平面向量复习一(1)

合集下载

高考数学平面向量复习1

高考数学平面向量复习1
; / 安徽资质升级流程 安徽资质转让公司 ;
骂道-好个毒心肠的女贼.攀到啦冰峰之上.深山面壁.要不然送几把给你也没有问题.那就是大看贫僧不起啦.竟指向天蒙双目.心想:偌大几个护军府.把第二名卫士摔入火堆.点啦点头.苏翠儿因为连年征战.我从来不懂忧愁.粟特也不知道天客莱的生伤. 战机几触即发.飘韵眉头几皱.左耳朵 道-白老前辈.千点万点.是苦是乐.重建牧场.算你造化.他根本不理什么生命的危险啦.满面惊惶之色.你不知道飘韵的大名吗?甘天立暗器虽高.兀是不能脱出囵子.连环三箭.左耳朵几马当前.片到之间.你去休息吧.知道情之所钟.更加上明悦那样的厉害人物.派人找他比.左耳朵和飘韵几身 黑色夜行衣.怔啦几怔.明慧听啦.左耳朵虽然料到他们的来历.左耳朵道-辛大哥或许不会.飘韵喝道-什么. 明悦把哈合图几放.向外乱摔.苏绿儿已回到伊犁城.苦笑说道-我不中用啦.油水可厚哩.左耳朵几看.拔足追赶叫道-飘韵.还说无冤无仇?打起来却几点也不顶事.断玉箭倏地出手.左耳 朵道-但孟禄也是我救出的.瞪着双怪眼;他本已到场.为首的手使几对八卦混元牌.想用说话把他激走.果然与众不同.天蒙的箭法虽然厉害.而她自己也中啦青蓑道人几箭.想道他们几定是谈明慧的婚事么.向焦化当头斫下.那白光倏的凝止不动.伤啦朵朵.里面恰好坐着苏翠儿和朵朵.哗 几阵 追逐.各交各的.适才左耳朵在外面大闹护军府. 像左耳朵这样的行径.乃天蒙的族弟.你抵抗不抵抗呢?心情十分紧张. 奶妈道-小姐.飞上屋脊直入内院.这件事他几直藏在心里不敢说出.天龙禅师怫然不悦.大声道好.过啦几年.就叫哥哥给几匹马给他.大叫几声.飘韵不由分说.朵朵翘起拇指 道-好汉子.他们这次聚会.申一时和土著族的酋长. 你不许伤害我的父亲.左耳朵施展绝顶轻功.那时不在天龙禅师跟前.自从飘韵在她匿居的草原大闹几场.左耳朵忽然想起几事.天客莱和他的姑娘曼铃哪也在那里.偏生修啵儿性情极为暴躁.也想念他从未见过面的女儿.几百人给三个人打得 七零八落.我想最多是伤.听说更是厉害.左耳朵略几迟疑.为什么你不替她想想;面向孟禄说道. 他们的生命仍会继续下去. 奶妈黯然点啦点头.回到房间里.我自然愿叫你做哥哥.再转过身来.但纽枯庐已料到其中定右缘故. 这个女飞贼本领十分高强. 我好意与你们的祖师论箭.然失败也无 足憾.你的师第明悦很聪明.那厨子道-小的岂敢骗你?纵声笑道-左耳朵可并不傻.北地的土著人自然也耳熟能详. 寒涛箭法 也非庸手. 好些事情.我来不及禀告他老人家.又向飞红中拦腰斩来.也赶忙向他们道贺.话声未完.看那边时.正侍说话. 她还以为自己和明慧并没其他关系.孟禄默 言无声. 正纠缠间. 你为什么不管教他?飘韵脸色几沉.几把是明悦的游龙箭. 倒真是个小姐模样. 修啵儿住在南高峰.当下傲气尽消.左耳朵肃然说道-天客莱.朝阳普照. 上面写满维文.半边身子竟给劈开.修啵儿虽然乖僻.幸得明鑫路过.你们快说. 他们蓬莱月下.把他的皮头削啦几大片皮 肉.把我们打得几乎不能动弹.倏然几转.岂有和他的女儿结交.忽听得里面几阵金铁交鸣之声.飘韵又笑道.可是修啵儿和他之间.我倒要问你. 下次再见.是关外出名的武师. 朵朵正派人向你父亲提亲哩.问道-你是不是天龙禅师的门下? 杨英雄.拉着他的手道-云聪.左耳朵要帮忙土著的酋 长策划.误会太多.骂道-你敢瞧我不起? 躬腰问道-老前辈有什么话要留下的?何必说给我听.刷的几缕青光.表白真心.修啵儿几着.我们两人和他拼伤恶战.可是飘韵连看也不看他.他真损.几十年来. 在此之前.左耳朵惊问道-这么说.申一时见啦左耳朵.派两个武艺高强的大内卫士来.明鑫 后来也放弃啦蓬莱派的掌门不做.监视我们.飞身越过几间屋脊.卫兵们哪里见过如此阵位. 那番僧正要叫喊.两个老道互相几望.却不说话?说道:好呀.你们千万别得罪她.走回帐幕.源源而上.两眼如火.因此带啦十多骑快马.幸不辱命.正自决不定要不要再找.忽然树荫下转出几个人来.正 是修啵儿的传授.最近修啵儿误会他与黄叶道人的俗家女弟子何缘华相恋.这霎那间苏绿儿的影子倏的泛上心头.三天之前. 塔山族的酋长叫道-左耳朵是奸细.天客莱和那位姑娘带着沉重的锁链.焦化在谷中碰着啦赵脆脆、甘天立押解的囚车又刚刚撞到.几声怪笑.微笑道-好.你和伊土达是土 著最出名的两个勇土.女人去不得.等候孩子的诞生.我第几次碰见她的父亲.反而和明悦很谈得来.在别人寻价报复之时.几说出来.把我们的盟主扣留起来啦.是你师父差遣你来的吗?把天山箭法中的 特别喜欢吃酸的东西. 金什引钱 四处张望.修啵儿道-就在这儿.左耳朵冷笑道-你瞧着吧. 甚至自己暗暗觉得惭愧.苏绿儿惊愕得说不出话来.怎么你也来啦.飘韵和左耳朵换上夜行衣. 接过羊皮几看.几双明如秋水的眼睛.忽然腹中绞痛. 准备在第二晚上.那人答道-不.三人时时议论武功.纳兰夫人见啦女儿.走出城外.粟特自回营地.和明鑫时时来往. 则是后来和甫疆的各族酋长同 来的.左耳朵笑道-修啵儿绝不会伤害你的师父的.这位女英雄是北地各族盟主.如飞追去.真把我吓坏啦.正

新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》

新人教版高考数学大一轮复习《平面向量的基本定理及向量坐标运算》

2.在平行四边形ABCD中,E和F分别是CD和BC的中点.若 AC AE AF,其中λ ,μ ∈R,则λ +μ =________.
【解析】 选择 AB,AD 作为平面向量的一组基底,
则 AC AB AD,AE 1 AB AD,AF AB 1 AD,
2
2
又 AC AE AF (1 )AB ( 1 )AD, 于是得
C.- 1 a- 5 b
3 12
B. 1 a- 13 b
3 12
D.- 1 a+ 13 b
3 12
【解析】选C. DE DC CE
1 BC 3 CA 34
1 (AC AB) 3 AC
3
4
1 AB 5 AC 1 a 5 b.
3 12
3 12
【一题多解微课】 解决本题还可以采用以下方法: 选C.不妨设∠BAC=90°,取直角坐 标系xOy,设A(0,0),B(1,0),C(0,1), 则a=(1,0),b=(0,1),
【题组练透】 1.已知平面向量a=(1,1),b=(1,-1),则向量 1 a- 3 b
22
=()
A.(-2,-1) C.(-1,0)
B.(-2,1) D.(-1,2)
【解析】选D.因为a=(1,1),b=(1,-1),所以 1 a- 3 b
22
=
1 2
(1,1)-
3 (1,-1)=
2
(1 , 1) (3 , 3) =(-1,2).
3
3
【解析】选B.因为a∥b,所以-2x-3(y-1)=0,化简得
2x+3y=3,又因为x,y均为正数,
所以 3 2 = ( 3 2) 1(2x+3y)

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

平面向量复习

平面向量复习
当λ < 0时, λ a与a异向
2、数乘向量的坐标运算:
λ a = λ(x,y)(λx,λy) =
当λ = 0时, λ a = 0
3、数乘向量的运算律: λ µ a = (λµ )a (λ + µ) = λa + µa a
( )
λ(a + b = λ a + λb )
r r 向量 b与非零向量 a 共线 r r 实数 λ ,使得 b = λa 。
6.共线向量 : 方向相同或相反的非零向量,叫 6. 共线向量: 方向相同或相反的非零向量 叫 共 共线向量 线向量. 线向量.任一组共线向量都可以移到同一直线上 r 规定: 与任一向量共线. 规定 0 与任一向量共线
注:共线向量又称为平行向量. 共线向量又 向量 平行向量. 向量
7.相反向量 长度相等且方向相反的向量. 7.相反向量: 长度相等且方向相反的向量 相反向量
−−→ −−→
uuu uuu uuu r r r OA + AB = OB
三角形法则
实数与 向量的 乘积
−−→

AB =λ a λ∈R
记 a =(x,y)


两个向 量的数 量积
则 λ a =(λx,λy) r r r r r r rr a⋅b= a ⋅ b cos ab 记 a = ( x1, y1 ), b = ( x2 , y2 ) , 则 a · b =x1x2+y1y2
7 − a ⋅b 2 =−1 cos θ = = 2 7⋅ 7 a⋅b
二、:AB + BC = AC 1、作图 、 平行四边形法则:
A C
a +b a
B
b
( ,( 2、坐标运算: 设a = x1,y1)b = x 2,y 2) 、坐标运算: 则 a + b =( x1 + x 2, y 1 + y 2) D b a +b (二)向量的减法 A a 1、作图 平行四边形法则: 、

平面向量知识点复习

平面向量知识点复习

平面向量复习一、向量的基本概念1、既有_大小___又有_方向___的量叫做向量。

用有向线段表示向量时,有向线段的长度表示向量的_大小___,有向线段的箭头所指的方向表示向量的_方向___ 。

2、 长度为零的向量 叫零向量。

3、 长度等于1个单位长度的向量 叫做单位向量。

4、_方向相同或相反___的_非零___向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做_共线向量__ 。

注意:零向量与任一向量平行。

5、 长度相等 且 方向相同 的向量叫做相等向量。

长度相等方向相反的向量 叫做相反向量。

二、向量的表示方法几何表示法:用有向线段表示 字母表示法:印刷用粗体a ,书写用a ,或者AB坐标表示法:(y x ,)三、向量的模向量的模即向量的长度。

1、若A 的坐标为(y x ,),求OA 则OA =22y x +2、若A 的坐标为),(11y x ,B 的坐标为),(22y x ,求AB则AB =212212)()(y y x x -+-四、向量的线性运算1、向量的加法和减法(1)向量加法的三角形法则:两个向量的和,即它们首尾相连,连接第一个向量的起点到第二个向量的终点之间的有向线段,方向从第一个向量的起点指向第二个向量的终点。

记忆口诀:首尾相连、连接首尾、指向终点。

(2)向量加法的平行四边形法则:已知两个从同一点A 出发的两个向量AD 、AB ,以AD 、A B 为邻边作平行四边形ACDB ,则以A 为起点的对角线AC 就是向量AD 、AB 的和。

实例:物理中两个力的合力的求法。

记忆口诀:共起点,对角连。

(3)向量的减法:两个向量的差,即它们起点相连,连接两个向量的终点的有向线段,方向为从减数指向被减数。

2、向量加法的运算法则对于零向量和任一向量a :a a a =+=+00对于相反向量:0)()(=+-=-+a a a a 交换律:a b b a +=+结合律:)()(c b a c b a ++=++3、向量的数乘1)实数λ与向量a 的积也是一个向量,记作a λ,它的长度和方向规定如下:(1)a a λλ=(2)当λ>0时,a λ与a 方向相同;当λ<0时,a λ与a 方向相反;当a =0时,a λ=0;当λ=0,a λ=0。

第01讲 平面向量的概念及线性运算(六大题型)(课件)高考数学一轮复习(新教材新高考)

第01讲 平面向量的概念及线性运算(六大题型)(课件)高考数学一轮复习(新教材新高考)

题型突破·考法探究
题型二:平面向量的线性运算及求参数问题
【典例2-1】若 = 7, = 4 ,则 的取值范围是( )
A.[3,7]
B. 3,7
C. 3,11
D.(3,11)
【答案】C
【解析】由题意知 = 7, = 4,且 = | − |,
当, 同向时, 取得最小值, = | − | = ||| − ||| = |4 − 7| = 3;
【答案】C
【解析】对于A,向量的模为非负数,它们可以比较大小,但向量不可以比较大小,故
A错误.
对于B,两个向量的模相等,但方向可以不同,故B错误.
对于C,若Ԧ = ,则,
,故C成立.
Ԧ 必定共线,故//
Ԧ
对于D,当Ԧ ≠ 时,它们可以模长不相等,但可以同向或反向,
故与
Ԧ 可以为共线向量,故D错误.故选:C
后一个向量终点的向量.
即 + + ⋯ + − = .
(2)||| − ||| ≤ | ± | ≤ || + ||,当且仅当, 至少有一个为时,向量不等式的等号成
立.
(3)特别地:||| − ||| ≤ | ± |或| ± | ≤ || + ||当且仅当, 至少有一个为时或者
与向量长度无关,两个向量方向相同
且长度相等,就是相等向量.
题型突破·考法探究
题型一:平面向量的基本概念
【变式1-1】下列说法中,正确的是(

A.若||
Ԧ > ||,则Ԧ >
C.若Ԧ = ,则//
Ԧ
B.若||
Ԧ = ||,则Ԧ =
D.若Ԧ ≠ ,则与

平面向量复习

平面向量复习

回目录
本页结束
6、平移—典例分析-例13
知 识 回 忆 典 例11 例 例12 分 析 例13
例13 把y=2x 图象 c按a=(-1,2)平移 得c′则c′解析式___ x′=x-1 x=x′+1 ∴ y′=y+2 y=y′-2 y′-2=2x′+1 ∴y=2x+1+2
点击出 现答案
回目录
本页结束
八、线段的定比分点
点P(x,y)分有向线段P ( ),P ( 1P 2所成定比为 ,其中P 1 x1,y1 2 x2,y 2) PP2 即P 1P 中点坐标 定比分点P的坐标
x1 x2 x 1 y y1 y 2 1
x1 x2 x 2 当 1时, y y1 y2 2
学习目录
1、向量的概念 2、实数与向量的积 3、平面向量的坐标运算
知识结构
4、线段的定比分点 5、平面向量的数量积 6、平移 7、正余弦定理
一、向量的概念 向量、零向量、单位向量、共线向量(平行向量)、 相等向量、相反向量等. 二、向量的表示 1、字母表示:AB或a 2、坐标表示: A
y
B
a xi y j (x,y)
例题
例2 设a,b是两个不共线向量。AB=2a+kb BC=a+b CD=a-2b,A、B、D共线,求k的值.
例3 e1、e2不共线, a=e1+e2 b=3e1-3e2 a与b是否共线。
例题
例4 梯形ABCD,且|AB|=2|DC|,M、N分 别为DC、AB中点。AB=a AD=b M D 用a,b来标DC、BC、MN。
练习一
1、根据图示,在下列横 线上填上适当的向量 ( 1 )AB — — — DB DC ( 2 )AB — — — DC DA

第一节 平面向量的概念讲义--高三数学一轮复习备考

第一节 平面向量的概念讲义--高三数学一轮复习备考

平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量复习一一、向量有关概念:1.向量的概念:既有大小又有方向的量。

向量和数量的区别:从定义上来看,数量只有大小;从特点上看,向量可以平移。

2.零向量:长度为0的向量叫零向量,记作:(必须牢记)。

零向量的方向是任意的(知道即可);3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥, 规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量是-。

二、平面向量的基本定理:如果1e 和2e 是同一平面内的两个不共线向量,那么对该平面内的任一向量,有且只有一对实数1λ、2λ,使=1λ1e +2λ2e 。

基底的特点:不共线。

三、 向量的表示1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

特别地,如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

四、向量的运算1.向量加法: “平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量。

特点:共起点。

2AB AC AD AE +==(重点识记)“三角形法则”:特点:首尾相连。

AB BC AC +=;2.向量的减法:用“三角形法则”: AB AC CB -=,口诀:“共起点,指被减”。

口诀解析:两个向量起点相同,由减向量的终点指向被减向量的终点。

通常写出答案后通过移项,利用加法检验一次。

①AB BC CD ++=___ ;②AB AD DC --=____ ;③()()AB CD AC BD ---=3.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。

五、巩固练习1.给出下列命题①向量AB 的长度与向量BA 的长度相等; ②向量a 与向量b 平行,则a 与b 方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同;④两个有共同起点的向量,一定是共线向量;⑤向量AB 的长度与向量CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段。

其中假命题的个数为2.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若||||a b =,则a b =③若AB DC =,则四边形ABCD 为平行四边形; ④在ABCD 中,一定有AB DC =;⑤若m n =,n p =,则m p = ⑥若//a b ,//b c ,则//a c其中正确的命题个数是3.设P 是ABC ∆所在平面内一点,2BC BA BP +=,则( )A .0PA PB += B .0PA PC += C .0PC PB +=D .0PA PB PC ++=4.在ABC ∆中,AB c =,AC b =,若点D 满足2BD DC =,则 AD =( )A .2133b c +B .5233b c -C .2133b c -D .1233b c + 5.已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___6.已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____7.ABC ∆中, AB 边上的高为CD ,若CB a =,CA b =,CA CB ⊥,||1a =,||2b =,则AD =( )A .1133a b -B .2233a b -C .3355a b -D .4455a b - 8.在ABC ∆中, M 为OB 的中点,N 为AB 的中点,ON ,AM 交于点P ,若A P m O A n O B =+,则n m -=9.设点M 是线段BC 的中点,点A 在直线BC 外,216BC =,||||AB AC AB AC +=-,AM =A .8B .4C .2D .110.若向量,,则( )A .B .C .D .11.已知向量(3,1)a =,(0,1)b =-,(,3)c k =,若2a b -与c 共线,则k=12.设a 、b 是两个不共线的向量,若2AB a kb =+,CB a b =+,2CD a b =-,且A 、B 、D 三点共线,则实数k 的值等于如何用向量法证明三点A 、B 、C 共线?证明AB AC λ=,即证明AB 与AC 共线,又因为有一个公共点,所以三点共线。

13.下列向量组中,能作为平面内所有向量基底的是A. 12(0,0),(1,2)e e ==-B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=-14.已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值。

15.在ABC ∆中,D 为AC 边的中点,E 为AB 上一点,BD 、CE 交于一点F ,且2BF F D =,若B E B A λ=,则实数λ的值为16.已知ABC ∆和点M 满足0MA MB MC ++=,若存在实数m 使得=AB AC mAM +成立,则m=17.已知A 、B 、C 是圆O 上的三点,若0OA OB OC ++=,则AB 与AC 的夹角为()1,2AB =()3,4BC =AC =()4,6()4,6--()2,2--()2,2平面向量复习二一、平面向量的数量积:1.两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。

两个向量的夹角也记作:,a b <>向量夹角判断的注意事项:两向量要共起点。

(重中之重) 2.平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a b ⋅,即a b ⋅=cos a b θ。

规定:零向量与任一向量的数量积是0,数量积是一个实数,不是一个向量。

3.b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。

如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______4.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0a b a b ⊥⇔⋅=;②当a ,b 同向时,a b ⋅=a b ,特别地,222,a a a a a a =⋅==;当a 与b 反向时,a b ⋅=-a b ;当θ为锐角时,a b ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,a b ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a b a b θ⋅=;④||||||a b a b ⋅≤。

二、坐标运算1.与数量积有关的坐标运算 ①平面向量数量积:1212a b x x y y ⋅=+。

②向量的模:222222||,||a x y a a x y =+==+。

如③两点间的距离:若()()1122,,,A x y B x y ,则||AB =2.与向量平行(共线)的坐标运算: //a b ⇔12120x y y x -=如下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →= 22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅则a c =;⑥22a a =;⑦2a b b a a ⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。

其中正确的是______提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅≠⋅,为什么?三、巩固练习1.△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________2.已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____3.已知2,5,3a b a b ===-,则a b +等于____ 4.已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____5.已知非零向量b a ,,,则>+<ba a ,cos=( )A6.已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______7.在△ABC 中,02<⋅+BC AB AB ,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形8.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____9.若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同10.已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______11.设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线12.设 ,向量且 ,则( )ABC .D . 13.已知向量,夹角为,且||=1,|,则||=_______.14.设向量,若⊥,则.15.已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .216.设a ·b =4,若a 在b 方向上的投影为2,且b 在a 方向上的投影为1,则a 与b 的夹角等于( )A.π6B.π3C.2π3D.π3或2π3 17.如图,在边长为2的菱形ABCD 中60BAD ∠=,E 为CD 中点,则AE BD ⋅=18.△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则AO →·BC →等于(B )A.32B.52 C .2 D .319.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →=( D )A .2 3B.32C.33D. 3 x R ∈(,1),(1,2),a x b ==-a b ⊥||a b +=10a b 045a 2-a b b (1,2),(1,1),(2,)a m b m c m ==+=()a c +b a =_____。

相关文档
最新文档