河南省洛阳市2020届高三数学上学期期中试题 理
河南郑州市2020届高三第三次统一考试数学(理科)试题 (解析版)

2020年高考数学三诊试卷(理科)一、选择题(共12小题).1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则z的虚部为()A.3 B.3i C.﹣3 D.﹣3i3.已知角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),则α=()A.5π6B.7π6C.4π3D.5π34.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14 B.﹣5 C.﹣4 D.﹣15.设a、b、c依次表示函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.47B.37C.27D.1710.设双曲线C:x 2a −y2b=1(a>0,b>0)的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.103B.53C.32D.5411.已知函数f(x)=sinωx+cosωx(ω>14,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(π2,π),则ω的取值范围是()A.[12,54]B.[12,2]C.(14,54]D.(14,2]12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与y=e1−x2+1的图象关于直线x=1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k 的值是()二、填空题:13.已知|a →|=1,|b →|=2,且a →•(b →−a →)=﹣2,则向量a →与b →的夹角为 .14.已知数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),则a 4= . 15.焦点为F 的抛物线C :x 2=4y 的准线与坐标轴交于点A ,点P 在抛物线C 上,则|PA||PF|的最大值为 .16.如图,在平行四边形ABCD 中,∠BAD =60°,AB =2AD =2,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,设M 为线段A 1C 的中点.则在△ADE 翻折过程中,给出如下结论:①当A 1不在平面ABCD 内时,MB ∥平面A 1DE ; ②存在某个位置,使得DE ⊥A 1C ; ③线段BM 的长是定值;④当三棱锥C ﹣A 1DE 体积最大时,其外接球的表面积为13π3.其中,所有正确结论的序号是 .(请将所有正确结论的序号都填上)三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题: 17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B =(4c ﹣b )cos A . (Ⅰ)求cos A 的值;(Ⅱ)若b =4,点M 在线段BC 上,且AB →+AC →=2AM →,|AM →|=√6,求△ABC 的面积.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y (单位:万件),对近5个月的月销售单价x i 和月销售量y i (i =1,2,3,4,5)的数据进行了统计,得到如表数据: 月销售单价x i (元/件) 9 9.5 10 10.5 11 月销售量y i (万件)1110865(Ⅰ)建立y 关于x 的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x 为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程y ̂=b ̂x +a,其中b ̂=∑ n i=1x i y i −nxy ∑ ni=1x i2−nx2,a ̂=y =b ̂x . 参考数据:∑ 5i=1x i y i =392,∑ 5i=1x i 2=502.5.19.如图,已知三棱柱ABC ﹣A 1B 1C 1的所有棱长均为2,∠B 1BA =π3. (Ⅰ)证明:B 1C ⊥AC 1;(Ⅱ)若平面ABB 1A 1⊥平面ABC ,M 为A 1C 1的中点,求B 1C 与平面AB 1M 所成角的正弦值.20.已知函数f(x)=(a+2)x2+ax﹣lnx(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)设g(x)=x2−2x3,若∀x1∈(0,1],∃x2∈[0,1],使得f(x1)≥g(x2)3成立,求实数a的取值范围.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数1.2(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过坐标原点O的直线交轨迹C于A,B两点,轨迹C上异于A,B的点P满足.直线AP的斜率为−32(ⅰ)求直线BP的斜率;(ⅱ)求△ABP面积的最大值.(二)选考题:[选修4-4:坐标系与参数方程](φ为参数),将曲线C1 22.在直角坐标系xOy中,曲线C1的参数方程为{x=1+cosφy=sinφ向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若|AB|=√2,求α的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+b|(a>0,b>0).(Ⅰ)当a=b=1时,解不等式f(x)<x+2;(Ⅱ)若f(x)的值域为[2,+∞),证明:1a+1+1b+1+1ab≥2.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 【分析】先解出A={x|﹣1<x<2},然后进行交集的运算即可.解:A={x|﹣1<x<2};∴A∩B={x|1<x<2}.故选:C.【点评】考查描述法表示集合的概念,一元二次不等式的解法,以及交集的运算.2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则z的虚部为()A.3 B.3i C.﹣3 D.﹣3i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由(z﹣1)i=3+i,得z=3+i i+1=(3+i)(−i)−i2+1=2−3i,∴z=2+3i.则z的虚部为3.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),则α=()A.5π6B.7π6C.4π3D.5π3【分析】由题意利用任意角的三角函数的定义,诱导公式,求得α的范围以及正切值,可得α的值.解:角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),α为第三象限角,则tanα=cos7π6sin7π6=cot7π6=cotπ6=√3,∴α=π+π3=4π3,故选:C.【点评】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.4.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14 B.﹣5 C.﹣4 D.﹣1【分析】设等差数列{a n}的公差为d,d≠0,运用等差数列的求和公式,以及等比数列的中项性质和等差数列的通项公式,化简整理,解方程可得首项和公差,即可得到所求值.解:设等差数列{a n}的公差为d,d≠0,由S5=﹣5,可得5a1+12×5×4d=﹣5,即a1+2d=﹣1,①由a3,a4,a6成等比数列,可得a42=a3a6,即(a1+3d)2=(a1+2d)(a1+5d),化为a1d+d2=0,由d≠0,可得a1=﹣d,②由①②解得d=﹣1,a1=1,则a7=1+(7﹣1)×(﹣1)=﹣5.故选:B.【点评】本题考查等差数列的通项公式和求和公式,以及等比数列的中项性质,考查方程思想和运算能力,属于基础题.5.设a、b、c依次表示函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a【分析】先确定三个函数在定义域上是增函数,再利用零点存在定理,求出三个函数零点的范围,从而比较大小,即可得解.解:函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,就是方程x12=x﹣1,log12x=x﹣1,(12)x=x﹣1方程的的解,在坐标系中画出函数y=x12,y=log12x,y=(12)x,与y=x﹣1的图象,如图:可得b<c<a,故选:D.【点评】本题主要考查函数零点的大小判断,解题时注意函数的零点的灵活运用,考查数形结合的应用,属于中档题.6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行【分析】采用举反例方式,逐一排除,从而可得到正确答案.解:由题可知,直线l和平面α要么相交,要么平行.当平面α与直线l平行时,在α内就不存在直线与直线l相交,则A错;当平面α与直线l相交时,在α内就不存在直线与直线l平行,则C错;当平面α与直线l相交时,过直线l的平面与平面α都会相交,则D错;不论直线l和平面α相交还是平行,都会在α内存在直线与直线l异面,则B正确.故选:B.【点评】本题主要考查了点线面位置关系,考查了学生的直观想象能力,属于基础题.7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()A.9 B.﹣9 C.3 D.﹣3【分析】根据(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),求得含x4的项的系数.解:∵(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),含x4的项的系数为3﹣6×3+12=﹣3,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π【分析】直接利用三视图,判断几何体的构成,进一步利用几何体的表面积公式求出结果.解:根据几何体的三视图:该几何体是由底面半径为3,高为4的圆柱,挖去一个底面半径为3,高为4的倒圆锥构成的几何体.所以:S=32•π+6π×4+12×6π×5=48π.故选:C.【点评】本题考查的知识要点:三视图的应用,几何体的表面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.47B.37C.27D.17【分析】显然取法总数为C83,要取出的球的编号互不相同可先选编号数C43,再定颜色有C21C21C21,则有C43C21C21C21种取法,相比即可.解:从8个球中随机取出3个的取法有C83=56种;其中取出的球的编号互不相同的取法有C43C21C21C21=32种,则取出的球的编号互不相同的概率P=3256=47.故选:A.【点评】本题考查乘法原理,组合数公式与概率相结合,属于基础题.10.设双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.103B.53C.32D.54【分析】设直线PF1与圆x2+y2=a2相切于点M,取PF1的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理可得|PF1|=4b,再由双曲线的定义和a,b,c的关系及离心率公式计算即可得到结果.解:设直线PF1与圆x2+y2=a2相切于点M,则|OM|=a,取PF1的中点N,连接NF2,由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,由|NF2|=2|OM|=2a,则|NP|=√4c2−4a2=2b,即有|PF1|=4b,由双曲线的定义可得|PF1|﹣|PF2|=2a,即4b﹣2c=2a,即2b=a+c,即4b2=(c+a)2=4(c2﹣a2),整理得3c=5a,则e=ca=53.故选:B.【点评】本题主要考查圆的切线性质、等腰三角形的三线合一、中位线定理、勾股定理及双曲线的定义、离心率计算,属于中档题.11.已知函数f(x)=sinωx +cosωx(ω>14,x ∈R),若f (x )的任何一条对称轴与x 轴交点的横坐标都不属于区间(π2,π),则ω的取值范围是( )A .[12,54]B .[12,2]C .(14,54]D .(14,2]【分析】先利用辅助角公式,将函数f (x )化简为f(x)=sinωx +cosωx =√2sin(ωx +π4),观察选项,可以找两个特殊值ω=2和ω=13,进行试验排除.具体做法是,将ω=2和ω=13分别代入函数f (x ),求出对称轴,给k 赋值,判断对称轴是否能在区间(π2,π)即可得解.解:f(x)=sinωx +cosωx =√2sin(ωx +π4),∵f (x )的任何一条对称轴与x 轴交点的横坐标都不属于区间(π2,π),∴T2=πω≥π−π2=π2,∴ω≤2,即14<ω≤2,若ω=2,则f(x)=√2sin(2x +π4),令2x +π4=π2+kπ,k ∈Z ,得x =π8+kπ2,k ∈Z , 当k =1时,对称轴为x =5π8∈(π2,π),不符合题意,故ω≠2,排除选项B 和D ,若ω=13,则f(x)=√2sin(13x+π4),令13x+π4=π2+kπ,k∈Z,得x=3π4+3kπ,k∈Z,当k=0时,对称轴x=3π4∈(π2,π),不符合题意,故ω≠13,排除选项C.故选:A.【点评】本题考查辅助角公式和正弦函数的对称性,考查学生的逻辑推理能力、分析能力和运算能力,属于中档题.12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与y=e1−x2+1的图象关于直线x=1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k 的值是()A.3 B.2 C.1 D.﹣1【分析】先由对称性求出g(x),然后由已知可设f(x1)=g(x2)=a,则分别表示x1=e a﹣2﹣k,x2=2ln(a﹣1),代入后结合导数及极值存在的条件可求.解:由题意可得g(x)=e x2+1.设f(x1)=g(x2)=a,则x1=e a﹣2﹣k,x2=2ln(a﹣1),∴2x1﹣x2=2e a﹣2﹣2ln(a﹣1)﹣2k,令h(a)=2e a﹣2﹣2ln(a﹣1)﹣2k,则h′(a)=2e a−2−2a−1=2(e a−2−1a−1)在(1,+∞)上单调递增且h′(2)=0,故当a>2时,h′(a)>0,h(a)单调递增,当1<a<2时,h′(a)<0,h(a)单调递减,故当a=2时,h(a)取得极小值h(2)=2﹣2k,由题意可知2﹣2k =﹣2, 故k =2. 故选:B .【点评】本题主要考查了利用导数研究函数极值存在的条件,解题的关键是利用已知表示出极值的条件. 二、填空题:13.已知|a →|=1,|b →|=2,且a →•(b →−a →)=﹣2,则向量a →与b →的夹角为2π3.【分析】根据题意,设向量a →与b →的夹角为θ,由数量积的运算性质可得a →•(b →−a →)=a →•b →−a →2=﹣2,变形解可得cos θ的值,结合θ的范围分析可得答案.解:根据题意,设向量a →与b →的夹角为θ,若a →•(b →−a →)=﹣2,则a →•(b →−a →)=a →•b →−a →2=﹣2, 即2cos θ﹣1=﹣2,解可得cos θ=−12,又由0≤θ≤π,则θ=2π3; 故答案:2π3.【点评】本题考查向量数量积的计算,注意向量数量积的计算公式,属于基础题. 14.已知数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),则a 4= 8 . 【分析】直接利用数列的递推关系式,逐步求解数列的项即可. 解:数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),n =1时,2a 1﹣S 1=1.可得a 1=1,n =2时,2a 2﹣S 2=1,即2a 2﹣a 2﹣a 1=1,解得a 2=2,n =3时,2a 3﹣S 3=1,即2a 3﹣a 3﹣a 2﹣a 1=1,解得a 3=4, n =4时,2a 4﹣S 4=1,即2a 4﹣a 4﹣a 3﹣a 2﹣a 1=1,解得a 4=8,故答案为:8.【点评】本题考查数列的递推关系式的应用,数列的项的求法,是基本知识的考查. 15.焦点为F 的抛物线C :x 2=4y 的准线与坐标轴交于点A ,点P 在抛物线C 上,则|PA||PF|的最大值为 √2 .【分析】根据题意作图,结合抛物线性质可得|PA||PF|=1sin ∠PAM,则当∠PAM 最小时,则|PA||PF|最大,即当PA 和抛物线相切时,|PA||PF|最大,设P (a ,a 24),利用导数求得斜率求出a 的值即可解:由题意可得,焦点F (0,1),A (0,﹣1),准线方程为y =﹣1 过点P 作PM 垂直于准线,M 为垂足, 由抛物线的定义可得|PF |=|PM |, 则|PA||PF|=|PA||PM|=1sin ∠PAM,∠PAM 为锐角.故当∠PAM 最小时,则|PA||PF|最大,故当PA 和抛物线相切时,|PA||PF|最大可设切点P (a ,a 24),则PA 的斜率为k =14a 2−1a,而函数y =x 24的导数为y ′=x2,则有a2=14a 2−1a,解得a =±2,可得P (2,1)或(﹣2,1),则|PM |=2,|PA |=2√2, 即有sin ∠PAM =|PM||PA|=√22, 则|PA||PF|=√2,故答案为:√2【点评】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.16.如图,在平行四边形ABCD 中,∠BAD =60°,AB =2AD =2,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,设M 为线段A 1C 的中点.则在△ADE 翻折过程中,给出如下结论:①当A 1不在平面ABCD 内时,MB ∥平面A 1DE ; ②存在某个位置,使得DE ⊥A 1C ; ③线段BM 的长是定值;④当三棱锥C ﹣A 1DE 体积最大时,其外接球的表面积为13π3.其中,所有正确结论的序号是 ①③④ .(请将所有正确结论的序号都填上)【分析】①取DC的中点N,连接NM、NB,可得MN∥A1D,NB∥DE,且MN、NB 和∠MNB均为定值,由平面与平面平行的判定可得面MNB∥面A1DE,则MB∥面A1DE;②用反证法,假设存在某个位置,使DE⊥A1C,在△CDE中,由勾股定理易知,CE⊥DE,再由线面垂直的判定定理可知,DE⊥面A1CE,所以DE⊥A1E,与已知相矛盾;③由①可知MN,NB,∠MNB,在△MNB中,由余弦定理可知,MB2=MN2+NB2﹣2MN•NB cos∠MNB,计算得线段BM的长是定值;④当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,得CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,由勾股定理求外接球的半径OE,.代入球的表面积公式可得外接球的表面积为13π3解:如图,∵AB=2AD=2,E为边AB的中点,∠BAD=60°,∴△ADE(A1DE)为等边三角形,则DE=1.①取DC的中点N,连接NM、NB,则MN∥A1D,且MN=1=A1D=12;2NB∥DE,且NB=DE=1,∵MN⊄平面A1DE,A1D⊂平面A1DE,则MN∥平面A1DE,同理NB∥平面A1DE,又NM∩NB=N,∴平面NMB∥平面A1DE,则MB∥平面A1DE,故①正确;②假设存在某个位置,使DE⊥A1C.∵DE=1,可得CE=√3,∴CE2+DE2=CD2,即CE⊥DE,∵A1C∩CE=C,∴DE⊥面A1CE,∵A1E⊂面A1CE,∴DE⊥A1E,与已知∠DA1E=60°矛盾,故②错误;,NB=1.③由①知,∠MNB=∠A1DE=60°,MN=12由余弦定理得,MB2=MN2+NB2﹣2MN•NB cos∠MNB=1+1−2×12×1×12=34,4,故③正确;∴BM的长为定值√32当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,∴CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,则外接球的半径OE=(3)2+(32)2=√1312,3∴外接球的表面积S=4π×(√13)2=13π3,故④正确.12∴正确命题的序号是①③④.故答案为:①③④.【点评】本题考查空间中线面的位置关系,理清翻折前后不变的数量关系和位置关系,以及熟练运用线面平行或垂直的判定定理与性质定理是解题的关键,考查学生的空间立体感和逻辑推理能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a cos B=(4c﹣b)cos A.(Ⅰ)求cos A的值;(Ⅱ)若b=4,点M在线段BC上,且AB→+AC→=2AM→,|AM→|=√6,求△ABC的面积.【分析】(Ⅰ)由正弦定理,两角和的正弦函数公式化简已知等式可得sin C=4sin C cos A,结合在△ABC中,sin C≠0,可求cos A的值.(Ⅱ)解法一:由AB→+AC→=2AM→,两边平方,利用余弦定理可解得c的值,利用同角三角函数基本关系式可求sin A的值,进而根据三角形的面积公式即可求解;解法二:延长BA到N,使AB=AN,连接CN,由AB→+AC→=2AM→,M点为BC线段,利用余弦定理中点,|AM→|=√6,可求CN=2√6,cos∠CAN=cos(π−∠A)=−14可求c的值,进而根据三角形的面积公式即可求解.解:(Ⅰ)因为a cos B=(4c﹣b)cos A,由正弦定理得:sin A cos B=(4sin C﹣sin B)cos A,即sin A cos B+sin B cos A=4sin C cos A,可得sin C=4sin C cos A,在△ABC中,sin C≠0,.所以cosA=14(Ⅱ)解法一:∵AB→+AC→=2AM→,两边平方得:AB→2+2AB→⋅AC→+AC→2=4AM→2,,由b=4,|AM→|=√6,cosA=14可得:c2+2c⋅4⋅1+16=4×6,解得c=2或c=﹣4(舍).4,又sinA=√1−cos2A=√154所以△ABC的面积S=12×4×2×√154=√15.解法二:延长BA到N,使AB=AN,连接CN,∵AB→+AC→=2AM→,M点为BC线段中点,|AM→|=√6,∴CN=2√6,又∵b=4,cosA=14,cos∠CAN=cos(π−∠A)=−14,∴CN2=AC2+AN2﹣2AC•AN•cos∠CAN,即24=16+c2−2c⋅4⋅(−14),解得:c=2或c=﹣4(舍),又sinA=√1−cos2A=√154,∴△ABC的面积S=12×4×2×√154=√15.【点评】本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,同角三角函数基本关系式,三角形的面积公式以及平面向量的运算在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y(单位:万件),对近5个月的月销售单价x i和月销售量y i(i=1,2,3,4,5)的数据进行了统计,得到如表数据:月销售单价x i(元/件)99.51010.511月销售量y i (万件) 11 10 8 6 5(Ⅰ)建立y 关于x 的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x 为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程y ̂=b ̂x +a,其中b ̂=∑ n i=1x i y i −nxy ∑ ni=1x i2−nx2,a ̂=y =b ̂x . 参考数据:∑ 5i=1x i y i =392,∑ 5i=1x i 2=502.5.【分析】(Ⅰ)求出样本中心,求出回归直线方程的斜率,然后求解y 关于x 的回归直线方程;(Ⅱ)利用过后直线方程,求出当该产品月销售单价为7元/件时,求出预测数据,通过判断由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值说法超过0.5万件,则认为所得到的回归直线方程是理想的,说明(Ⅰ)中得到的回归直线方程是否理想.(Ⅲ)设销售利润为M ,则M =(x ﹣5)(﹣3.2x +40)(5<x ≤11)M =﹣3.2x 2+56x ﹣200,求解x =8.75时,M 取最大值,得到结果.解:(Ⅰ)因为x =15(11+10.5+10+9.5+9)=10,y =15(5+6+8+10+11)=8. 所以b ̂=392−5×10×8502.5−5×102=−3.2,所以a ̂=8−(−3.2)×10=40,所以y 关于x 的回归直线方程为:y ̂=−3.2x +40. (Ⅱ)当x =7时,y ̂=−3.2×7+40=17.6,则|17.6﹣18|=0.4<0.5,所以可以认为所得到的回归直线方程是理想的.(Ⅲ)设销售利润为M,则M=(x﹣5)(﹣3.2x+40)(5<x≤11)M=﹣3.2x2+56x ﹣200,所以x=8.75时,M取最大值,所以该产品单价定为8.75元时,公司才能获得最大利润.【点评】本题考查回归直线方程的求法与应用,考查转化思想以及计算能力,是基本知识的考查.19.如图,已知三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA=π3.(Ⅰ)证明:B1C⊥AC1;(Ⅱ)若平面ABB1A1⊥平面ABC,M为A1C1的中点,求B1C与平面AB1M所成角的正弦值.【分析】(Ⅰ)取AB中点D,连接B1D,CD,BC1.证明B1C⊥BC1.B1D⊥AB,CD⊥AB.得到AB⊥平面B1CD.推出AB⊥B1C.即可证明B1C⊥平面ABC1,得到B1C⊥AC1.(Ⅱ)说明DB,DB1,DC两两垂直,以D为原点,DB为x轴,DC为y轴,DB1为z轴,建立空间直角坐标系.求出平面AB1M的法向量,利用空间向量的数量积求解B1C与平面AB1M所成的角的正弦值即可.【解答】证明:(Ⅰ)取AB中点D,连接B1D,CD,BC1.∵三棱柱的所有棱长均为2,∠B1BA=π3,∴△ABC 和△ABB 1是边长为2的等边三角形,且B 1C ⊥BC 1. ∴B 1D ⊥AB ,CD ⊥AB .∵B 1D ,CD ⊂平面B 1CD ,B 1D ∩CD =D ,∴AB ⊥平面B 1CD . ∵B 1C ⊂平面B 1CD ,∴AB ⊥B 1C .∵AB ,BC 1⊂平面ABC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1, ∴B 1C ⊥AC 1.(Ⅱ)∵平面ABB 1A 1⊥平面ABC ,且交线为AB , 由(Ⅰ)知B 1D ⊥AB ,∴B 1D ⊥平面ABC .则DB ,DB 1,DC 两两垂直,则以D 为原点,DB 为x 轴,DC 为y 轴,DB 1为z 轴, 建立空间直角坐标系.则D (0,0,0),A (﹣1,0,0),B 1(0,0,√3),C(0,√3,0),C 1(−1,√3,√3),A 1(−2,0,√3)∵M 为A 1C 1的中点,∴M(−32,√32,√3),∴B 1C →=(0,√3,−√3),AB 1→=(1,0,√3),AM →=(−12,√32,√3),设平面AB 1M 的法向量为n →=(x ,y ,z),则{AB 1→⋅n →=x +√3z =0AM →⋅n →=−12x +√32y +√3z =0,取z =1,得n →=(−√3,−3,1). 设B 1C 与平面AB 1M 所成的角为α,则sinα=|B 1C →⋅n →||B 1C →|⋅|n →|=4√3√6⋅√13=2√2613.∴B 1C 与平面AB 1M 所成角的正弦值为2√2613.【点评】本题考查直线与平面所成角的正弦值的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题. 20.已知函数f (x )=(a +2)x 2+ax ﹣lnx (a ∈一、选择题). (Ⅰ)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(Ⅱ)设g (x )=x 2−23x 3,若∀x 1∈(0,1],∃x 2∈[0,1],使得f (x 1)≥g (x 2)成立,求实数a 的取值范围.【分析】(Ⅰ)当a =0时,求出f ′(x)=4x −1x,求出切线的斜率以及切点坐标,然后求解切线方程.(Ⅱ)问题等价于∀x 1∈(0,1],∃x 2∈[0,1],f (x 1)min ≥g (x 2)min .求出g '(x )=2x ﹣2x 2,利用导函数的符号判断函数的单调性,求解函数的最小值,同理求解f (x )min ,利用转化不等式,构造函数,转化求解即可.解:(Ⅰ)当a =0时,f (x )=2x 2﹣lnx ,f ′(x)=4x −1x,则f (1)=2,f '(1)=3,故曲线y =f (x )在(1,f (1))处的切线方程为3x ﹣y ﹣1=0.(Ⅱ)问题等价于∀x 1∈(0,1],∃x 2∈[0,1],f (x 1)min ≥g (x 2)min . 由g(x)=x 2−23x 3得g '(x )=2x ﹣2x 2,由g '(x )=2x ﹣2x 2≥0得0≤x ≤1,所以在[0,1]上,g(x)是增函数,故g(x)min=g(0)=0.f(x)定义域为(0,+∞),而f′(x)=2(a+2)x+a−1x =2(a+2)x2+a−1xx=(2x_1)[(a+2)x−1]x.当a≤﹣2时,f'(x)<0恒成立,f(x)在(0,1]上是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;当a>﹣2时,由f'(x)<0,得0<x<1a+2;由f'(x)>0,得x>1a+2,所以f(x)在(0,1a+2)单调递减,在(1a+2,+∞)单调递减.若1a+2>1,即﹣2<a<﹣1时,f(x)在(0,1]是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;若0<1a+2≤1,即a≥﹣1时,f(x)在x=1a+2处取得最小值,f(x)min=f(1a+2)=1+ ln(a+2)−1a+2,令h(a)=1+ln(a+2)−1a+2(a≥−1),则h′(a)=1a+2+1(a+2)2=a+3(a+2)2>0在[﹣1,+∞)上恒成立,所以h(a)在[﹣1,+∞)是增函数且h(a)min=h(﹣1)=0,此时f(x)min=f(1a+2)≥0成立,满足条件.综上所述,a≥﹣1.【点评】本题考查函数的导数的应用,切线方程以及函数的单调性,函数的最值的求法,转化思想的应用,是难题.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数12.(Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)过坐标原点O 的直线交轨迹C 于A ,B 两点,轨迹C 上异于A ,B 的点P 满足直线AP 的斜率为−32. (ⅰ)求直线BP 的斜率; (ⅱ)求△ABP 面积的最大值.【分析】(Ⅰ)利用点M (x ,y )与定点F (1,0)的距离和它到直线x =4的距离的比是常数12,列出方程化简求解即可.(Ⅱ)(ⅰ)设点A (x 1,y 1),则点B (﹣x 1,﹣y 1),满足x 124+y 123=1,设点P (x 2,y 2),满足x 224+y 223=1,利用平方差法求解AP 的斜率,BP 的斜率即可.(ⅱ)说明S △ABP =2S △OAP ,设直线AP :y =−32x +m ,代入曲线C :x 24+y 23=1化简得:3x 2﹣3mx +m 2﹣3=0,设A (x 1,y 1),P (x 2,y 2),利用韦达定理、弦长公式以及点到直线的距离公式,转化求解三角形面积的表达式,然后求解最值即可. 解:(Ⅰ)由已知得√(x−1)2+y 2|x−4|=12,两边平方并化简得3x 2+4y 2=12,即点M 的轨迹C 的方程为:x 24+y 23=1.(Ⅱ)(ⅰ)设点A (x 1,y 1),则点B (﹣x 1,﹣y 1),满足x 124+y 123=1,①设点P (x 2,y 2),满足x 224+y 223=1,②由①﹣②得:(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)3=0,∵k AP =y 1−y 2x 1−x 2−=−32,k BP =y 1+y2x 1+x 2,∴k BP =y 1+y2x 1+x 2=12.(ⅱ)∵A,B关于原点对称,∴S△ABP=2S△OAP,设直线AP:y=−32x+m,代入曲线C:x24+y23=1化简得:3x2﹣3mx+m2﹣3=0,设A(x1,y1),P(x2,y2),由△>0得:m2<12,x1+x2=m,x1x2=m2−33,|AP|=√1+94|x1−x2|=√1+94√(x1+x2)2−4x1x2=√1+94√4−m 23,点O到直线AP的距离d=√1+94,∴S△ABP =2S△OAP=2×12×|AP|⋅d=|m|√4−m23=√4m2−m43,∴S△ABP =√−m43+4m2=√−13(m2−6)2+12,当m2=6时,∴S△ABP取到最大值2√3.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,平方差法以及距离公式的应用,三角形面积的最值的求法,是中档题.(二)选考题:[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为{x=1+cosφy=sinφ(φ为参数),将曲线C1向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若|AB|=√2,求α的值.【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用极径的应用和三角函数关系式的恒等变换,及正弦型函数的性质的应用求出结果.解:(Ⅰ)由题意:{x =1+cosφy =sinφ⇒{x −1=cosφy =sinφ⇒(x −1)2+y 2=1.∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, ∴曲线C 1的极坐标方程为ρ=2cos θ. 因曲线C 1是圆心为(1,0),半径为1的圆, 故曲线C 2的直角坐标方程为x 2+(y ﹣1)2=1. ∴曲线C 2的极坐标方程为ρ=2sin θ. (Ⅱ)设A (ρ1,α),B (ρ2,α),则|AB|=|ρ1−ρ2|=2|sinα−cosα|=2√2|sin(α−π4)|=√2. 所以sin(α−π4)=±12,因为2kπ<α<2kπ+π2,所以α−π4=2kπ±π6(k ∈Z).所以α=2kπ+π12(k ∈Z)或α=2kπ+5π12(k ∈Z).【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. [选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣a |+|x +b |(a >0,b >0). (Ⅰ)当a =b =1时,解不等式f (x )<x +2; (Ⅱ)若f (x )的值域为[2,+∞),证明:1a+1+1b+1+1ab≥2.【分析】(Ⅰ)由绝对值的定义分段脱绝对值求解.(Ⅱ)由绝对值不等式求函数f (x )的值域可确定a +b =2,再配凑均值不等式的形式,两次用均值不等式即可证明.解:(Ⅰ)当a=b=1时,不等式为|x﹣1|+|x+1|<x+2,当x<﹣1时,不等式化为−2x<x+2⇒x>−23,此时不等式无解;当﹣1≤x<1时,不等式化为2<x+2⇒x>0,故0<x<1;当x≥1时,不等式化为2x<x+2⇒x<2,故1≤x<2.综上可知,不等式的解集为{x|0<x<2}.(Ⅱ)f(x)=|x﹣a|+|x+b|≥|a+b|,当且仅当x﹣a与x+b同号时,f(x)取得最小值|a+b|,∵f(x)的值域为[2,+∞),且a>0,b>0,故a+b=2.故1a+1+1b+1+1ab=14(1a+1+1b+1)[(a+1)+(b+1)]+1ab=14(2+b+1a+1+a+1 b+1)+1ab≥14(2+2√b+1a+1⋅a+1b+1)+(2a+b)2=1+1=2(当且仅当a=b=1时取等号).【点评】本题考查绝对值不等式的解法,利用基本不等式证明不等式,属于中低档题.。
2020届金太阳高三4月联考数学试题

【解析】作出图形,求 的中点为 ,连接 ,确定外接球球心在线段 上,设外接球的半径为 ,可得出 ,然后在 中利用勾股定理可求得 的值,最后利用球体体积公式可求得结果.
【详解】
平面 平面 , ,取 的中点为 ,连接 ,
的外接圆圆心为点 ,则外接球的球心 在 上,且 , , ,
设外接球半径为 ,则 ,
在 中, ,即 ,得 ,
因此,三棱锥 的外接球的体积为 .
故答案为: .
【点睛】
本题考查外接球体积的计算,解答时要分析几何体的结构,确定球心的位置,考查推理能力与计算能力,属于中等题.
三、解答题
17.已知数列 的前 项和为 ,且 .
(1)求数列 的通项公式;
(2)若数列 的前 项和为 ,证明: .
【答案】(1) .(2)见解析
还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.
9.已知 , , , ,则 、 、 间的大小关系为()
A. B. C. D.
【答案】A
【解析】由题意得出 ,利用指数函数和对数函数的单调性比较 、 和 三个数的大小关系,再由指数函数的单调性可得出 、 、 三个数的大小关系.
【答案】C
【解析】求出直线 的方程,将该直线的方程与抛物线的方程联立,求出点 的横坐标,利用抛物线的定义可求得 的值.
【详解】
抛物线的焦点为 ,所以 ,
由 得: ,
, , ,
故选:C.
【点睛】
本题考查过拋物线焦点的弦,考查方程思想的应用,考查计算能力,属中等题.
6.在所有棱长都相等的直三棱柱 中, 、 分别为棱 、 的中点,则直线 与平面 所成角的余弦值为()
②乙指挥交通,甲不指挥交通,则丙必须指挥交通,故有 种方法;
2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。
精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)

故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
第6讲 利用函数性质解决抽象函数不等式(解析版)

7.【2018年普通高校招生全国卷一】已知函数 ,任取两个不相等的正数 , ,总有
,对于任意的 ,总有 ,若 有两个不同的零点,则正实数 的取值范围为__________.
3.已知函数 的定义域为 , , 是偶函数,任意 满足 ,则不等式 的解集为()
A. B.
C. D.
【来源】(全国1卷)2021届高三5月卫冕联考数学(理)试题
【答案】D
【分析】
由 是偶函数,得函数图像关于直线 对称,结合单调性求解不等式即可得到结果.
【详解】
因为 是偶函数,所以 的图像关于直线 对称,
【详解】
令 , ,
则 ,
因为 , ,所以 ,所以 在 上为单调递减函数,
当 时,由 可知 ,不满足 ;
当 时, ,所以 可化为 ,即 ,
因为 在 上为单调递减函数,所以 ,
所以不等式 的解集为 .
故选:A
【变式演练3】定义在非零实数集上的函数 满足 ,且 是区间 上的递增函数.
(1)求 的值;
(2)求证: ;
【详解】
令 ,则 可得
所以 是 上的奇函数,
,
当 时, ,所以 ,
是 上单调递增,
所以 是 上单调递增,
因为 ,
由 可得 即 ,
由 是 上单调递增,可得 解得: ,
所以不等式 的解集为 ,
故选:A.
【点睛】
关键点点睛:本题解题的关键点是:构造函数 ,根据已知条件判断 的奇偶性和单调性,利用单调性解不等式.
【答案】A
2020届河南省天一大联考高三阶段性测试(四) 数学(理)

绝密★启用前天一大联考2019-2020学年高中毕业班阶段性测试(四)理科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={x|(x -1)(x -4)≥0},N ={x|y =ln(2-x)},则M ∩N =A.(1,2)B.[1,2]C.(-∞,1]D.(2,4]2.复数z 满足1212i i z+=-,则z 的共轭复数z = A.-3+4i B.-3-4i C.3455i -+ D.3455i -- 3.已知两个平面α,β,直线l ⊂α,则“l //β”是“α//β”的A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 4.42)1(x x+-展开式中的常数项为 A.-11 B.11 C.70 D.-70 5.已知正实数a ,b ,c 满足(12)a =log 3a ,(14)b =log 3b ,c =log 32,则 A.a<b<c B.c<b<a C.b<c<a D.c<a<b6.已知向量a ,b 的夹角为135°,|a|=,|b|=3,且a +λb 与a -b 垂直,则λ= A.1415 B.56 C.23 D.167.设不等式组21022020x y x y x y +-≥-+≥+-≤⎧⎪⎨⎪⎩,表示的平面区域为D ,命题p :点(2,1)在区域D 内,命题q :点(1,1)在区域D 内。
则下列命题中,真命题是A.(⌝p)∨qB.p ∨(⌝q)C.(⌝p)∧(⌝q)D.p ∧q8.函数f(x)=333x xx --+的图象大致是9.已知F 1,F 2为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,点M 为E 右支上一点。
专题14 不等式选讲解答题30题 学生版--高考数学专题训练

专题14不等式选讲解答题30题1.(2022-2023学年高三上学期一轮复习联考(五)理科数学试题(全国卷))已知函数() 2 1f x x a x =-++,() 21g x x =-+.(1)当a =2时画出函数()f x 的图象,并求出其值域;(2)若()()f x g x ≥恒成立,求a 的取值范围.2.(陕西省榆林市2023届高三上学期一模文科数学试题)已知函数()23f x x a x =+-++.(1)当0a =时,求不等式()9f x ≥的解集;(2)若()2f x >,求a 的取值范围.3.(陕西省渭南市富平县2022-2023学年高三下学期期末文科数学试题)已知函数()|1||2|f x x x =++-的最小值为m .(1)求不等式()5f x ≤的解集;(2)若a ,b 都是正数且ab m =,求2a b +的最小值.4.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)已知a ,b 均为正数,且2226a b +=,证明:(1)2a b +≤(2)12a b +≥5.(河南省郑州市2023届高三第一次质量预测理科数学试题)已知()223f x x x =++-.(1)求不等式()5f x ≤的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c a c m++≥+++.6.(河南省洛平许济联考2022-2023学年高三上学期第一次质量检测理科数学试题)已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.7.(河南省部分名校2022-2023学年高三下学期学业质量联合检测理科数学试题)已知函数()12f x x x a =--+.(1)当12a =时,求不等式()0f x 的解集;(2)当1a -时,若函数()12g x x b =+的图象恒在()f x 图象的上方,证明:232b a ->.8.(河南省洛阳市第八高级中学2023届高三下学期开学摸底考试理科数学试题)已知函数()|||4|f x x a x =-++.(1)当2a =时,求不等式()8f x ≥的解集;(2)若()21>+f x a 恒成立,求a 的取值范围.9.(青海省西宁市大通回族土族自治县2022-2023学年高三下学期开学摸底考试数学(文)试题)已知函数()|2||22|(0,0)f x x a x b a b =++->>.(1)若2a =,2b =,求不等式()8f x >的解集;(2)若()f x 的最小值为1,求1123a b b++的最小值.10.(2023届甘肃省高考理科数学模拟试卷(四))已知函数()223f x x a x =-++,()12g x x =-+.(1)解不等式()5g x <.(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.11.(甘肃省兰州市第五十七中学2022-2023学年第一次模拟考试数学(文科)试题)已知函数()|21|,()||f x x g x x a=+=+(1)当0a =时,解不等式()()f x g x ≥;(2)若存在x ∈R ,使得()()f x g x ≤成立,求实数a 的取值范围.12.(安徽省江淮名校2022届高三下学期5月联考理科数学试题)已知函数()22212f x x m x m =-++-.(1)当3m =时,求不等式()10f x 的解集;(2)若()4f x 恒成立,求实数m 的取值范围.13.(河南省商开大联考2022-2023学年高三下学期考试文科数学试题)设函数()1f x x a x a =-+++.(1)当0a =时,求不等式()21f x x <+的解集;(2)若关于x 的不等式()2f x <有解,求实数a 的取值范围.14.(山西省太原市第五中学2022届高三下学期二模文科数学试题)(1)解不等式217x x -+-;(2)若正实数,a b 满足1a b +=,求2211a b b a +++的最小值.15.(山西省太原市2022届高三下学期模拟三理科数学试题)已知函数()2R f x x m m =+-∈,,且()0f x <的解集为[3,1]--.(1)求m 的值;(2)设a ,b ,c 为正数,且a b c m ++=,的最大值.16.(山西省吕梁市2022届高三三模理科数学试题)已知函数()22f x x a a x =---.(1)当1a =-时,求不等式()8f x <的解集;(2)当[]1,2x ∈时,()0f x ≥,求a 的取值范围.17.(内蒙古自治区包头市2022-2023学年高三上学期期末数学试题)已知()()4f x x m x x x m =-+--(1)当2m =时,求不等式()0f x ≥的解集;(2)若(),2x ∈-∞时,()0f x <,求m 的取值范围.18.(内蒙古自治区赤峰市2022-2023学年高三上学期10月月考数学文科试题)已知函数()|||2|f x x a x =++-,其中a 为实常数.(1)若函数()f x 的最小值为3,求a 的值;(2)若当[]1,2x ∈时,不等式()|4|f x x ≤-恒成立,求a 的取值范围.19.(内蒙古自治区呼和浩特市2023届高三上学期质量普查调研考试理科数学试题)已知m ≥0,函数()212f x x x m =--+的最大值为4,(1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.20.(宁夏石嘴山市第三中学2023届高三上学期期未考试数学(理)试题)已知函数f (x )=2|x +1|+|x -3|.(1)求不等式f (x )>10的解集;(2)若函数()()3g x f x x =+-的最小值为M ,正数a ,b ,c 满足a +b +c =M ,证明2228a b c c a b++≥.21.(河南省名校联盟2021-2022学年高三下学期2月大联考理科数学试卷)已知函数()1f x x =+.(1)求不等式()52f x x ≥--的解集;(2)记()1y f x x =+-的最小值为m ,若0a >,0b >,20a b m +-=,证明:189a b+≥.22.(新疆部分学校2023届高三下学期2月大联考(全国乙卷)数学(理)试题)已知函数()()22R f x ax x a =---∈.(1)当2a =时,求不等式()2f x >的解集;(2)若存在[]2,4x ∈,使得()0f x ≤,求a 的取值范围.23.(江西省部分学校2023届高三上学期1月联考数学(理)试题)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.24.(江西省赣州市2023届高三上学期1月期末考试数学(理)试题)已知函数()212f x x x =+++的最小值为m .(1)求m 的值;(2)设,,a b c 为正数,且a b c m ++=,求证:2222222a b c a b c c b a+++++≥.25.(2020届广西柳州市高三毕业班4月模拟(三模)文科数学试题)已知函数()11f x x x =-++.(1)求不等式()3f x <的解集;(2)若二次函数22y x x m =--+与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)已知函数()21,R f x x a a =-+∈,(1)当3a =时,求()f x 的最小值;(2)若对()0,6,R,m x ∀∈∀∈,不等式()f x >a 的取值范围.27.(贵州省贵阳市普通中学2023届高三上学期期末监测考试数学(文)试题)已知0,0a b >>,函数()|2||2|1f x x a x b =++-+的最小值为3.(1)求a b +的值;(2)求证:3221log 42b a ab ⎛⎫++≥- ⎪⎝⎭.28.(贵州省毕节市2023届高三年级诊断性考试(一)数学(文)试题)已知函数()2f x a x x =-++.(1)当1a =付,求不等式()4f x ≤的解集;(2)若()2f x a >-恒成立,求实数a 的取值范围.29.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.30.(广西柳州市、梧州市2023届高中毕业班2月大联考数学(文)试题)已知函数()|21||1|f x x ax =++-.(1)当2a =时,求不等式()3f x ≥的解集;(2)若0a >时,存在x ∈R ,使得()12a f x <+成立,求实数a 的取值范围.。
河南省洛阳市2015届高三上学期期中考试数学理试题 Word版含解析

2014-2015学年河南省洛阳市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2﹣2x<0},N={x||x|<1}则M∩N=()A.(﹣1,0)B.(0,1)C.(1,2)D.(0,2)考点:交集及其运算.专题:计算题.分析:根据题意,由一元二次不等式的解法可得集合M,由绝对值不等式的解法可得集合N,进而有交集的意义可得答案.解答:解:集合M={x|x2﹣2x<0}={x|0<x<2},N={x||x|<1}={x|﹣1<x<1},则M∩N={x|0<x<1}=(0,1),故选B.点评:本题考查集合的交集运算,关键是求出集合M、N.2.已知(1+)2=a+bi(a,b∈R,i为虚数单位),则a+b=A.﹣4 B.4C.﹣7 D.7考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数相等,求出a,b的值,然后利用复数的几何意义即可得到结论.解答:解:由(1+)2=a+bi得1+﹣4=a+bi,即﹣3﹣4i=a+bi,则a=﹣3,b=﹣4,解得a=1,b=2,则a+b=﹣3﹣4=﹣7,故选:C点评:本题主要考查复数的基本运算,利用复数相等求出a,b是解决本题的关键,比较基础.3.设等差数列{a n}的前n项和为S n,若a6=18﹣a7,则S12=()A.18 B.54 C.72 D.108考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式和前n项和公式求解.解答:解:∵等差数列{a n}的前n项和为S n,a6=18﹣a7,∴S12=(a1+a12)=6(a6+a7)=6×18=108.故选:D.点评:本题考查等差数列的前12项和的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知双曲线﹣=1的实轴长、虚轴长、焦距依次成等比数列,则其离心率为()A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由实轴长、虚轴长、焦距成等比数列可得b2=ac再结合b2=c2﹣a2可得c2﹣a2=ac即e2﹣e﹣1=0则可求出e解答:解:∵双曲线﹣=1的实轴长、虚轴长、焦距成等比数列∴(2b)2=(2a)•(2c)∴b2=ac又∵b2=c2﹣a2∴c2﹣a2=ac∴e2﹣e﹣1=0∴e=又在双曲线中e>1∴e=故选A.点评:此题主要考查了求双曲线的离心率.关键是要利用题中的条件建立a,b,c的关系式再结合c2=a2+b2和两边同除ab即得到关于e的方程求解即可,但要注意双曲线中e>1,椭圆中0<e<1这一隐含条件!5.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为()A.[0,]B.[,]C.[,]D.[,]考点:数量积表示两个向量的夹角.专题:计算题;数形结合.分析:利用CA是常数,判断出A的轨迹为圆,作出A的轨迹;数形结合求出两个向量的夹角范围.解答:解:||=,∴A点在以C为圆心,为半径的圆上,当OA与圆相切时对应的位置是OA 与OB所成的角最大和最小的位置OC与x轴所成的角为;与切线所成的为所以两个向量所成的最小值为;最大值为故选D点评:本题考查圆的定义、数形结合求两个向量的夹角范围.6.执行如图所示的程序框图,若输出的S是127,则条件①可以为()A.n≤5 B.n≤6 C.n≤7 D.n≤8考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加2n的值到S并输出S.解答:解:循环前,S=1,n=1第一次循环:S=1+2=3,n=1+1=2,继续循环;第二次循环:S=3+22=7,n=2+1=3,继续循环;第三次循环:S=7+23=15,n=3+1=4,继续循环;第四次循环:S=15+24=31,n=4+1=5,继续循环;第五次循环:S=31+25=63,n=5+1=6,继续循环;第六次循环:S=63+26=127,n=6+1=7,停止循环,输出S=127.故选B.点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7.已知p:≤2x≤,q:﹣≤x+≤﹣2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:首先对p,q两个命题进行整理,得到关于x的范围,把两个条件对应的范围进行比较,得到前者的范围小于后者的范围,即属于前者一定属于后者,但是属于后者不一定属于前者,得到结论.解答:解:p:≤2x≤,即为﹣2≤x≤﹣1,q:﹣≤x+≤﹣2,即为﹣2≤x≤﹣∴属于前者一定属于后者,但是属于后者不一定属于前者,∴前者是后者的充分不必要条件,故选:A点评:本题考查必要条件,充分条件与充要条件的判断,本题解题的关键是对于所给的条件进行整理,得到两个条件对应的集合的范围的大小,本题是一个基础题8.已知x、y都是区间[0,]内任取的一个实数,则使得y≤sinx的取值的概率是()A.B.C.D.考点:几何概型;定积分.专题:概率与统计.分析:根据几何概型的概率公式,结合积分的应用求出对应的面积即可得到结论.解答:解:此题为几何概型,事件A的度量为函数y=sinx的图象在内与x轴围成的图形的面积,即,则事件A的概率为,故选A点评:本题主要考查几何概型的概率计算以及利用积分求面积,要求熟练掌握几何概型的求解方法.9.的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40考点:二项式系数的性质.专题:计算题.分析:给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.解答:解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和∵展开式的通项为T r+1=(﹣1)r25﹣r C5r x5﹣2r令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D点评:本题考查求系数和问题常用赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.10.若f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),且f()=﹣1则实数m的值等于()A.±1 B.﹣3或1 C.±3 D.﹣1或3考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过f(t+)=f(﹣t),判断函数的对称轴,就是函数取得最值的x值,结合f()=﹣1,即可求出m的值.解答:解:因为f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),所以函数的对称轴是x=,就是函数取得最值,又f()=﹣1,所以﹣1=±2+m,所以m=1或﹣3.故选B.点评:本题是基础题,考查三角函数的对称轴的应用,不求解析式,直接判断字母的值的方法,考查学生灵活解答问题的能力.11.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF 的面积为()A.B.C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,求出A的坐标,再计算△AOF的面积.解答:解:抛物线y2=4x的准线l:x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.点评:本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.12.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2015,则不等式e x f(x)>e x+2014(其中e为自然对数的底数)的解集为()A.(2014,+∞)B.(﹣∞,0)∪(2014,+∞)C.(﹣∞,0)∪(0,+∞)D.(0,+∞)考点:函数单调性的性质.专题:导数的综合应用.分析:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值即可求解.解答:解:设g(x)=e x f(x)﹣e x,(x∈R),则g(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+2014,∴g(x)>2014,又∵g(0)=e0f(0)﹣e0=2015﹣1=2014,∴g(x)>g(0),∴x>0故选:D.点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.二、填空题(每小题5分,共20分)13.若等比数列{a n}满足a2+a4=20,a3+a5=40.则a5+a7=160.考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:设出等比数列的首项和公比,由已知列方程组求出首项和公比,即可求出a5+a7.解答:解:设等比数列的公比为q,∵a2+a4=20,a3+a5=40,∴a1q+a1q3=20,a1q2+a1q4=40,解得a1=q=2∴a n=a1q n﹣1=2n,∴a5+a7=160,故答案为:160.点评:本题考查的知识点是等比数列的前n项和,等比数列的通项公式,其中根据已知构造关于首项和公比的方程组,是解答的关键.14.(2014•嘉定区三模)若实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m=5.考点:简单线性规划.专题:计算题.分析:画出不等式组表示的平面区域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数m的方程组,消参后即可得到m的取值解答:解:画出x,y满足的可行域如下图:可得直线y=2x﹣1与直线x+y=m的交点使目标函数z=x﹣y取得最小值,由可得,代入x﹣y=﹣1得∴m=5故答案为:5点评:如果约束条件中含有参数,先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体的体积为.考点:由三视图求面积、体积.专题:计算题.分析:三视图复原的几何体是四棱锥,利用几何体的数据求解几何体的体积即可.解答:解:由题意可知三视图复原的几何体是底面为边长为2的正方形,一条侧棱垂直底面正方形的顶点的四棱锥,并且棱锥的高为2,所以几何体的体积为:=.故答案为:.点评:本题考查三视图与几何体的直观图的关系,考查空间想象能力与计算能力.16.函数f(x)=的最大值与最小值之积等于﹣.考点:函数的最值及其几何意义.专题:计算题;不等式的解法及应用.分析:分类讨论,利用基本不等式,求出函数f(x)=的最大值与最小值,即可得出结论.解答:解:f(x)==,x=0时,f(0)=0,x≠0时,f(x)=,x>0时,x+≥2,∴0<f(x)≤,x<0时,x+≤﹣2,∴﹣≤f(x)<0,综上,∴﹣≤f(x)≤,∴函数f(x)=的最大值与最小值之积等于﹣.故答案为:﹣.点评:本题考查函数的最值及其几何意义,考查基本不等式,考查学生分析解决问题的能力,属于中档题.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且∠A满足:2cos2A﹣2sinAcosA=﹣1.(Ⅰ)若a=2,c=2,求△ABC的面积;(Ⅱ)求的值.考点:余弦定理;三角函数中的恒等变换应用;正弦定理.专题:三角函数的求值.分析:(Ⅰ)已知等式左边利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式变形,利用特殊角的三角函数值求出A的度数,进而得到sinA的值,再由a 与c的值,利用三角形面积公式即可求出三角形ABC面积;(Ⅱ)原式分子分母利用正弦定理变形,再利用两角和与差的余弦函数公式化简,约分即可得到结果.解答:解:(Ⅰ)∵2cos2A﹣2sinAcosA=﹣1,∴1+cos2A﹣sin2A=1﹣2(sin2A﹣cos2A)=1﹣2sin(2A﹣)=﹣1,即sin(2A﹣)=1,∵A为三角形内角,即0<A<π,∴2A﹣∈(﹣,),∴2A﹣=,即A=,在△ABC中,由余弦定理得:cosA===,解得:b=4或b=﹣2(舍去),∴S△ABC=bcsinA=×4×2×=2;(Ⅱ)已知等式,利用正弦定理===2R,变形得:=====2.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.18.(12分)某旅行社为3个旅游团提供甲、乙、丙、丁共4条旅游线路,每个旅游团任选其中一条.(1)求恰有2条线路没有被选择的概率;(2)设选择甲旅行线路的旅游团数为ξ,求ξ的分布列和数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)利用等可能事件概率计算公式能求出恰有两条线路没有被选择的概率.(Ⅱ)设选择甲线路旅游团数为ξ,则ξ=0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.解答:(Ⅰ)恰有两条线路没有被选择的概率为:P==.(Ⅱ)设选择甲线路旅游团数为ξ,则ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.∴ξ的分布列为:ξ0 1 2 3P∴期望Eξ=0×+1×+2×+3×=.点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.19.(12分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.考点:与二面角有关的立体几何综合题;异面直线及其所成的角.专题:空间位置关系与距离.分析:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.解答:解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.点评:本题考查两条异面直线所成角的余弦值的求法,考查平面与平面所成角的正弦值的求法,解题时要注意向量法的合理运用.20.(12分)椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用两点间的距离公式可得c,再利用椭圆的标准方程及其性质即可得出a,b;(Ⅱ)把直线l的方程与椭圆的方程联立可得根与系数的关系,再利用以AB为直径的圆过椭圆的右顶点D,可得k AD•k BD=﹣1,即可得出m与k的关系,从而得出答案.解答:解:(Ⅰ)∵左焦点(﹣c,0)到点P(2,1)的距离为,∴,解得c=1.又,解得a=2,∴b2=a2﹣c2=3.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),由得(3+4k2)x2+8mkx+4(m2﹣3)=0,△=64m2k2﹣16(3+4k2)(m2﹣3)>0,化为3+4k2>m2.∴,.y1y2=(kx1+m)(kx2+m)==.∵以AB为直径的圆过椭圆的右顶点D(2,0),k AD•k BD=﹣1,∴,∴y1y2+x1x2﹣2(x1+x2)+4=0,∴.化为7m2+16mk+4k2=0,解得m1=﹣2k,.,且满足3+4k2﹣m2>0.当m=﹣2k时,l:y=k(x﹣2),直线过定点(2,0)与已知矛盾;当m=﹣时,l:y=k,直线过定点.综上可知,直线l过定点,定点坐标为.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、圆的性质、两点间的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.21.(12分)已知函数f(x)=x2﹣ex3+e x(x﹣1)(其中e为自然对数的底数),记f(x)的导函数为f′(x).(1)求函数y=f(x)的单调区间;(2)求证:当x>0时,不等式f′(x)≥1+lnx恒成立.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用导数判断函数的单调性,求出单调区间;(2)当x>0时,令h(x)=1+lnx+ex2﹣x﹣e x x,求出导数h′(x),当x=1时,h′(x)=0,由(1)得,e x﹣ex≥0,讨论当x>1时,当0<x<1时,导数的符号,从而得到h(x)的最大值,即可得证.解答:(1)解:)∵f(x)=x2﹣ex3+e x(x﹣1),∴f′(x)=﹣ex2+x+e x(x﹣1)+e x=x(e x+1﹣ex),令y=e x+1﹣ex,则y′=ex﹣e,y′>0,得x>1,y′<0,得x<1,则x=1取极小,也是最小,则y≥1.即e x+1﹣ex>0恒成立,则g′(x)>0得x>0;g′(x)<0得x<0.故g(x)的增区间为(0,+∞),减区间为(﹣∞,0).(2)证明:当x>0时,1+lnx﹣f′(x)=1+lnx+ex2﹣x﹣e x x,令h(x)=1+lnx+ex2﹣x﹣e x x,h′(x)=+2ex﹣1﹣e x x﹣e x,当x=1时,h′(x)=0,由(1)得,e x﹣ex≥0,当x>1时,h′(x)<0,当0<x<1时,h′(x)>0,故x=1为极大值,也为最大值,且为h(1)=0.故当x>0时,h(x)≤h(1),即有h(x)≤0,故当x>0时,1+lnx﹣f′(x)≤0,即f′(x)≥1+lnx.点评:本题考查导数的应用:求单调区间、求极值,求最值,考查构造函数证明不等式恒成立问题,转化为求函数的最值问题,应用导数求解,本题属于中档题.下面的三个选作题,考生选择一个题作答【选修4—1】几何证明选讲22.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)证明:AE是⊙O的切线;(2)如果AB=2,AE=,求CD.考点:与圆有关的比例线段.专题:几何证明.分析:(1)首先通过连接半径,进一步证明∠DAE+∠OAD=90°,得到结论.(2)利用第一步的结论,找到△ADE∽△BDA的条件,进一步利用勾股定理求的结果解答:(1)证明:连结OA,在△ADE中,AE⊥CD于点E,∴∠DAE+∠ADE=90°∵DA平分∠BDC.∴∠ADE=∠BDA∵OA=OD∴∠BDA=∠OAD∴∠OAD=∠ADE∴∠DAE+∠OAD=90°即:AE是⊙O的切线(2)在△ADE和△BDA中,∵BD是⊙O的直径∴∠BAD=90°由(1)得:∠DAE=∠ABD又∵∠BAD=∠AED∵AB=2求得:BD=4,AD=2∴∠BDA=∠ADE=∠BDC=60°进一步求得:CD=2故答案为:(1)略(2)CD=2点评:本题考查的知识点:证明切线的方法:连半径,证垂直.三角形相似的判定,勾股定理的应用.【选修4—4】坐标系参数方程23.已知直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半径为极轴)中,曲线C的极坐标方程为ρ=4cosθ.(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;(2)设直线l与曲线C交于P、Q两点,求|PQ|.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:选作题;坐标系和参数方程.分析:(1)消去参数,可得直线l的普通方程,圆ρ=4cosθ,等式两边同时乘以ρ,可得曲线C的方程化为直角坐标系下的普通方程;(2)求出圆心和半径,再求出圆心到直线的距离,即可求|PQ|.解答:解:(1)直线l的参数方程为(t为参数),普通方程为y=x+2﹣2;圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x﹣2)2+y2=4;(2)x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.圆心到直线的距离为=1,∴|PQ|=2=2.点评:本题考查参数方程化成普通方程、极坐标方程化为直角坐标方程,考查直线与圆的位置关系,比较基础.【选修4—5】不等式选讲24.设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.考点:二维形式的柯西不等式;绝对值不等式.专题:不等式的解法及应用.分析:(Ⅰ)根据函数f(x)=+=•+≤•=3,求得实数M的值.(Ⅱ)关于x的不等式即|x﹣1|+|x+2|≤3,由绝对值三角不等式可得|x﹣1|+|x+2|≥3,可得|x﹣1|+|x+2|=3.根据绝对值的意义可得x的范围.解答:解:(Ⅰ)函数f(x)=+=•+≤•=3,当且仅当=,即x=4时,取等号,故实数M=3.(Ⅱ)关于x的不等式|x﹣1|+|x+2|≤M,即|x﹣1|+|x+2|≤3.由绝对值三角不等式可得|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,∴|x﹣1|+|x+2|=3.根据绝对值的意义可得,当且仅当﹣2≤x≤1时,|x﹣1|+|x+2|=3,故不等式的解集为[﹣2,1].点评:本题主要考查二维形式的柯西不等式的应用,绝对值的意义,绝对值三角不等式,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳市2019—2020学年高中三年级上学期期中考试
数学试卷(理)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.
第Ⅰ卷(选择题,共60分)
注意事项:
1.答卷前,考生务必将自己的姓名、考号填写在答题卡上.
2.考试结束,将答题卡交回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.已知i为虚数单位,复数z满足iz=1+2i,则|z|等于
A
.
5
B
C.1 D.3
2.已知集合A={x|log3(x-2)≤2},B={x|2x-m>0},若A⊆B,则实数m的取值范围是
A.(-∞,4] B.(-∞,4)
C.(-∞,22) D.(-∞,22]
3.已知实数x,y满足
1
3
41
y x
x y
y
⎧
⎪
⎨
⎪
⎩
-≤,
+≤,
≥.
则x+3y的最大值为
A.0 B.3 C.4 D.7
4.执行右面的程序框图,若输出的S=1
4
,则输入的n值为
A.1 B.2 C.3 D.4
5.已知
3
5
a=,
02
log01
b
.
=.,
3
log2
c=,则a,b,c的大小关系是
A.a<c<b B.c<a<b C.c<b<a D.b<c<a
6.在棱长为2的正方体ABCD-A1B1C1D1中,点P,Q,R分别为棱AA1,BC,C1D1的中点,经过P,Q,R三点的平面为α,平面α被此正方体所截得截面图形的面积为
A
.
.
7.已知偶函数f(x)的图象关于(1,0)对称,且当x∈(0,1)时,f(x)=x2,则x ∈(9,10)时,f(x)=
A.x2 B.-x2 C.(x-8)2 D.-(10-x)2
8.已知p:函数y=ln(x2-ax+1)的定义域为R,q:e x>ax对任意实数x恒成立,若p∧q真,则实数a的取值范围是
A.[0,2) B.[2,e) C.(-2,e) D.[0,e)
9.双曲线C 的对称轴与坐标轴重合,两个焦点分别为F 1,F 2,虚轴的一个端点为A ,若
△AF 1F 2是顶角为120°的等腰三角形,则双曲线C 的渐近线方程为 A
.y ±
= B
.y ±=
或2
y x ±
= C
.y x ±
= D
.y x =
或y x ±= 10.已知函数()(]2
01lg (1)x x x f x x x ⎧⎪⎨⎪⎩-+,∈,,
=,∈+∞,
若f (x )=a 有三个不等实数根x 1,x 2,x 3,则
x 1+x 2+x 3的取值范围是
A .(2,+∞)
B .[2,+∞)
C .(2
,1 D .[2
,111.已知数列{n a }满足11a =
,22a =,2
221cos sin 2
2n n
n n a a ππ⎛
⎫ ⎪⎝
⎭
+=++,n N *∈则2019a ·22020log a 的值为
A .0
B .1
C .10102
D .10101010
12.菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥
D -ABC 体积最大时,其外接球表面积为
A
B
C .209π
D .203
π 第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.已知平面向量a ,b 满足a ·b =2,|b |=1,|a -2b |=2,则|a |=__________.
14.已知数列{n a }的通项公式为631
317
n n a n -=
-,若i a ,j a 分别是该数列的最大项和最小项,
则i +j =__________.
15.已知函数f (x )=sinx +2cosx ,在x 0处取得最小值,则f (x )的最小值为__________,
此时cosx 0=__________. 16.已知点P 是曲线2
14
x y =
上任意一点,过点P 向y 轴引垂线,垂足为H ,点Q 是曲线 y =e x
上任意一点,则|PH |+|PQ |的最小值为__________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)
设数列{n a }的前n 项和为n S ,且n S =21n
-,
数列{n b }满足1b =2,1n b +-2n b =8n a . (1)求数列{n a }的通项公式;
(2)求数列{n b }的前n 项和n T . 18.(本小题满分12分)
在△ABC 中,D 是BC 中点,AB =3,AC AD . (1)求边BC 的长;
(2)求△ABD 内切圆半径. 19.(本小题满分12分)
如图,在三棱锥P -ABC 中,△PAC 为正三角形,M 为棱PA 的中点,AB ⊥AC ,AC =1
2
BC ,平面PAB ⊥平面PAC .
(1)求证:AB ⊥平面PAC ;
(2)若Q 是棱AB 上一点,1
4
Q BMC P ABC V V --=,求二面角
Q -MC -A 的大小. 20.(本小题满分12分)
已知椭圆C :22221x y a b
+=(a >b >0P (2,2).
(1)求椭圆C 的方程;
(2)过点Q (1,-1)的直线与椭圆C 相交于M ,N 两点(与点P 不重合),试判断点P
与以MN 为直径的圆的位置关系,并说明理由. 21.(本小题满分12分)
已知函数f (x )=e x
-cosx -2x . (1)求f (x )在点(0,f (0))处的切线方程; (2)求证:f (x )在(-2
,+∞)上仅有2个零点.
请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑. 22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系xOy 中,直线l
的参数方程为11x t y ⎧⎪⎨⎪⎩=+,
=(t 为参数).以坐标原点
为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2
2cos 30ρρθ--=. (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若直线l 与曲线C 交于A ,B 两点,设M (1,1),求
11
MA MB
+的值.
23.[选修4-5:不等式选讲](10分) 已知函数f (x )=|x -3|-2|x |. (1)求不等式f (x )≥2的解集;
(2)若f (x )的最大值为m ,a ,b ,c 为正数且a +b +c =m ,求证:a 2+b 2+c 2
≥3.。