IGBT驱动电路原理及保护电路

合集下载

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated-Gate Bipolar Transistor)驱动电路主要由三部分组成:信号隔离部分、驱动信号放大部分和保护电路。

信号隔离部分是将输入信号与输出信号进行隔离,防止输入信号中的噪声和干扰对输出信号产生影响。

常用的信号隔离方法有变压器隔离、光电隔离和互感器隔离等。

其中,光电隔离是最常用的方法之一,它通过输入端的光电耦合器将电信号转换成光信号,通过光电隔离再将光信号转换为电信号输出。

这样可以有效防止输入信号中的噪声和干扰对输出信号产生干扰,提高系统的稳定性和可靠性。

驱动信号放大部分是将输入信号进行放大,以驱动IGBT的门极电压,控制IGBT的导通和关断。

驱动信号放大部分一般采用功放电路,常用的放大器有晶体管放大器和运放放大器。

通过合理选择放大器的工作点和增益,可以将输入信号进行适当放大,提高系统的灵敏度和响应速度,以确保IGBT的正常工作。

保护电路是为了保护IGBT免受电路中的过电流、过电压等异常情况的损害而设计的。

保护电路一般包括过流保护、过压保护、过温保护和短路保护等功能。

过流保护通过在电路中增加电流传感器来检测电流的变化,一旦电流超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。

过压保护通过在电路中增加电压传感器来检测电压的变化,一旦电压超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。

过温保护通过在IGBT芯片上增加温度传感器来检测芯片温度的变化,一旦温度超过设定值就会触发保护,例如通过减小驱动信号的幅度来降低功耗和温度。

短路保护通过在电路中增加短路检测电路,一旦检测到短路就会触发保护,例如通过立即切断电源来防止IGBT损坏。

总之,IGBT驱动电路的原理是通过信号隔离部分将输入信号与输出信号进行隔离,通过驱动信号放大部分将输入信号进行放大,以驱动IGBT的门极电压,控制其导通和关断。

同时,通过保护电路对IGBT进行多重防护,保证其在电路异常情况下的正常工作,提高系统的可靠性和稳定性。

IGBT驱动电路设计与保护

IGBT驱动电路设计与保护

IGBT驱动电路设计与保护IGBT驱动电路是一种用于驱动功率电子器件IGBT(绝缘栅双极型晶体管)的电路,主要用于功率电子应用中的开关控制和保护。

IGBT驱动电路的设计和保护对于确保系统稳定和损坏防止非常重要。

本文将阐述IGBT驱动电路的设计和保护的重要性,并介绍一些常用的IGBT驱动电路设计和保护策略。

一、IGBT驱动电路设计的重要性IGBT是一种高压高电流开关设备,用于控制电流和电压的转换。

因此,IGBT驱动电路具有以下几个重要的设计考虑因素:1.提供足够的电流和电压:IGBT需要足够的电流和电压来确保快速而稳定的开关动作。

因此,驱动电路必须能够提供足够的电流和电压给IGBT。

2.控制IGBT的开关速度:IGBT的开关速度直接影响系统的动态响应和效率。

驱动电路设计必须能够准确控制IGBT的开关速度,以满足系统要求。

3.抵抗环境干扰:由于IGBT驱动电路通常工作在工业环境中,如电磁干扰、温度变化和振动等因素都会对电路的性能产生影响。

因此,设计的驱动电路必须具有足够的抗干扰能力。

二、IGBT驱动电路的设计策略以下是一些常用的IGBT驱动电路设计策略:1.确定驱动电源:根据所需要的电流和电压的大小,选择合适的电源。

一般来说,电源的输出电流应该比IGBT的工作电流大一些,以确保正常工作。

2.确定驱动信号:驱动信号的频率和幅度对于控制IGBT的开关速度非常重要。

根据需求,选择合适的驱动信号频率和幅度。

3.防止电源噪声:使用滤波电路来防止电源噪声对驱动电路的干扰。

滤波电路通常包括电源电容器和滤波电感器。

4.保证信号传输可靠性:使用合适的隔离电路和保护电路来确保信号传输的可靠性。

隔离电路可以防止由于地线干扰引起的信号失真,保护电路可以防止由于过电流和过压导致的IGBT损坏。

三、IGBT驱动电路的保护策略以下是一些常用的IGBT驱动电路保护策略:1.过电流保护:使用合适的过电流保护电路来保护IGBT免受过电流损害。

几种IGBT驱动电路的保护电路原理图

几种IGBT驱动电路的保护电路原理图

几种IGBT驱动电路的保护电路原理图第一种驱动电路EXB841/840EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us以后IGBT 正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。

当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT 栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6悬空.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。

如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。

由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。

典型接线方法如图2,使用时注意如下几点:a、IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。

b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。

但是栅极电阻RG不能太大也不能太小,如果RG增大,则开通关断时间延长,使得开通能耗增加;相反,如果RG太小,则使得di/dt增加,容易产生误导通。

c、图中电容C用来吸收由电源连接阻抗引起的供电电压变化,并不是电源的供电滤波电容,一般取值为47 F.d、6脚过电流保护取样信号连接端,通过快恢复二极管接IGBT集电极。

e、14、15接驱动信号,一般14脚接脉冲形成部分的地,15脚接输入信号的正端,15端的输入电流一般应该小于20mA,故在15脚前加限流电阻。

IGBT驱动保护电路

IGBT驱动保护电路

引言电阻焊是一种重要的焊接工艺,具有生产效率高、成本低、节省材料和易于自动化等特点。

中频直流逆变电阻焊接电源作为一种新型的控制电源,以其显著的高质低耗的特点成为电阻焊电源的发展方向。

IGBT是一种用MOS管来控制晶体管的电力电子器件,具有电压高、电流大、频率高、导通电阻小等特点。

但由于IGBT的耐过流能力与耐过压能力较差,一旦出现意外就容易损坏。

为此,必须对IGBT进行保护。

本文从实际应用出发,总结了过压、过流与过热保护的相关问题和各种保护方法,实用性强,应用效果好。

中频电阻焊机逆变电源【东莞市英络德数控科技有限公司】中频逆变直流电阻焊机的供电电源是由三相工频交流电源经整流电路和滤波电容转换成直流电源,再经由功率开关器件组成的逆变电路转换成中频方波电源,然后输入变压器降压后,经低管压降的大功率二极管整流成直流电源,供给焊机的电极,对工件进行焊接(见图1)。

控制电路部分由DSP和CPLD组成,DSP(TMS320LF2407A)产生的PWM波和检测信号、保护信号在CPLD (EPM7128S)里实现逻辑运算。

逆变器通常采用电流反馈实现PWM,以获得稳定的恒定电流输出。

电路原理和波形如图1所示。

图中U电源为电源电压,U初级为逆变器输出中频电压,变压器次级电流为I次级,控制PWM的脉宽可以控制I次级的大小。

逆变电路采用全桥结构,主要优点是主变压器工作效率高。

其主电路由4个IGBT和中频变压器组成,将直流电压转换成中频方波交流电压并送中频变压器,经降压整流滤波后输出。

电路的可靠来自IGBT的稳定运行。

保证IGBT在安全工作范围内并处于较好状态下,是提高整机可靠性的关键技术。

而对IGBT的保护,主要包括过电流保护、过电压保护和IGBT过热保护。

IGBT的保护措施IGBT的过电流保护IGBT大功率管通常只能承受10ms以下的短路电流,当IGBT遇到过流或短路时,若不加保护或保护不当,就会使IGBT损坏。

M57962AL是IGBT专用驱动模块,它采用双电源驱动结构,内部集成有2500 V 高隔离电压的光耦合器和过电流保护电路,以及过电流保护输出信号端子和与TTL电平相兼容的输入接口。

应用于风力发电的大功率IGBT驱动保护电路

应用于风力发电的大功率IGBT驱动保护电路

应用于风力发电的大功率IGBT驱动保护电路随着风力发电技术的不断进步,越来越多的风力发电机被投入使用。

在风力发电中,IGBT(绝缘栅双极晶体管)被广泛应用于风力发电机的变频器中,用于控制电机的电能输出和风力发电的整个过程。

而大功率IGBT驱动保护电路则是保护这些IGBT的关键部分。

一、大功率IGBT驱动保护电路的意义大功率IGBT驱动保护电路是为了保护风力发电机变频器中的IGBT而设计的一种电路。

IGBT作为风力发电机变频器的核心部件,负责将电能转换成机械能,并进行不同频率、不同电压的输出。

在风力发电的过程中,变频器中的IGBT受到的电压和电流都是很大的,同时高频电源的电压也对IGBT产生了很大的压力,如果IGBT的运行不能被有效保护,就有可能会引起其烧毁或损坏,从而对风力发电机的正常运行产生不利影响。

因此,大功率IGBT驱动保护电路是非常必要的。

二、大功率IGBT驱动保护电路的基本原理大功率IGBT驱动保护电路的基本原理是在IGBT的驱动电路中加入过流、过压、过热等保护电路。

在系统的设计中,IGBT的故障通常是由于内部电热、电压电流等因素引起的,因此,大功率IGBT驱动保护电路需要在这些方面进行有效的保护。

(1)过流保护在变频器的运行过程中,IGBT受到电流冲击时,可能会产生较大的能量,引起其过热烧毁,因此,过流保护是很必要的。

对于系统中的IGBT,可以通过电流传感器进行测量,通过对电流大小的测量,在IGBT的驱动电路中加入保护电路,当电流大小超过一定的阀值时,保护电路就会起到保护作用。

(2)过压保护风力发电机的变频器在运行过程中,如果瞬间出现高电压,就很可能会对IGBT造成损伤。

因此,过压保护是非常必要的。

在大功率IGBT驱动保护电路中,可以使用Zener二极管或压敏电阻作为过压保护器件,当电压突然上升时,就会使得这些保护器件在短时间内短路,从而保护IGBT。

(3)过热保护IGBT的运行温度较高,通常需要对其进行过热保护。

IGBT高压大功率驱动和保护电路的应用及原理

IGBT高压大功率驱动和保护电路的应用及原理

IGBT高压大功率驱动和保护电路的应用及原理IGBT高压大功率驱动和保护电路的应用及原理通过对功率器件IGBT的工作特性分析、驱动要求和保护方法等讨论,介绍了的一种可驱动高压大功率IGBT的集成驱动模块HCPL-3I6J的应用关键词:IGBT;驱动保护电路;电源IGBT在以变频器及各类电源为代表的电力电子装置中得到了广泛应用。

IGBT集双极型功率晶体管和功率MOSFET的优点于一体,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点。

但是,IGBT和其它电力电子器件一样,其应用还依赖于电路条件和开关环境。

因此,IGBT 的驱动和保护电路是电路设计的难点和重点,是整个装置运行的关键环节。

为解决IGBT的可靠驱动问题,国外各IGBT生产厂家或从事IGBT应用的企业开发出了众多的IGBT驱动集成电路或模块,如国内常用的日本富士公司生产的EXB8系列,三菱电机公司生产的M579系列,美国IR公司生产的IR21系列等。

但是,EXB8系列、M579系列和IR21系列没有软关断和电源电压欠压保护功能,而惠普生产的HCLP一316J有过流保护、欠压保护和1GBT软关断的功能,且价格相对便宜,因此,本文将对其进行研究,并给出1700V,200~300A IGBT的驱动和保护电路。

1 IGBT的工作特性IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。

IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。

IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。

在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。

2 IGBT驱动电路要求在设计IGBT驱动时必须注意以下几点。

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于控制和驱动IGBT器件的电路,用于将低功率信号转化为高功率信号,以实现对IGBT器件的控制。

IGBT驱动电路通常由输入电路、隔离电路、输出电路和保护电路组成。

下面将详细介绍IGBT驱动电路的原理和保护电路的作用。

IGBT驱动电路的主要工作原理是通过输入信号的变化来控制IGBT的通断,从而实现对高功率负载的控制。

IGBT驱动电路一般采用CMOS电路设计,以确保高噪声抑制和良好的电磁兼容性。

常见的IGBT驱动电路分为光耦隔离和变压器隔离两种。

光耦隔离驱动电路是将输入信号与输出信号通过光电耦合器隔离,在高功率环境下提供了良好的隔离和保护。

光电耦合器的输入端通常由输入信号发生器驱动,而输出端则连接到IGBT的控制极,实现信号的传输和控制。

光耦隔离驱动电路在功率轻载和带负载的情况下都能提供良好的电气隔离,提高了系统的可靠性和稳定性。

变压器隔离驱动电路是通过变压器来实现输入和输出信号的隔离。

输入信号通过变压器的一侧传输,然后通过变压器的另一侧连接到IGBT的控制极。

变压器隔离驱动电路具有较高的耐受电压和电流能力,并能抵御噪声和干扰的影响。

IGBT保护电路的作用:IGBT是一种高功率开关设备,在工作过程中容易受到电流过大、电压过高、温度过高等因素的影响,导致过热、短路甚至损坏。

因此,为了保护IGBT设备的正常工作和延长其使用寿命,需要在IGBT驱动电路中添加一些保护电路。

常见的IGBT保护电路包括过流保护、过压保护和过温保护。

过流保护电路通过检测IGBT芯片上的电流大小来保护器件的工作。

当电流超过预设值时,保护电路会通过切断电源或降低输入信号的方式来阻止过大电流通过IGBT。

这样可以防止IGBT芯片发生过热和失效。

过压保护电路通过监测IGBT器件上的电压来保护该器件的工作。

当电压超过正常工作范围时,保护电路会通过切断电源或降低输入信号的方式来阻止过高电压对IGBT芯片的损害。

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种用于高压高功率开关电路的半导体器件,结合了MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)的输入特性和BJT(Bipolar Junction Transistor)的输出特性。

IGBT的驱动电路原理与保护技术对于确保IGBT的正常工作和延长其寿命非常重要。

1.基本原理:驱动电路的主要目的是将控制信号转换成足够的电压和电流来控制IGBT的开关动作。

基本的驱动电路一般由一个发生器、一个驱动电流放大器以及一个隔离电压放大器组成。

2.发生器:发生器产生控制信号,控制IGBT的开关状态。

信号可以是脉冲信号,由微控制器或其他逻辑电路产生。

3.驱动电流放大器:驱动电流放大器用于放大脉冲信号,以提供足够的电流来控制IGBT。

其输出电流通常在几十毫安到几安之间。

4.隔离电压放大器:IGBT通常需要电隔离,以防止高电压干扰信号影响其正常工作。

隔离电压放大器用于将驱动信号从控制信号隔离,并提供相应的电压放大。

1.过流保护:IGBT的工作电流超过额定值时,可能会导致损坏。

因此,电路中应包含过流保护电路,可以通过电流传感器来监测电流,并在超过设定值时立即切断电源。

2.过温保护:IGBT在超过一定温度时可能会发生热失控,导致器件损坏。

因此,必须安装温度传感器来监测器件的温度,并在超过设定值时采取适当的措施,如降低输入信号或切断电源。

3.过压保护:当IGBT的工作电压超过额定值时,可能会引起击穿,导致器件损坏。

因此,在电路中需要安装过压保护电路,以确保电压不会超过允许的范围。

4.反馈电路:为了确保IGBT的正常工作,需要实时监测其输出电流和电压。

因此,反馈电路可以用来调整控制信号,以保持IGBT在安全范围内工作。

总之,IGBT的驱动电路原理和保护技术是确保IGBT正常工作和延长其寿命的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT.保证IGBT 的可靠工作,驱动电路起着至关重要的作用,对IGBT驱动电路的基本要求如下:(1) 提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。

(2) 提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。

(3) 尽可能小的输入输出延迟时间,以提高工作效率。

(4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。

(5) 具有灵敏的过流保护能力。

第一种驱动电路EXB841/840EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us 以后IGBT正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。

当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6“悬空”.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。

如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低 ,完成慢关断,实现对IGBT的保护。

由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。

典型接线方法如图2,使用时注意如下几点:a、 IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。

b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。

但是栅极电阻RG不能太大也不能太小,如果 RG增大,则开通关断时间延长,使得开通能耗增加;相反,如果RG太小,则使得di/dt增加,容易产生误导通。

c、图中电容C用来吸收由电源连接阻抗引起的供电电压变化,并不是电源的供电滤波电容,一般取值为47 F.d、 6脚过电流保护取样信号连接端,通过快恢复二极管接IGBT集电极。

e、 14、15接驱动信号,一般14脚接脉冲形成部分的地,15脚接输入信号的正端,15端的输入电流一般应该小于20mA,故在15脚前加限流电阻。

f、为了保证可靠的关断与导通,在栅射极加稳压二极管。

第二种 M57959L/M57962L厚膜驱动电路M57959L/M57962L厚膜驱动电路采用双电源(+15V,-10V)供电,输出负偏压为-10V,输入输出电平与 TTL电平兼容,配有短路/过载保护和封闭性短路保护功能,同时具有延时保护特性。

其分别适合于驱动1200V/100A、600V/200A 和1200V/400A、600V/600A及其以下的 IGBT.M57959L/M57962L在驱动中小功率的IGBT时,驱动效果和各项性能表现优良,但当其工作在高频下时,其脉冲前后沿变的较差,即信号的最大传输宽度受到限制。

且厚膜部采用印刷电路板设计,散热不是很好,容易因过热造成部器件的烧毁。

日本三菱公司的M57959L集成IGBT专用驱动芯片它可以作为600V/200A 或者1200V/100A的IGBT驱动。

其最高频率也达40K Hz,采用双电源供电(+15V 和-15V)输出电流峰值为±2A,M57959L有以下特点:(1) 采用光耦实现电器隔离,光耦是快速型的,适合20KHz左右的高频开关运行,光耦的原边已串联限流电阻,可将5V电压直接加到输入侧。

(2) 如果采用双电源驱动技术,输出负栅压比较高,电源电压的极限值为+18V/-15V,一般取+15V/-10V.(3) 信号传输延迟时间短,低电平-高电平的传输延时以及高电平-低电平的传输延时时间都在1.5μs以下。

(4) 具有过流保护功能。

M57962L通过检测IGBT的饱和压降来判断IGBT 是否过流,一旦过流,M57962L就会将对IGBT实施软关断,并输出过流故障信号。

(5) M57959的部结构如图所示,这一电路的驱动部分与EXB系列相仿,但是过流保护方面有所不同。

过流检测仍采用电压采样,电路特点是采用栅压缓降,实现IGBT软关断,避免了关断中过电压和大电流冲击;另外,在关断过程中,输入控制信号的状态失去作用,既保护关断是在封闭状态中完成的。

当保护开始时,立即送出故障信号,目的是切断控制信号,包括电路中其它有源器件。

第三种 2SD315A集成驱动模块集成驱动模块采用+15V单电源供电,部集成有过流保护电路,其最大的特点是具有安全性、智能性与易用性。

2SD315A能输出很大的峰值电流(最大瞬时输出电流可达±15A),具有很强的驱动能力和很高的隔离电压能力(4000V)。

2SD315A具有两个驱动输出通道,适合于驱动等级为1200V/1700V极其以上的两个单管或一个半桥式的双单元大功率IGBT模块。

其中在作为半桥驱动器使用的时候,可以很方便地设置死区时间。

2SD315A部主要有三大功能模块构成,分别是LDI(Log IC To Driver Interface,逻辑驱动转换接口)、IGD(Intelligent Gate Driver,智能门极驱动)和输入与输出相互绝缘的DC/DC转换器。

当外部输入PWM信号后,由LDI进行编码处理,为保证信号不受外界条件的干扰,处理过的信号在进入IGD前需用高频隔离变压器进行电气隔离。

从隔离变压器另一侧接收到的信号首先在IGD单元进行解码,并把解码后的PWM信号进行放大(±15V/±15A)以驱动外接大功率IGBT.当智能门极驱动单元IGD的过流和短路保护电路检测到IGBT发生过流和短路故障时,由封锁时间逻辑电路和状态确认电路产生相应的响应时间和封锁时间,并把此时的状态信号进行编码送到逻辑控制单元LDI.LDI单元对传送来的IGBT工作状态信号进行解码处理,使之在控制回路中得以处理。

为防止2SD315A的两路输出驱动信号相互干扰 ,由DC/DC转换器提供彼此隔离的电源供电。

2SD315使用时注意事项:a、工作模式驱动模块的模式选择端MOD外接+15V电源,输入引脚RC1和RC2接地,为直接工作模式。

逻辑控制电平采用+15V,信号输入管脚InA、InB连接在一起接收来自单片机的脉冲信号。

2SD315A的SO1和SO2两只管脚输出通道的工作状态。

当MOD接地时,MOD接地。

通常半桥模式都是驱动一个直流母线上的一个桥臂,为避免上下桥臂直通必须设置死区时间,在死区时间里两个管子同时关断。

因此,RC 1, RC2端子必须根据要求外接RC网络来产生死区时间,死区时间一般可以从100n,到几个ms.图中所示的RC 1, RC2分别连接lOk.的电阻和100pF的电容,这样产生的死区时间大约是500ns.b、端口VL/Reset这个端子是用来定义具有施密特性质的输入InA和InB的,使得输入在2/3VL时开通,在I/3 VL时作为关断信号。

当PWM信号是TTL电平时,该端子连接如图3-5所示,当输入InA和InB信号为15V的时候,该端子应该通过一个大约1K左右的电阻连接到++15V电源上,这样开启和关断电压分别应该是lov 和5V.另外,输入UL/Reset端还有另外的功能:如果其接地,则逻辑驱动接口单元l.DI001的错误信息被清除。

c、门极输出端门极输出Gx端子接电力半导体的门极,当SCALE驱动器用15V供电的时候,门极输出土15V.负的门极电压由驱动器部产生。

使用如图3-6 结构的电路可以实现开通和关断的速度的不一样,增加了用户使用的灵活性。

d、布局和布线驱动器应该尽可能近的和功率半导体放在一起,这样从驱动器到电力晶体管的引线就会尽可能的短,一般来说驱动器的连线尽量不要长过10厘米。

同时一般要求到集电极和发射极的引线采用绞合线,还有可以在IGBT的门极和发射极之间连接一对齐纳稳压二极管(15~18V) 来保护IGBT不会被击穿。

驱动模块的模式选择端MOD外接+15V电源,输入引脚RC1和RC2接地,为直接工作模式。

逻辑控制电平采用+15V,信号输入管脚 InA、InB连接在一起接收来自单片机的脉冲信号,进行同步控制。

2SD315A的SO1和SO2两只管脚外接三极管和光耦用来向单片机输出两输出通道的工作状态,其输出端结构皆为集电极开路输出,可以通过外接上拉电阻以适用于各种电平逻辑。

在管脚SO1、SO2和电源之间,以及VisoX 和LSX之间加发光二极管进行故障指示。

正常情况下SO1和SO2输出皆为高电平,上电后D3和D4先亮,延时几秒后熄灭,同时D8和D15发亮。

当检测到故障信号时,SO1和SO2的输出电平被拉低到地,即D3和D4发亮,同时D8和D15闪烁。

2SD315A是通过监测 UCE(sat)来判断回路是否短路和过流,当检测到一路或两路发生过流现象时,检测电路会把异常状态回馈到驱动模块,驱动模块部会产生一个故障信号并将它锁存,锁存时间为1s,在这段时间,驱动模块不再输出信号,而是将两组IGBT及时关断予以保护。

同时,状态输出管脚SO1和SO2的高电平被拉低,光耦TLP521导通,两路状态信号通过或门74LS32送给单片机。

为防止因关断速度太快在IGBT的集电极上产生很高的反电动势,在门极输出端采用如图3.11所示的电路结构实现开通和关断速度的不同。

开通时门极电阻为3.4Ω,关断时电阻为6.8Ω,二极管采用快恢复型,这样就使关断速度下降到安全水平。

这是一缩略图,点击可放大。

按住CTR L,滚动鼠标滚轮可自由缩放IGBT短路失效机理IGBT负载短路下的几种后果(1) 超过热极限:半导体的本征温度极限为250℃,当结温超过本征温度,器件将丧失阻断能力,IGBT负载短路时,由于短路电流时结温升高,一旦超过其热极限时,门级保护也相应失效。

(2) 电流擎住效应:正常工作电流下,IGBT由于薄层电阻Rs很小,没有电流擎住现象,但在短路状态下,由于短路电流很大,当Rs上的压降高于0.7V时,使J1正偏,产生电流擎住,门级便失去电压控制。

(3) 关断过电压:为了抑制短路电流,当故障发生时,控制电路立即撤去正门级电压,将IGBT关断,短路电流相应下降。

由于短路电流大,因此,关断中电流下降率很高,在布线电感中将感生很高的电压,尤其是在器件封装引线电感上的这种感应电压很难抑制,它将使器件有过电流变为关断过电压而失效IGBT过流保护方法(1) 减压法:是指在故障出现时,降低门级电压。

相关文档
最新文档