中考经典平行四边形及特殊平行四边形试题

合集下载

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

中考数学复习《特殊的平行四边形》专题练习(含答案)

中考数学复习《特殊的平行四边形》专题练习(含答案)
30. (2018·江西)在正方形 中, ,连接 是正方形边上或对角线上一点.若 ,则 的长为.
三、解答题
31. (2018·湘西州)如图,在矩形 中, 是 的中点,连接 .
(1)求证: ;
(2)若 ,求 的周长.
32. (2018连云港)如图,在矩形 中, 是 的中点,延长 交于点 ,连接 .
(1)求证:四边形 是平行四边形;
A. B. C. D.
二、填空题
13. (2018·株洲)如图,矩形 的对角线 与 相交点 , 分别为 的中点,则 的长度为.
14.(2018·成都)如图,在矩形 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 .若 ,则矩形的对角线 的长为.
38. (2018·乌鲁木齐)如图,在四边形 中, , 是 的中点, , , 于点 .
(1)求证:四边形 是菱形;
(2)若 ,求 的长.
39. (2018·广安)如图,四边形 是正方形, 为 上一点,连接 ,延长 至点 ,使得 ,过点 作 ,垂足为 ,求证: .
40. (2018·盐城)如图,在正方形 中,对角线 所在的直线上有两点 满足 ,连接 .
(2)在(1)的条件下,连接 ,求 的度数.
36.(2018·娄底)如图,在四边形 中,对角线 相交于点 ,且
,过点 作 ,分别交 于点 .
(1)求证: ;
(2)判断四边形 的形状,并说明理由.
37. (2018·南京)如图,在四边形 中, , . 是四边形 内一点,且 .求证:
(1) ;
(2)四边形 是菱形.
9. (2018·宿迁)如图,菱形 的对角线 相交于点 , 为边 的中点.若菱

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。

平行四边形 矩形 菱形 正方形 中考题(分类精选)

平行四边形 矩形 菱形 正方形 中考题(分类精选)

(一)平行四边形(中考精选题)1.如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF 与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.2. 如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF = BC.求证:DF = AE;AB C DEF3.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求DG和AG的长.(二)矩形(中考精选题)1.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.2.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长。

3.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.求矩形AB的长度。

图34.如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=46,求FD 的长为A B C DE G5.如图,四边形ABCD 的对角线AC 、BD 交于点O ,已知O 是AC 的中点,AE=CF ,DF ∥BE .(1)求证:△BOE ≌△DOF ;(2)若OD=AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.F(三)菱形(中考精选题)1.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO .若∠DAC=28°,求∠OBC 的度数。

2.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,(1) 求证:四边形AECF 是平行四边形。

全国中考数学平行四边形的综合中考真题汇总附答案

全国中考数学平行四边形的综合中考真题汇总附答案

∠ B,∠ D 都不是直角,则当∠ B 与∠ D 满足等量关系
时,仍有 EF=BE+DF;
(3)联想拓展
如图 3,在△ ABC 中,∠ BAC=90°,AB=AC,点 D、E 均在边 BC 上,且∠ DAE=45°,猜想 BD、DE、EC
满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出 △ AFG≌ △ AFE,根据全等三角形的性质得出 EF=FG,即可得出答案; (2)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出△ AFE≌ △ AFG, 根据全等三角形的性质得出 EF=FG,即可得出答案;
BCFD=3× 3
3=9
3
,S△
ACF=
1 2
×3× 3
3 = 9 3 ,S = 平行四边形 ADBC 27 3 .
2
2
【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直
角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考
题型.
2.如图所示,矩形 ABCD 中,点 E 在 CB 的延长线上,使 CE=AC,连接 AE,点 F 是 AE 的 中点,连接 BF、DF,求证:BF⊥DF.
∠ BAD=60°,∴ ∠ BAD=∠ ABC=60°,∵ E 为 AB 的中点,∴ AE=BE,又∵ ∠ AEF=∠ BEC,
∴ △ AEF≌ △ BEC,在△ ABC 中,∠ ACB=90°,E 为 AB 的中点,∴ CE= 1 AB,BE= 1 AB,

中考数学总复习《平行四边形与特殊的平行四边形》专题训练(附带答案)

中考数学总复习《平行四边形与特殊的平行四边形》专题训练(附带答案)

中考数学总复习《平行四边形与特殊的平行四边形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是正方形C.平行四边形的对角线平分一组对角D.矩形的对角线相等且互相平分2.如图,在平行四边形ABCD中∠B=140°,则∠D的度数为()A.40°B.70°C.110°D.140°3.如图,在四边形ABCD中,对角线AC,且OA=OC,OB=OD()A.若AC⊥BD,四边形ABCD是菱形B.若AC=BD,四边形ABCD是矩形C.若AC⊥BD且AC=BD,四边形ABCD是正方形D.若∠ABC=90°,四边形ABCD是正方形4.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OB5.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,则BD等于()A.4 B.5 C.6 D.76.如图,在矩形ABCD中,P,Q分别是BC,DC上的点,E,F分别是AP,PQ的中点.BC=12,DQ=5则线段EF的长为()A.6 B.6.5 C.7 D.57.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD 的面积为32√3,则CD的长为()A.4 B.4√3C.8 D.8√38.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3√5,且∠ECF=45°,则CF长为()A.2√10B.3√5C.5√103D.10√53二、填空题9.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥AC交AB于点E,已知△BCE的周长为12,则▱ABCD的周长为.10.如图,在▱ABCD中∠B=60°,AE⊥BC,AF⊥CD垂足分别为点E,F.AB=6.CF=2则CE=.11.如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N若DM=1,CM=2则矩形的对角线AC的长为.12.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH.若菱形ABCD的面积为24,OA=4,则OH的长为.13.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BD,BE.则∠DBE=°.三、解答题14.如图,已知点E、F为▱ABCD对角线BD上两点,且∠BAF=∠DCE,连接AE,CF.求证:(1)AF=CE;(2)四边形AECF为平行四边形.∠=∠.15.如图在平行四边形ABCD中,点E,F分别在AD,CD上,CF=AE,连接BF,BE,且ABE CBF(1)求证:四边形ABCD 是菱形.(2)若点E ,F 分别是AD ,CD 的中点,连接EF ,且4EF =,AD=6,求四边形ABCD 的面积.16.已知:在矩形ABCD 中,E ,F 分别是AD ,BC 边上的点,且DE =BF .(1)求证:四边形AFCE 是平行四边形.(2)若AD =6,AB =4,EF ⊥AC ,求BF 的长.17.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,延长CB 到点E ,使得BE BC =.连接AE .过点B 作BF AC ∥,交AE 于点F ,连接OF .(1)求证:四边形AFBO 是矩形;(2)若30E ∠=︒,BF=1,求OF 的长.18.如图1,四边形ABCD 为正方形,E 为对角线AC 上一点,连接DE ,BE .(1)求证:BE =DE ;(2)如图2,过点E 作EF ⊥DE ,交边BC 于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG . ①求证:矩形DEFG 是正方形;②若正方形ABCD 的边长为6,CG =2√2求正方形DEFG 的面积.参考答案1.D2.D3.D4.C5.C6.B7.C8.A9.2410.511.2√312.313.3014.(1)解:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD .∴∠ABF =∠CDE在△ABF 和△CDE 中{∠ABF =∠CDE AB =CD ∠BAF =∠DCE∴△ABF ≅△CDE(ASA)∴AF =CE ;(2)解:由(1)可知△ABF ≅△CDE∴AF =CE ,∠AFB =∠CED∴AF ∥CE∴四边形AECF 为平行四边形.15.(1)证明:∵四边形ABCD 是平行四边形∴BAE BCF ∠=∠.在BAE 和BCF 中BAE BCF ABE CBF AE CF∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴BAE ≌BCF (AAS )∴AB BC =∴四边形ABCD 是菱形.(2)解:如图,连接AC ,BD 交于点O∵点E ,F 分别是AD ,CD 的中点 ∴12EF AC =∵4EF =∴8AC =.∵四边形ABCD 是菱形 ∴142OA AC == BD AC ⊥.∵6AD = ∴2225OD AD OA -=∴245BD OD ==.∴S 菱形11652ABCD AC BD =⋅=16.(1)证明:在矩形ABCD 中AD ∥BC ,AD =BC又∵DE =BF∴AE =CF ,AE ∥CF∴四边形AFCE 是平行四边形.(2)解:∵EF ⊥AC∴□AFCE 是菱形∴AF =CF在矩形ABCD 中,∠B =90°BC =AD =6,又AB =4设BF =x ,则AF =CF =6-x ,在Rt △AFB 中,∴2224(6)x x +=-解得53x =即BF 53=17.(1)解:证明:四边形ABCD 是菱形AD BC ∴∥ AC BD ⊥ AD BC =BE BC =AD BE ∴=∴四边形AEBD 是平行四边形AE BD ∴∥.BF AC ∥∴四边形AFBO 是平行四边形.AC BD AE BD ∥AE AC ∴⊥90OAF ∴∠=︒∴平行四边形AFBO 是矩形.(2)由(1)知四边形AFBO 是矩形90AFB ∴∠=︒ OF AB =90BFE ∴∠=︒.又30E ∠=︒ 1BF =22BE BF ∴==.在Rt AEC △中BE BC =2AB BE ∴==2OF ∴=.18.(1)证明:∵四边形ABCD为正方形∴∠BAE=∠DAE=45°AB=AD在ΔABE和ΔADE中{AB=AD∠BAE=∠DAEAE=AE∴△ABE≌△ADE(SAS)∴BE=DE;(2)解:①证明:如图,作EM⊥BC于M,EN⊥CD于N,得矩形EMCN∴∠MEN=90°∵点E是正方形ABCD对角线上的点∴EM=EN∵∠DEF=90°∴∠DEN=∠MEF=90°−∠FEN∵∠DNE=∠FME=90°在△DEN和△FEM中{∠DNE=∠FME=90°EN=EM∠DEN=∠FEM∴△DEN≌△FEM(ASA)∴EF=DE∵四边形DEFG是矩形∴矩形DEFG是正方形;②解:正方形DEFG和正方形ABCD中DE=DG,AD=DC∠CDG+∠CDE=∠ADE+∠CDE=90°∴∠CDG=∠ADE在ΔADE和ΔCDG中{AD=CD ∠ADE=∠CDG DE=DG∴△ADE≌△CDG(SAS)∴AE=CG,∠DAE=∠DCG=45°∵∠ACD=45°∴∠ACG=∠ACD+∠DCG=90°∴CE⊥CG∴CE+CG=CE+AE=AC=√2AB=6√2∵CG=2√2∴CE=4√2连接EG∴EG=√CE2+CG2=√32+8=2√10∴EF=√22EG=2√5∴S正方形DEFG=EF2=20即正方形DEFG的面积为20.。

中考一轮复习 平行四边形和特殊的平行四边形测试题答案

中考一轮复习 平行四边形和特殊的平行四边形测试题答案

平行四边形和特殊的平行四边形试题参考答案一、选择题(共9小题,每小题5分,合计45分) 题号 1 2 3 4 5 6 7 8 9 答案ACBBCDDCA10.四;11.36°;12.3;13.23;14.①②③④. 三、解答题(共4个小题,合计30分.请写出必要的文字说明和解题步骤)15.(满分6分)已知:如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE =CF . 求证:FB ∥DE .证明:Q 四边形ABCD 是平行四边形,AB CD ∴=,//AB CD ,BAE DCF ∴∠=∠, .........2分 又AE CF =Q ,+AE EF CF EF ∴=+AF CE ∴= .........3分∴△ABF ≌△CDE (SAS) .........4分 DEC BFA ∴∠=∠, .........5分 //DE BF ∴. .........6分16.(满分6分)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =8,tan ∠ABD =43. 求菱形ABCD 的周长.解:∵四边形ABCD 为菱形,∴BO =DO ,∠AOB =90° .........2分 ∵BD =8,∴BO =4 .........3分Rt △AOB 中,tan ∠ABD =43=BO AO , ∴AO =3 .........4分 Rt △AOB 中,AO =3,BO =4, ∴522=+=BO AO AB .........5分∵菱形的边长都相等,∴菱形ABCD 的周长为:4×5=20. .........6分第16题图第15题图17.(满分8分)矩形ABCD 中,AC 为对角线,AC 的中垂线交BC 于E ,交AD 于F . (1)求证:四边形AECF 为菱形; (2)若AB =4,BC =8,求AE 的长.证明:(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,AD ∥BC , .........1分∴∠FAC =∠ECA ,∠AFO =∠CEO∴△AOF ≌△COE .........2分 ∴OF =OE 又∵OA =OC ,∴四边形AECF 为平行四边形 .........3分 ∵AC ⊥EF∴□AECF 为菱形; .........4分 (2)设菱形的边长为x ,则EA =EC =x ,∵BC =8,∴BE =BC -EC =8-x , .........5分 矩形ABCD 中,∠B =90°, Rt △ABE 中,由勾股定理得:AB 2+BE 2=AE 2, .........6分 即:42+(8-x )2=x 2 .........7分解得:x =5答:AE 的长为5. .........8分18. (满分10分)探究证明:(1)如图1,正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM ⊥BN .求证:BN =AM ;(2)如图2,矩形ABCD 中,点M 在BC 上,EF ⊥AM ,EF 分别交AB 、CD 于点E 、F.求证:ABBCAM EF; (3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M 、N 分别在边BC 、AB 上,求AMDN的值. 第17题图(1)证明:如图1中, ∵四边形ABCD 是正方形, ∴∠C =∠ABC =90°,AB =BC .........1分 ∴∠1+∠3=90° ∵AM ⊥BN ∴∠2+∠3=90°∴∠1=∠2 .........2分 ∴△ABM ≌BCN (ASA )∴BN =AM .........3分 (2)证明:如图2中,过点B 作BG ∥EF 交CD 于G ,∵四边形ABCD 是矩形,∴AB ∥CD ,∴四边形BEFG 是平行四边形,∴BG =EF , .........4分 ∵EF ⊥AM ∴BG ⊥AM∴∠GBA +∠MAB =90° ∵∠ABC =∠C =90° ∴∠GBC +∠GBA =90°∴△GBC ∽△MAB .........5分∴AB BCAM BG =∴AB BC AM EF =.........6分 (3)解:如图3中,过点D 作平行于AB 的直线交过点A 平行于BC 的直线于R ,交BC 的延长线于S ,连接AC ,则四边形ABSR 是平行四边形.∵∠ABC =90°,∴四边形ABSR 是矩形, ∴∠R =∠S =90°,RS =AB =10,AR =BS , ∵AM ⊥DN ,123∴由(2)中结论可得:AB BSAM DN =.........7分∵AB =AD ,CB =CD ,AC =AC , ∴△ACD ≌△ACB ∠ADC =∠ABC =90°, ∴∠SDC +∠RDA =90° ∵∠RAD +∠RDA =90° ∴∠RAD =∠SDC∴△RAD ∽△SDC∴RD SCAD CD =, .........8分设SC =x ,∴RD x =105∴RD =2x ,DS =10-2x ,在Rt △CSD 中,∵CD 2=DS 2+SC 2, ∴222)210(5x x +-=.........9分∴x =3或x =5(舍) ∴BS =5+x =8 ∴54108===AB BS AM DN.........10分。

中考——平行四边形及特殊的平行四边形证明习题

中考——平行四边形及特殊的平行四边形证明习题

平行四边形及特殊的平行四边形1.已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F . (1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.2. 如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD .(1)求证:四边形AFCD 是菱形; (2)连接BE 并延长交AD 于G ,连接CG , 请问:四边形ABCG 是什么特殊平行四边形?为什么?3.(本题满分13分)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.BACDFM 第1题图 E第2题图ADFCEGBA DB C4. 如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F .(1)求证:BFFD =;(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由;(3)A ∠在什么范围内变化时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由5、如图,在矩形ABCD 中,AB=4,AD=2,点P 、Q 同时从点A 出发,点P 以每秒2个单位的速度沿ABCD 的方向运动,点Q 以每秒1个单位的速度沿ADC 的方向运动,当P 、Q 两点相遇时,它们同时停止运动,设P 、Q 两点运动的时间为x (秒),△APQ 的面积为S (平方单位). (1)点P 、Q 从出发到相遇所用的时间是______秒; (2)求S 与x 之间的函数关系式; (3)当S=时,求x 的值.ABC D FEM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专项——平行四边形1.下列说法不正确的是()A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形2.(2010 湖南湘潭)下列说法中,你认为正确的是()A.四边形具有稳定性 B.等边三角形是中心对称图形C.任意多边形的外角和是360o D.矩形的对角线一定互相垂直3.(2010 天津)下列命题中正确的是()A.对角线相等的四边形是菱形 B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形 D.对角线互相垂直的平行四边形是菱形4.(2010湖北襄樊)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:15.(2010宁夏回族自治区)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个6.(2010 江津)四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.B.C.D.7. (2010 四川成都)已知四边形,有以下四个条件:①;②;③;④.从这四个条件中任选两个,能使四边形成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种8.(2010湖南衡阳)如图6,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为()A.8 B.9 C.10 D.119.(2010江苏苏州)如图,在菱形ABCD中,DE⊥AB,,BE=2,则t an∠DBE的值是()A.B.2 C.D.10.(2010 山东荷泽)如图,菱形ABCD中,∠B=60°,AB=2㎝,E、F 分别是BC、CD的中点,连结AE、EF、AF,则△AEF的周长为()A.㎝ B.㎝ C.㎝ D.3㎝11.(2010青海西宁)矩形ABCD中,E、F、M为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5 B.C.6 D.12.(2010山东聊城)如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定13.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D. 1014.(2010 重庆)已知:如图,在正方形外取一点,连接,,.过点作的垂线交于点.若,.下列结论:①△≌△;②点到直线的距离为;③;④;⑤.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤15.(2010 福建晋江)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669 B.670 C.671 D. 67216.(2010广西南宁)正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为()A.10 B.12 C.14 D.1617.(2010重庆綦江县)如图,在中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连结CG、CF,则以下四个结论一定正确的是()①△CDF≌△EBC②∠CDF=∠EAF③△ECF是等边三角形④CG⊥AEA.只有①② B.只有①②③ C.只有③④ D.①②③④18.(2010福建宁德)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().A.2+B.2+2C.12 D.1819.(2010江西)如图,已知矩形纸片ABCD,点E 是AB的中点,点G是BC 上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为( )A.4 B.3 C.2 D.120.(2010广西柳州)如图(上页),四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的处,点A对应点为,且=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.521.(2010广西河池)如图(上页)是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B. ①②③ C. ①②④ D. ①②③④22.(2010湖南常德)如图,四边形ABCD中,AB//CD,要使四边形ABCD为平行四边形,则可添加的条件为 .(填一个即可).23(2010荆州)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是 .24.(2010 广东珠海)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是_____cm.25.(2010福建宁德)如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.26.(2010青海西宁)如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=,那么的取值范围是 .27.(2010浙江嘉兴)如图,已知菱形ABCD的一个内角,对角线AC、BD相交于点O,点E在AB上,且,则= 度.28.(2010辽宁本溪)过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是 .29.(2010 天津)如图,已知正方形的边长为3,为边上一点,.以点为中心,把△顺时针旋转,得△,连接,则的长等于.30.(2010广西梧州)如图,边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF交CD于点H,则FH的长为______(结果保留根号)。

31.(2010广西河池)如图,矩形ABCD中,AB=8cm,BC=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为.32.(2010内蒙呼和浩特)如图(上页),矩形ABCD沿着直线BD折叠,使点C落在处,交AD于点E,AD = 8,AB = 4,则DE的长为.30.(2010江苏盐城)小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A 点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D 点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.33.(2010 河北)把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图33-1摆放时,阴影部分的面积为S1;若按图33-2摆放时,阴影部分的面积为S2,则S1 S2(填“>”、“<”或“=”).34.(2010湖北随州)如图矩形纸片ABCD,AB=5cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是______cm.35.(2010广西百色)已知矩形中,对角线、相交于点,、是对角线上的两点,且.(1)按边分类,是三角形;(2)猜想线段、的大小关系,并证明你的猜想.36.(2010 湖南株洲)如图,已知平行四边形,是的角平分线,交于点.(1)求证:;(2)若,,求的度数.37.(2010广东东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,边结DF.⑴试说明AC=EF;⑵求证:四边形ADFE是平行四边形.38.(10湖南益阳)如图7,在菱形ABCD中,∠A=60°,=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1) 求∠ABD 的度数;(2)求线段的长.39.(2010山东青岛)已知:如图,在正方形ABCD中,点E、F分别在BC 和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.40.(2010福建南平)如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).。

相关文档
最新文档