Chapter讲义 1 绪论及晶体结构

合集下载

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:

《晶体结构与性质》 讲义

《晶体结构与性质》 讲义

《晶体结构与性质》讲义一、晶体的定义和基本特征在我们生活的世界中,存在着各种各样的物质,而其中一部分物质以一种特殊的、有序的方式排列,形成了晶体。

那什么是晶体呢?晶体是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。

晶体具有一些独特的基本特征。

首先,晶体具有规则的几何外形。

这是因为其内部的粒子排列具有高度的规律性。

比如我们常见的氯化钠晶体(食盐),呈现出立方体的形状。

其次,晶体具有固定的熔点。

当对晶体加热时,温度升高到一定程度,晶体开始熔化,这个温度就是熔点,且在熔化过程中温度保持不变。

此外,晶体还具有各向异性,这意味着在不同的方向上,晶体的物理性质,如导电性、导热性等可能会有所不同。

二、晶体的结构类型晶体的结构类型多种多样,常见的有离子晶体、原子晶体、分子晶体和金属晶体。

离子晶体是由阴、阳离子通过离子键结合而成的晶体。

典型的离子晶体如氯化钠,钠离子和氯离子交替排列,形成一个紧密的结构。

离子晶体的特点是硬度较大、熔点较高、熔融状态下能导电。

原子晶体中,原子之间通过共价键结合形成空间网状结构。

金刚石就是一种典型的原子晶体,其中每个碳原子都与周围的四个碳原子以共价键相连,形成一个坚固的三维结构。

原子晶体具有硬度高、熔点高的特点。

分子晶体是由分子通过分子间作用力(范德华力或氢键)结合而成的晶体。

干冰(固态二氧化碳)就是分子晶体,二氧化碳分子之间的作用力相对较弱,所以分子晶体通常熔点较低、硬度较小。

金属晶体则是由金属阳离子和自由电子通过金属键结合而成的。

金属具有良好的导电性、导热性和延展性,这都与其特殊的金属晶体结构有关。

三、晶体结构的微观分析要深入理解晶体的性质,我们需要从微观角度来分析晶体的结构。

在离子晶体中,离子的半径和电荷对晶体的性质有着重要影响。

离子半径越小、电荷越高,离子键越强,晶体的熔点和硬度就越高。

对于原子晶体,共价键的键能和键长决定了晶体的稳定性和物理性质。

键能越大、键长越短,原子晶体越稳定,熔点和硬度也越高。

第一章-晶体结构-《固体物理学》黄昆-韩汝琦PPT课件

第一章-晶体结构-《固体物理学》黄昆-韩汝琦PPT课件

属 导 体 学介 晶 体 导 态 态 体关
物体物
质 物 发 体 电 光 光联
理物理
物 理 光 物 子 电 谱物


理学 子


表介纳
面观米
物物物
理理理
01_00_绪论 —— 固体物理_黄昆
四 固体物理的研究方法
固体物理是一门实验性学科 —— 为阐明固体表现出的现 象与内在本质的联系,建立和发展关于固体的微观理论
01_00_绪论 —— 固体物理_黄昆
Crystal Structure of YBaCuO
01_00_绪论 —— 固体物理_黄昆
Shape of Snow Crystal
01_00_绪论 —— 固体物理_黄昆
05 /16
Be2O3 Crystal and Glass of Be2O3
01_00_绪论 —— 固体物理_黄昆
2. 金属的研究 —— 抽象出电子公有化的概念,再用单电 子近似的方法建立能带理论
3. 物质的铁磁性 —— 研究了电子与声子的相互作用,阐 明低温磁化强度随温度变化的规律
4. 超导的理论 —— 研究电子和声子的相互作用,形成库 柏电子对,库柏对的凝聚表现为超导电相变
01_00_绪论 —— 固体物理_黄昆
—— 十九世纪中叶,布拉伐发展了空间点阵学说 概括了晶格周期性的特征
01_00_绪论 ——立了经典金属自由电子 论,对固体认识进入一个新的阶段
—— 描述晶体比热___杜隆-珀替定律 描述金属导热和导电性质的魏德曼-佛兰兹定律
—— 十九世纪末叶,费多洛夫,熊夫利、巴罗等独立地发 展了关于晶体微观几何结构的理论体系,为进一步研 究晶体结构的规律提供了理论依据

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体

第一章 晶体的结构 3.20

第一章 晶体的结构 3.20
*如果沿晶向方向的最短格矢为
R l1 a1 l 2 a 2 l 3 a 3
该晶向可记为[l1 l2 l3]。
例如,图中OA晶列的晶向
指数为[311],如果l1 =1, l2= -2, l3 =1, 则晶向表示为 1 2 1 。

(1) 通过一格点可以有无限多个晶列,其中每一晶列 都有一族平行的晶列与之对应; (2) 平行晶列组成晶列族,晶列族包所有的格点; (3) 晶列上格点分布是周期性的; (4) 晶列族中的每一晶列上,格点分布都是相同的; (5) 在同一平面内,相邻晶列间的距离相等。
• 晶面指数(密勒指数)
*设某一晶面在基矢a1、a2、a3方向的截距为ra1、 sa2、ta3 ,交点为A1、 A2、A3,将系数r、s、t的 倒数简约成互质的整数h1 、h2、h3 ,即
1 1 1 : : h1 : h2 : h3 r s t
则该晶面族的晶面指数,
O
A3
n
N
a3
d
a2
A2 A1
1.2 对称性和布拉菲格子的分类
1.2.1 点群 1.2.2 7个晶系 1.2.3 空间群和14个布拉菲格子 1.2.4 单胞或惯用单胞 1.2.5 二维情形 1.2.6 点群对称性和晶体的物理性质
* 所有的格点周围环境相同,在几何上是完全等价的, 常以此判断某一个点阵是否为布拉菲格子
* 布拉菲格子是一个无限延展的理想点阵。平移任一格
矢Rl ,晶格保持不变,是实际晶体的一个理想的抽象 * 任何一个格矢可由另外两个格矢的和来表示 R l = Rm+ Rn
6. 简单格子:每个基元中只有一个原子或离子的晶 体结构,即布拉菲格子,如多种金属。
rj x j a1 y j a2 z j a3

第一章晶体结构

第一章晶体结构
特点:无固定熔点,各向同性
准晶体
准晶体:1984 年Shechtman等人用快速冷却方法制备的 AlMn准晶体。用XRD测得一种介于晶体和非晶体结构之 间的物质结构。
准晶体:介于晶体与非晶体之间,原子呈定向有序排 列,但不做周期性平移重复。具有局域五重对称轴!
第一章 晶体结构和衍射
§1-1 一些晶格的实例 §1-2晶体的周期性 §1-3晶面、晶向和它们的标志 §1-4倒格子 §1-5晶体的宏观对称性 §1-6点群 §1-7晶格的对称性 §1-8晶体结构的实验确定
一、简单立方晶格(simple cubic - sc)
正方排列 原子层A
简单立方晶格典型单元
简单立 方晶格
AAA…




a
a 2r0
一、简单立方晶格(sc)
堆积方式:最简单的原子球规则排列形式, 但没有 实际的晶体具有此种结构.
配位数:每个原子的上下左右前后各有一个最近邻原 子 — 配位数为6
绪论
一. 固体物理学的研究对象
固体物理研究固体及其组成粒子(原子、离子、电子) 之间相互作用与运动规律以阐明其性能与用途的学科。
物质: 粒子组成的物质、场
形态: 气体、液体、固体 (等离子体)
固体的结构:固体材料由大量原子(离子或分子) 按一定方式排列的结构
固体材料分类: 晶体 非晶体
单晶体(人工半导体单晶、天然宝石等) 多晶体(金属、天然岩盐等) 玻璃、橡胶、塑料等
C60晶体的典型单元(晶胞)
晶体基元是一个包含60个碳原子 的巴基球(buckyball)也称富勒 球(Fullereneball)
准晶体
AlFeV, AlMn, AlFeCu
结构

固体物理第一章 晶体结构


//
H c//2 H c2
§1.2 配位数和密堆积
原子在晶体中的平衡位置,排列应该采取尽可能的 紧密方式,相应于结合能最低的位置,见下章 把原子看成一个个小球,看这些小球如何堆积, 不同的堆积方式,可以得到不同的晶体结构。
六角密积结构
CeCl型结构
NaCl型结构
四面体结构
层状结构
例1:一维布喇菲格子
a
习惯上的选择
原胞,即最小重复单元,为一个 原子加上原子周围长度为a的区域
两种选择
例2:二维布喇菲格子
原胞,由相邻的四个原子构成的 面积最小的平行四边形
基矢
原胞的边矢量 基矢
a ai
例1:一维布喇菲格子
例2:二维布喇菲格子
基矢
a1
a2
(1)
a1 ai
整个金刚石晶格可以看成是由沿体对 角线相互位移四分之一对角线长度的 两个面心立方晶格套构而成。
§1.5 晶格周期性的描述
1、晶格周期性的描述原胞和基矢 晶格的共同特点是具有周期性,可 以用原胞和基矢来描述这一周期性 原胞 一个晶格中最小的重复单元 一维长度最短、二维面积最小、
三维体积最小的重复单元
面心立方
金刚石
整个金刚石晶格可以看成是由沿体对 角线相互位移四分之一对角线长度的 两个面心立方晶格套构而成。
重要的半导体材料,如Ge、Si等, 都有四个价电子,其晶体结构和 金刚石相同
由碳原子共价键的取向分析可知,在面 心和顶角处的碳原子与体内的4个碳原子 是不等价的。
A类碳原子的共价键方向
B类碳原子的共价键方向
Rl 2a1 3a2
对于复式格子,任一原子A的位置可由下列格矢表示

第一章 晶体的结构

第一章晶体的结构固体材料是由大量的原子(离子或分子)组成的(1cm3体积中大约有1023个原子),这些原子在空间的排列方式称为固体的结构。

根据组成粒子在空间排列的有序度和对称性,固体可以分为晶体、准晶体和非晶体三类。

晶体的结构特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性;准晶体的原子排列也呈现出有序结构,但是没有周期性,即不具有平移对称性;非晶体的原子排列由于近邻原子之间的相互作用,具有一定的短程有序性,但总体上没有规则,属无序结构。

本章首先简单回顾晶体的共性;然后,从晶格的周期性出发,阐述晶体中原子排列的几何规则性。

§1.1 晶体的共性人们最早认识晶体是从观察外部形态开始的。

把具有天然的而不是经人工加工的规律的几何外形的固体称为晶体。

如:石英,锆石英,食盐等,但许多物质,虽然不具有明显的规则多面体外形,却具有晶体性质,也就是说,这种规则的多面体并不能反映晶体的实质,它只是晶体内部某种本质因素的规律性在外表上的一种反映,直到上世纪初,1912年劳厄(德国物理学家)第一次成功茯得晶体对X射线的衍射线的图案,才使研究深入到晶体的内部结构,才从本质上认识了晶体,证实了晶体内部质点空间是按一定方式有规律地周期性排列的。

所以,定义内部质点在三维空间呈周期性重复排列的固体为晶体。

一种晶体的物理性质与组成晶体的元素有关,不同原子构成的晶体,其性质有很大的差别。

有的是良好的导电体,如Al、Cu等;有的则是优良的绝缘体,如Al2O3等。

即使是同种原子构成的晶体,如果结构不同,其性质会有很大的不同,比如金刚石与石英。

不同的晶体除了具有各自的特性外,还具有一些共同的性质。

一、长程有序晶体最突出的特点是长程有序。

晶体中的原子都是按一定规则排列的,这种至少在微米量级范围的有序排列,称为晶体的长程有序。

晶体可以分为单晶体和多晶体,多晶体是有许多单晶体构成的。

对于单晶体,在整体范围内原子排列都是规则的。

结晶学第一二章


面心正交F
体心正交I
31
(4)单斜晶系,点阵常数:a≠b≠c, α=γ=90°≠β
简单单斜P
底心单斜C
c b
a
单斜:B=P, F=I=A=C
c b
a
32
(4)单斜晶系,点阵常数:a≠b≠c, α=γ=90°≠β
无 底心单斜B(=简单单斜P)
33
(4)单斜晶系,点阵常数:a≠b≠c, α=γ=90°≠1
3. 晶体结构可以有无限多种
简单三方R 无 体心三方=简三方 无 面心三方=简三方
无 底心三方 因为它破坏了三 方晶系的特征对 称元素——3次 轴的对称性。
37
(7)六方晶系,点阵常数:a=b≠c, α=β=90°, γ =120 °
简单六方P
无 体心六方,面心六方,底心六方 因为加心后破坏6重对称性。
38
第一节 晶体点阵理论 1.3点阵和晶体结构的关系
27
(1)立方晶系,点阵常数:a=b=c, α=β=γ=90°
无 底心立方A(或B,或C)
因为它不存在立方晶系的特征对称元素——4个3次轴。 或说,因为在一个面上有心,必然破坏4个3次轴的对称性。
28
(2)四方晶系,点阵常数:a=b≠c, α=β=γ=90°
简单四方P
体心四方I
无 底心四方C(=简四方P)
直的2重对称轴
a≠b≠c α=β=γ=90°
单斜晶系 2重对称轴或对称面
a≠b≠c α=γ=90°≠β
三斜晶系

a≠b≠c a≠b≠c≠90°
空间点阵型式 简单正交 C心正交 体心正交 面心正交 简单单斜 C心单斜
简单单斜
26
(1)立方晶系,点阵常数:a=b=c, α=β=γ=90°

第一章 金属的晶体结构(共118张PPT)

第一章 金属的晶体结构
重点: 1. 晶体与非晶体的概念 2. 金属典型晶体结构 3. 晶向指数与晶面指数
4. 晶体缺陷
§1-1 金属
什么是金属? 传统定义:金属是具有良好的导电性、导热
性、延展性和金属光泽的物质。 严格定义:金属是具有正的电阻温度系数的
物质。
合金定义:一种金属元素与另一种或几种其它元 素,经熔炼或其它方法结合而成的具有金属特性的
z
c
γβ
O

b
y
x
标定步骤
(1) 以晶胞为根底建立坐标体系 (2) 找出晶向上的任意两个点的坐标
(3) 用晶向末端点坐标减去起始点的坐标得到三个坐 标值
(4) 三个坐标值最小整数化,[u v w]
A方向:
(1) 两个坐标点〔0,0,0〕和〔1,1,0〕
(2) 〔1,1,0〕-〔0,0,0〕=1,1,0 (3) 不需整数化
物质
一、金属原子结构的特点
典型金属原子结构的特点是原子结构中 最外层电子数较少,极易失去电子而形 成正离子状态;非金属原子那么最外层 电子数较多,易于取得电子而形成负离 子。故金属为正电性原子,非金属为负 电性原子。
由于金属键既无饱和性又无方向性,因 而每个原子有可能同更多的原子相结合 ,并趋于形成低能量的密堆结构。
(100),(010),(001) —— 以上六面两两平行
(100),(010),(001)
实质只有三个面
立方晶系中的 {111}晶面族
(111), (111), (111), (111) (111), (111), (111), (111) —— 以上八面两两平行,故实质只有四个面
试写出{110}晶面族中所有晶面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档