?14.A、B两地相距80米,甲从A地动身,每秒走1米,乙从B地动身每秒走1.5米,如甲先走15米,求乙动身后多少秒与甲相遇?15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,假如水流速不变,返程所用时刻比顺流多用25%,求水流速度?16.A、B两地间的路程为360km,甲车从A地动身开往B地,每小时72km,甲车动身25分钟后,乙车从B地动身开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向连续行驶,那么相遇后两车相距100km时,甲车从动身共行驶了多少小时?17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。
一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集含详细答案整理版本一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列-列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等.第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析.常用数据:① 时针的速度是0。
5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:同学,列一元一次方程解应用题的一般步骤:
1、列一元一次方程解应用题的方法和步骤:
(1)仔细审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步);
(3)根据相等关系,正确列出方程即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义
2、解应用题的书写格式:设⇒根据题意⇒解这个方程⇒答。
要点诠释:
(1)在一道应用题中,往往含有几个未知数量,应恰当地选择其中的一个,用字母x表示出来,即所设的未知数,然后根据数量之间的关系,将其他几个未知数量用含x的代数式表示。
(2)解应用题时,不能漏掉“答”,“设”和“答”中都必须写清单位名称。
(3)列方程时,要注意方程两边是同一类量,并且单位要统一。
(4)一般情况下,题目中所给的条件在列方程时不能重复使用,也不能漏掉不用。
重复利用同一个条件,会得到一个恒等式,无法求得应用题的解。
常见的一些等量关系:
例1、行程问题: (1)追及问题
追及问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段图便可理解、分析,其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;速度=
时间路程;时间=速度
路程。
(2)相遇问题
相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解、分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题
①船在静水中的速度+水速=船的顺水速度。
②船在静水中的速度-水速=船的逆水速度。
③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
甲、乙两人从A 、B 两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A 地.问甲、乙行驶的速度分别是多少?
思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:
相遇后乙行驶的路程=相遇前甲行驶的路程.
解:设甲行驶的速度为x 千米/时,则相遇前甲行驶的路程为3x 千米,乙行驶的路程为(3x +90)千米,乙行驶的速度为
3903x +千米/时,由题意,得
390
133
x x +⨯=. 解这个方程,得x =15.
检验:x =15适合方程,且符合题意. 将x =15代入
3903x +,得3903x +=31590
3
⨯+=45. 答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.
总结升华:理解相遇前后的等量关系,相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解、分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
举一反三:
[变式] 甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的
3
2。
摩托车从乙地出发2小时30分钟后,汽车从甲地开往乙地,问汽车开出几小时后遇到摩托车?
分析:本题是一个异地不同时出发的相遇问题,其基本关系是:速度×时间=路程。
虽然不同时出发,但在相遇时,汽车所行的路程+摩托车所行的路程=甲、乙两地的距离,这就是本题的等量关系。
如果设汽车开出x 小时后与摩托车相遇,则在相遇时,汽车和摩托车所行的路程可表示如图:
其中摩托车先行的路程为⎪⎭⎫ ⎝⎛⨯⨯
2123236千米;摩托车后来所行的路程为⎪⎭⎫ ⎝
⎛
⨯x 3236千米。
解:设汽车开出x 小时与摩托车相遇,则 36x +36×
x 3
2
3621232⨯⨯+=240,解得x =3 答:汽车开出3小时后遇到摩托车。