我国饮用水中嗅味问题及其研究进展
臭氧微纳米气泡降解饮用水中典型嗅味物质的效能与机理研究

一、引言
为了解决这个问题,人们尝试使用各种方法来处理水中的嗅味物质。其中, 催化臭氧氧化法是一种非常有效的方法。在该方法中,臭氧作为一种强氧化剂被 引入水中,与水中的有机物发生反应,将其分解成小分子有机物和二氧化碳等无 害物质。但是,这种方法存在一些问题,例如臭氧的利用率不高、反应速度较慢 等。
一、引言
四、铝氧化物催化臭氧氧化水中嗅味物质的实验过程
在本实验中,我们使用了自制的高效铝氧化物催化剂。该催化剂具有较高的 比表面积和良好的吸附性能。我们将催化剂加入到含有嗅味物质的废水中,然后 通入臭氧气体进行氧化反应。在反应过程中,我们使用了在线监测仪器来监测水 中嗅味物质的变化情况。
五、实验结果与分析
通过GC-MS分析,我们发现臭氧微纳米气泡对嗅味物质的降解主要依赖于其强 氧化性。在反应过程中,臭氧分子会分解产生氧化性更强的羟基自由基(·OH), 从而实现对嗅味物质的氧化降解。此外,我们还发现,微纳米气泡的强烈碰撞和 剪切作用也有助于破坏有机物的分子结构,促进其降解。
四、结论
四、结论
本研究表明,臭氧微纳米气泡技术对饮用水中典型嗅味物质的降解具有显著 的效能。通过深入探讨其降解机理,我们发现氧化作用和微纳米气泡的物理作用 均对嗅味物质的降解起到了重要作用。然而,本研究仍存在一定的局限性,例如 未考虑实际水体中多种物质共存对臭氧微纳米气泡降解嗅味物质的影响等。因此, 未来的研究应进一步拓展实验范围,加强技术的实际应用研究。
五、实验结果与分析
实验结果表明,铝氧化物催化剂可以显著提高臭氧对水中嗅味物质的氧化效 率。在加入催化剂后,臭氧可以更快地与水中的有机物发生反应,并且反应速度 更快。此外,铝氧化物还可以促进羟基自由基的生成,加速有机物的分解过程。 最终的结果是,使用铝氧化物催化剂后,水中的嗅味物质浓度显著降低,净化效 果明显提高。
我国饮用水中嗅味问题及其研究进展

我国饮用水中嗅味问题及其研究进展一、本文概述饮用水是人类生活中不可或缺的重要资源,其质量直接关系到人们的健康和生活品质。
然而,近年来,我国饮用水中嗅味问题日益突出,引起了广泛关注。
嗅味问题不仅影响了饮用水的口感,还可能对人体健康造成潜在威胁。
因此,对饮用水中嗅味问题的研究具有重要的现实意义和紧迫性。
本文旨在全面概述我国饮用水中嗅味问题的现状、成因及影响,并重点介绍近年来在嗅味控制和处理技术方面取得的研究进展。
文章首先对嗅味物质的种类、来源及产生机制进行了详细阐述,然后分析了嗅味物质对人体健康的影响及其在水处理过程中的变化特性。
在此基础上,重点综述了目前国内外在饮用水中嗅味控制和处理技术方面的研究现状和发展趋势,包括物理、化学和生物处理方法等。
文章还探讨了未来研究方向和面临的挑战,以期为我国饮用水中嗅味问题的有效解决提供理论支持和技术指导。
二、我国饮用水中嗅味问题的主要来源饮用水中嗅味问题的存在,不仅影响了水的口感,更可能对人们的健康造成潜在威胁。
在我国,饮用水中嗅味问题的来源多种多样,主要包括自然来源和人为来源两大类。
自然来源方面,我国地域广阔,水质条件复杂,一些地区的水体中天然存在某些嗅味物质。
例如,地下水中的硫化氢、甲烷等气体,以及湖泊、河流中的藻类代谢产物等,都可能为饮用水带来不愉快的气味。
气候变化、季节转换等自然因素也可能导致水体中嗅味物质浓度的变化。
人为来源则是导致我国饮用水中嗅味问题的另一重要原因。
在城市和工业区,工业废水、生活污水的不合理排放,以及农业活动中化肥、农药的过量使用,都可能导致水体污染,进而产生嗅味问题。
供水系统中的管材老化、消毒副产物的生成等,也可能为饮用水带来不良气味。
值得注意的是,不同来源的嗅味物质具有不同的特性和影响。
例如,一些嗅味物质可能对人体健康造成直接危害,而另一些则可能影响人们的心理感受,降低饮用水的接受度。
因此,针对我国饮用水中嗅味问题的研究和治理,需要综合考虑各种因素,采取科学有效的措施。
我国饮用水中嗅味问题及其研究进展

我国饮用水中嗅味问题及其研究进展李勇,张晓健,陈超(清华大学环境科学与工程系,北京 100084)摘要:综述了我国饮用水中的嗅味问题及其国内外研究进展,着重讨论了我国面临的饮用水中嗅味问题的现状、水中嗅味来源及饮用水中嗅味的定性定量分析技术、致嗅物质组成特性、典型致嗅物质的去除技术及工艺.旨在阐明除了土嗅素(geosmin)和2 甲基异莰醇(2 MIB)等微生物代谢产物外,硫醇硫醚类厌氧分解产物也是我国饮用水中重要的致嗅物质.硫醇硫醚类致嗅物质于2006年首次在东莞饮用水中发现,后被证明也是2007年太湖饮用水危机中的主要致嗅物质.Geosmin 和2 MIB 的吸附效果好于氧化,而硫醇硫醚类致嗅物质易于被氧化去除,不易被吸附去除.需要尽快开展我国饮用水中致嗅物质组成特性及典型致嗅物质去除技术和工艺的研究,形成应对不同水源、不同季节、不同致嗅物质嗅味的饮用水处理工艺.关键词:饮用水;嗅味;硫醇;硫醚;微生物代谢产物;土嗅素;2 甲基异莰醇中图分类号:X52;TU991 21 文献标识码:A 文章编号:0250 3301(2009)02 0583 06收稿日期:2008 02 23;修订日期:2008 04 07基金项目:国家自然科学基金项目(50778097);国家科技支撑计划项目(2007BAC26B03)作者简介:李勇(1979~),男,博士研究生,主要研究方向为饮用水深度处理,E mail:yongli05@Review on the Tastes and Odors Compounds in Drinking Water of ChinaLI Yong,ZHANG Xiao jian,C HE N Chao(Department of Environmental Science and Engineering,Tsinghua Universi ty,Beijin g 100084,China)Abstract :T astes and odors problems (T&Os)in China and studies on T&Os are reviewed,especially on aspects of the present situation in China,sources of T&Os in water,T&Os qualitative &quantitative technology,odorant composing characters,removal technologies and p rocesses on typical odorant in drinki ng water.This review aims to elucidate that besides microbial metabolism product such as geosmin and 2 MIB,organic anaerobic decomposi tion p roduct such as thiol thioether were also main odoran t in drinking water of China.T hiol thi oether odorant which was found in drinking water of Dongguan in 2006for the first ti me,was proved to be the main odorant in Taihu Lake drinking water risk in 2007as well.Geosmin and 2 MIB were more easily removed by adsorption than oxidation,but thiol thioether was easily removed by oxidation not by adsorption.In order to cope with T&Os i n different water source,different season and different odorant,studies on odorant composing character,removal technology,mechanism and process of typical odoran t should be carried out as soon as possible in China.Key words :drinking water;taste and odor;thiol;thioether;microbial metabolism product;geosmin;2 MIB随着人们对饮用水的质量的要求越来越高,水中的嗅味(tastes and odors)已经引起人们的重视.我国新的 生活饮用水卫生标准 (GB 5749 2006)已经于2007年7月1日颁布并实施.新标准中非常规检验项目数量多、要求高,但通常水源中都不会超标,加上水厂的净化工艺,一般都能保证水质合格[1].而常规检验中,嗅味列入了出厂水、管网水的必测项目,水的合格率将会因此而受到影响,因此必须给予足够的重视.国外自20世纪50年代就开始了对水体异味的研究,至今已成为当今世界水环境[2]研究热点之一,而我国在这方面的研究相对较晚,相关研究工作也刚刚起步.本文就我国面临的饮用水中嗅味问题的现状,水中嗅味的危害、分类、来源和水中嗅味的定性定量分析技术、致嗅物质组成特性、典型致嗅物质的去除技术及工艺等方面的国内外研究进展进行综述.1 饮用水中的嗅味问题饮用水中的嗅味问题在国内外普遍存在,成为各供水者必须面临的重要问题.早在1850年,美国就发现了水体异味.1944年,美国Niagara Falls 水厂由于酚污染产生嗅和味后,引起广大居民投诉.1997年在美国Phoenix 市发生的一次饮用水异味事件中,该市水务部门每星期都要接到几百个投诉电话[3].1969年5月,日本的琵琶湖发生严重饮用水异味事件,影响了日本京都、大阪、神户地区的居民供水.在我国,许多城镇都以湖泊、河流作为主要的供水水源.近年来,随着城市建设、工农业生产的发展以及城市人口的增加,大量未经处理的污水与废水排入天然水体,饮用水异味的报道越来越多.表1列出了近年来文献报道的国内饮用水中的嗅味问题,从中可以看出我国面临的饮用水中嗅味问题非常严重,而且分布范围广,已经是一个比较普遍的问题.特别是在2007年5月暴发的太湖水危机第30卷第2期2009年2月环 境 科 学ENVIRONME NTAL SCIENCEVol.30,No.2Feb.,2009表1 近年来文献报道的饮用水嗅味问题Table1 Tas tes and odors accidents reported i n drinking water of China 地区,水源时间报道的TON测定结果江苏,太湖1996200[4]辽宁,浑河1999100[5]湖北,东湖200270[6]安徽,巢湖2002100[4]山东,玉清湖水库200416[7]山东,15个城市水源2004均存在嗅味问题,其中2 M B在100~200 ng L,最高达到700 ng L[7]北京,密云水库2004(每年9~10月)24[8],2 MIB浓度在200ng L以上内蒙古乌素梅尔海,黄河2004黑臭[9]内蒙古包头,黄河200670[10]广东深圳,深圳水库2006>100[11]广东东莞,东江春季、夏季50上海,黄浦江长期(每年7~10月)以2 MIB为主,浓度在50~150ng L河南郑州,黄河春季鱼腥味江苏无锡,太湖2007 05200河北秦皇岛,北戴河2007 091000事件中,自来水中的严重异味影响了无锡市几十万人的正常饮水,引起了国内外的广泛关注.2 饮用水中嗅味的危害一般情况下,水中的嗅味不会对人体健康造成威胁,但人及其它生物通过感知这些不良嗅味而避免饮用.饮用水中的异嗅和异味不仅影响水的可饮性,严重损害饮用水的质量,而且产生不良嗅味的某些化合物,还会直接损害人体健康.1998年9月22日,某地居民饮用了有异味的水后,先后发生腹痛、腹泻等消化道症状病例38例.出现症状者,于饮用该村自来水后最早1h,最晚者3h[12].3 饮用水中嗅味的来源及分类3 1 水中嗅味分类水中的嗅味(flavor)包括嗅(气味,odors)、味(味道,tastes)和口感(mouth feel)3方面,以嗅的问题为主,是水中某些化学物质,即致嗅物质对人的舌、鼻及口等处感觉末梢神经刺激的一种综合感觉.在欧美国家,让一组训练有素的专业人员,饮用待测水,并采用日常用语对水中的嗅味进行描述和评价.依据长时间积累的资料,他们提出了一个嗅味分析轮型图(drinking water taste and odor wheel),在这个图上把人的感官性状描述与水中存在的化合物联系起来(如图1)[13].3 2 饮用水中致嗅物质来源从饮用水的生产过程来看,致嗅物质可能主要来源于3个过程.首先是原水中本身含有致嗅物质.目前国内外关于水中嗅味的问题的研究大多集中于该方面.二是原水经过水厂进行处理时,投加的药剂及其同原水物质反应所产生的物质带来的异嗅和异味(氯味、臭氧味等).国外对活性炭去除嗅味及消毒过程所产生的嗅味方面已有详细研究,而我国在该方面的研究还有待进一步开展.三是处理后的水在经过配水系统输送到用户过程中,在管网系统中引入的杂质产生嗅和味.国外对该方面的研究已经开始,而国内鲜见相关报道.根据其来源,原水中的致嗅物质可分为2大类:一类属于天然来源,大多数是从土壤、岩石中析出的矿物质,如铁、锰等;另一类是人类活动影响的结果,这类致嗅物质是水中致嗅物质最主要的来源.一方面人类直接向水体中排放致嗅化合物,如酚类化合物等,另一方面人类排入水中有机物的分解产物(如硫醇、硫化氢、胺类等)以及水中某些微生物的代谢产物的释放,如土嗅素(geosmin)和2 甲基异莰醇(2 MIB)等,使水产生嗅味.4 水中嗅味问题研究人们对嗅味的研究,最早开始于食品工业,20世纪40年代开始引用于饮用水的研究.水中嗅味问题的研究是一个多学科交叉的研究领域,它涉及化学分析、生物生理、湖沼、食品与数理统计等学科领域[14].其中饮用水中嗅味问题的研究主要集中在嗅味的定量分析技术、典型致嗅物质的去除技术及工艺方面.4 1 水中嗅味的定性定量分析技术水中嗅味的定性定量分析技术是解决水中嗅味问题的前提和基础.通常情况下,水中嗅味组成非常复杂,并且水中致嗅物质的嗅阈值(odor threshold concentration,OTC)浓度极低,因而对水中致嗅物质的定量分析技术比较困难,成为水中嗅味问题研究的关键.水中嗅味的定性定量分析方法有很多,一般可以分为3种,感官分析法、仪器分析法和综合分析法.4 1 1 感官分析法感官分析法主要包括臭阈值法(threshold odor number,TON)、嗅味等级描述法(flavor rating assessment,FRA)和嗅味层次分析法(flavor profile analysis,FPA)[15]等.FPA法首先应用于美国[16],它由584环 境 科 学30卷图1 嗅味分类轮图Fi g.1 Tas tes and odors wheel经过严格训练的分析者对水样进行集体评定嗅味强度与特性.此法不需对水样进行稀释,可对嗅味的种类及强度进行较精确的描述,且具有一定的定性和定量分析能力.该法逐步被欧美等国的许多水厂采用,并已被列入美国水质分析标准方法中,但此法对分析者的要求很高,并且需要专门的培训,还没有在国内推广.感官分析法可以了解水中气味的物理特性,但由于人们对嗅的敏感度各不相同,在感知气味的过程中可能会出现疲劳现象,往往会导致数据客观性不足,重复性差,不同时间、地点的数据也难以比较,而且对于混合气味,由于不同气味间的协同和中和效应,感官分析法难以区别,对气味难以恰当描述,对引起气味的物质也无法判断[17].另外,使用FPA法检测水的味道时首先必需确保样品水的卫生安全饮用性,不适宜含有某些危险性化合物样品的检测.4 1 2 仪器分析法色质联检GC MS是分析痕量有机物的有效手段,可以很好地完成挥发性和半挥发性有机物的定性定量.此法测定结果的选择性强、灵敏度高,故在美、日各国普遍采用[18],而水中气味的分析关键在于气味的富集,气味物质的富集方法有密闭循环吹脱法(closed loop stripping analysis,CLSA[19])、开口循环吹脱法(open loop stripping analysis,OLSA)、吹扫捕集法(purge and trap,P&T)、液液萃取(liquid liquid extraction,LLE)、水蒸气蒸馏萃取(steam distillation extraction,SDE)、固相萃取(solid phase e xtraction, SPE)、固相微萃取(solid phase Microextraction,SP ME)等.其中,C LSA GC是目前世界上各国公认最精确的异味测定方法.但该方法对系统的压力控制和循环泵质量要求较高,国内采用OLAS、P&T和SPME等5852期李勇等:我国饮用水中嗅味问题及其研究进展方法替代[17],并在以土嗅素和2 MIB为主的异味物质检测方面取得一定效果.4 1 3 综合分析法FPA法适用于确定给水是否有异于无臭水和评价人们在使用过程中的接受程度,如果使用经验丰富的评定人员,将会是一个低成本高效率的检测方法,但灵敏度差,不能精确定量.仪器分析法虽然灵敏度高,可以精确地反映水中嗅味物质的量,但是由于其设备比较昂贵,分析周期长,且每次只能对某一种或几种特定物质进行分析,受富集方法及仪器精度的影响,对浓度很低或难萃取污染物的分析具有一定的局限性.因此人们希望通过模型建立一种既快捷、又可以比较精确地测定水中嗅味物质总体数量的方法. 2004年,Davies等[20]对加拿大各湖泊水进行嗅味定量分析,并考察原水各项水质指标,发现水中嗅味物质总量和水中总磷含量存在某种函数关系.因此,通过对具体某地水体的主要水质指标进行模型分析,建立水质指标同致嗅物质浓度的关系也可能成为一种新的快速、较准确评价水体嗅味的方法.现今常用的方法是先用FPA法对样品水进行分析检测,初步确定引起水中不良口感的物质,如有必要,再用化学或仪器分析法进行进一步的鉴定及定量化分析.此外还有一种酶联免疫法(ELISA),是基于抗原 抗体反应原理发展起来的一种新检测方法,因其具有专一性强、灵敏度高、简便快速等优点,近年来广泛应用于生命科学领域.但由于嗅味化合物的相对分子质量一般<300,故不易得到高效的抗体,对2 MIB的检测灵敏度低.4 2 致嗅物质组成特性研究原水中致嗅物质的组成特性,是解决饮用水中异嗅问题的基础,国外对饮用水中致嗅物质的组成开展了大量研究.研究发现国外饮用水中的致嗅物质主要有土嗅素(geosmin)、2 甲基异莰醇(2 MIB)、2 甲氧基 3 异丙基吡嗪(IPMP)、2 甲氧基 3 异丁基吡嗪(IBMP)、2,3,6 三氯苯甲醚(TC A)等.土嗅素和2 MIB最为常见,是导致湖泊、水库等水体中产生土霉味(土腥味)和霉烂味的主要原因.它们主要是藻类和放线菌的代谢产物,嗅阈浓度很低,约为10 ng L,即使在水中的含量很小,也能产生嗅味问题.此外,也有文献报道芳香烃及氧化中间产物[21],2,3 丁二酮(2,3 butanedione)[22]造成了饮用水中的嗅味.我国水污染比发达国家严重,饮用水中致嗅物质的组成要复杂得多.除了土嗅素和2 MIB等微生物代谢产物类致嗅物质外,还有随径流进入江河湖库的污染物和厌氧分解产物中的致嗅物质,比如硫醇、硫醚类物质[23,24].在我国南方,河流密布雨水多,市内河渠成为污染物的排放地,受厌氧分解产物类致嗅物质污染的情况尤其普遍和严重.硫醇硫醚类物质正是2007年5月太湖水危机事件中的最主要的致嗅物质[25].因此,需要尽快开展适合我国国情的不同水源、不同季节、不同原因致嗅物质组成的研究.4 3 饮用水中致嗅物质的去除技术对于土嗅素和2 MIB等微生物代谢产物类致嗅物质的去除技术,国外已有一定研究基础,主要是采用吸附法去除,氧化法也有一定的去除效果.对于其他类型的饮用水致嗅物质,已有研究较少,特别是对硫醇、硫醚类致嗅物质的去除技术鲜见报道,而这类致嗅物质也是我国饮用水中普遍存在的致嗅物质组成的一部分.清华大学2006年在东莞饮用水处理研究中发现了硫醇、硫醚类致嗅物质的存在,并率先展开了对硫醇硫醚类致嗅物质的去除技术研究[23,26],研究成果直接指导了无锡水事件的应急处理[25].4 3 1 氧化技术对于水中土嗅素和2 MIB的去除,在水厂通常所用的氧化剂投加量下,KMnO4、NaClO、H2O2等氧化剂的效果较差,例如在臭氧投加量为2mg L左右时,去除率也只在35%左右[27].因此,对于这类致嗅物质,较低浓度时采用氧化方法可能有效,但无法应对较高浓度的土嗅素和2 MIB类致嗅物质.对于硫醇硫醚类物质的去除,氧化法的去除效果很好[26].在水厂常用投加量条件下,初始浓度相近时,完全氧化乙硫醇所需要的接触时间,臭氧最短,其次为二氧化氯,水厂普遍使用的氯和KMnO4所需要的接触时间>1h.氧化技术的研究主要集中在氧化剂和氧化条件,根据目标去除率确定氧化剂的投加量,缺乏对去除机制的探讨[28],不能直接应用到不同的水源、不同季节、不同原因、不同致嗅物质的去除[29].4 3 2 吸附技术大量的研究表明活性炭可以有效吸附土嗅素和2 MIB,土嗅素的吸附效果稍好于2 MIB[30].但是活性炭吸附容量有限,对于采用颗粒活性炭过滤需要对炭进行周期再生,增加炭床的费用也较高.当嗅味问题只是偶尔存在时可以使用粉状活性炭去除土嗅586环 境 科 学30卷素和2 MIB,但需要根据水源水中致嗅物质的种类和浓度、水源水中其他有机物的性质等确定粉末炭的投加量[31,32].当原水2 MIB为110ng L时,要使出水浓度低于嗅阈值,粉末炭的投加量需40mg L 以上.硫醇硫醚类致嗅物质的活性炭吸附效果较差.乙硫醇30min内的吸附去除率仅为30%左右,30 min以后浓度变化不大.吸附技术去除嗅味的研究主要集中在吸附剂的选择和用量方面,对去除机制的探讨还不够深入.4 3 3 其他技术除了常见氧化、吸附技术外,还有膜技术、生物降解技术和催化氧化技术对土嗅素和2 MIB的去除研究,未见这些技术对其它类致嗅物质去除的报道.膜技术:由于水中致嗅物质的分子量较小,单纯使用超滤膜或微滤膜无法有效去除水中的致嗅物质,必须与活性炭吸附联合使用,以去除水中嗅味.生物降解技术:土嗅素和2 MIB的生物降解速率相对较慢,因此,生物降解技术不适用于水厂净水工艺.Izaguirre等[33]的研究表明,2 MIB从290ng L降解到17ng L需要11d的时间,土嗅素需要的时间稍短些.Lim等[34]采用浸没式生物反应器处理韩国的Daechung湖水时发现,水力停留时间为30min,土嗅素进水为52ng L时,出水为30 4~25ng L,去除率为41 5%~51 9%,在藻类高发期仅采用生物处理难以去除水中的嗅味.Terauchi等[32]研究表明,当进水2 MIB浓度为110ng L时,经生物处理后出水为40ng L,去除率为63 6%.当进水浓度较高时,经过生物处理后的出水嗅味物质难以达到要求.高级氧化技术:高级氧化技术通过氧化剂(O3、KMnO4、H2O2等)与某种催化剂( Al2O3[35]、TiO2光催化、UV)的相互作用,产生 OH氧化分解水中致嗅物质,取得很好的除嗅效果.但该技术需要很高的设备投资,仍然处于试验阶段.4 4 饮用水中致嗅物质的去除工艺同致嗅物质去除技术的研究一样,去除致嗅物质的饮用水工艺的研究多是集中在土嗅素和2 MIB 等微生物代谢产物类致嗅物质上,对其它类致嗅物质的研究鲜见报道.4 4 1 常规工艺常规给水处理工艺难以去除水中的嗅味,如武汉团山水厂现有工艺(预氯化 混凝 接触过滤工艺)对土嗅素的去除率只有23%,滤后水为72 8 ng L[6].Kim等[36]研究认为常规处理工艺对5种致嗅物质的去除率为25%~40%,其中对IPMP的去除率最高为41 3%,其次是土嗅素为33 3%.4 4 2 臭氧 生物活性炭深度处理臭氧生物活性炭除嗅工艺的优势在于可以较长时间保持活性炭的能力,延长了活性炭的工作寿命.日本东京某水厂采用混凝沉淀 臭氧 生物活性炭处理工艺对含2 MIB的原水进行处理,常规处理后2 MIB为16~26ng L,经过O3 B AC技术处理后出水浓度为0~10ng L,去除率达60%~100%[37].臭氧生物活性炭深度处理工艺可高效地去除嗅味物质,同时也可去除水中的有机污染物和消毒副产物的前体物,提高水厂出水的生物稳定性,因此有很好的应用前景.但目前国内外对于臭氧活性炭工艺去除致嗅物质的机制还有待进一步研究.5 结论(1)饮用水嗅味问题是我国当前普遍存在的问题,而此方面的研究与国外存在一定的差距,必须给予足够的重视.(2)由于水污染较发达国家严重,我国饮用水中致嗅物质组成比较复杂,除了常见的微生物代谢产物土嗅素、2 MIB等物质外,还有一些外排的污染物和水体污染厌氧分解产物硫醇、硫醚等.(3)水厂实际运行的对饮用水中致嗅物质的去除技术主要是吸附技术和氧化技术,其中对土嗅素、2 MIB等微生物代谢产物类致嗅物质的去除,吸附法要优于氧化法;对硫醇、硫醚类致嗅物质的去除,宜采用氧化法.(4)国内外对去除致嗅物质的饮用水处理工艺研究大多集中于对土嗅素和2 MIB的去除,并多限于特定水源、一定浓度致嗅物质的去除工艺参数的确定,不能直接应用到不同水源、不同致嗅物质浓度、不同工艺的情况,对于去除技术机制的研究还有待深入.(5)当前,应该尽快开展我国不同地区、不同季节饮用水中致嗅物质组成特性研究,开展针对典型致嗅物质提高饮用水处理技术及工艺除嗅效果及机制的研究,形成可应对不同水源、不同季节、不同致嗅物质种类的饮用水处理工艺.参考文献:[1] 王占生.预计的臭味争议与水质督察[J].给水排水,2007,33(3): 1.[2] Sagehas hi M,Shirais hi K,Fujita H,et al.Oz one decomposition of2 methylisoborneol(M IB)i n ads orpti on phase on hi gh silica zeolites5872期李勇等:我国饮用水中嗅味问题及其研究进展wi th preventing bromate formation[J].Water Research,2005,39(13):2926 2934.[3] Demps ter T A.Taste and odor problems in source waters and watertreatment faci li ties[D].US:Arizona State Universi ty,2006.[4] 李镜明,叶舟,蒋海涛.富营养化湖泊水除臭试验研究[J].给水排水,1996,22(3):5 7.[5] 徐振林.二氧化氯除浑河水、水库水的臭味实验[J].辽宁城乡环境科技,1999,19(5):80 81.[6] 蒋海涛,韩润平,高廷耀.LFSA GC技术测定水体臭气[J].江苏环境科技,2002,15(1):1 2.[7] 刘强.高锰酸钾 湿式粉末活性炭除臭技术研究[D].西安:西安建筑科技大学,2004.[8] 刘洋,张声,张晓健.溶气气浮工艺处理密云水库水的研究[J].工业用水与废水,2004,35(6):17 20.[9] 张亚彤,霍庭秀,王瑞萍,等.黄河内蒙古段 6.26 水污染事件原因及对策[J].内蒙古水利,2006,105(1):62 64.[10] 王春娥,曾慧,赵劲涛,等.二氧化氯预氧化工艺处理微污染黄河水研究[J].环境科学与管理,2006,31(7):115 117.[11] 乔铁军,安娜,尤作亮,等.梅林水厂臭氧 生物活性炭工艺的运行效果[J].中国给水排水,2006,22(13):10 14.[12] 魏良勤,孙桂学,姜伟李,等.一起自来水污染事件[J].预防医学文献信息,1999,5(4):366.[13] Suffet I H,Khiari D,Bruchet A.The drinking water tas te and odorwheel for the millennium:Beyond geosmin and2 me thylis oborneol[J].Water Science and Tec hnology,1999,40(6):1 13.[14] 宋立荣,李林,陈伟,等.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,2004,28(4):434 439.[15] Young J M,Trask B J.The sense of smell:genomics of vertebrateodorant receptors[J].Human Molecular Genetics,2002,11(10):1153 1160.[16] Morran J,Marchesan M.Taste and odour tes ti ng:how valuable istraini ng?[J].Water Science and Technology,2004,49(9):69 74.[17] 周勤,孙伟.给水中的致味物质及其检测方法[J].工业水处理,2004,24(1):5 7.[18] Alfredo D,Francesc V M,Teres a G.Determi nati on of odorous mi xedchloro bro moanisoles in water by s olid phas e micro extraction and gaschromatography mas s detection[J].J ournal of Chromatography A,2005,1064:97 106.[19] Zhang L,Hu R,Yang Z.Routine analysis of off flavor compounds inwater at s ub part per trillion level by l arge volume injection GC MSwi th programmable temperature vaporizi ng inlet[J].Water Research,2006,40(4):699 709.[20] Davies J M,Roxborough M,M az umder A.Origi ns and i mplications ofdrinki ng water odours in lakes and reservoirs of British Columbia,Canada[J].Water Res earch,2004,38(7):1900 1910.[21] Satc hwill T.Dri nki ng water tas te and odor:Compound identi ficationand treatment[D].Canada:Universi ty of Calgary,2001.[22] Diaz A,Ventura F,Galceran M T.Identification of2,3 butanedione(diacetyl)as the c ompound causing odor events at trace levels in theLlobregat Ri ver and Barcelona s treated water(Spain)[J].J ournal ofChromatography A,2004,1034(1 2):175 182.[23] 李勇,张晓健,陈超,等.臭氧活性炭工艺对东江原水中臭味的去除研究[R].浙江嘉兴:中国土木工程学会水工业分会给水深度处理研究会年会,2006.[24] Zhang X J,Li Y,Chen C,et al.Determination and Removal of a kindof R otten Odor i n Surface Water of Southern China[R].Perth,Austrualia:2nd IWA ASPIRE Conference and Exhibiti on,2007. [25] 张晓健,张悦,王欢,等.无锡自来水事件的城市供水应急除臭处理技术[J].给水排水,2007,33(9):7 12.[26] 李勇,张晓健,陈超,等.我国饮用水中致嗅物质组成及其去除技术研究[R].北京:第一届全国博士生学术会议,2007. [27] Robert N,Ri tti mann B E,Soucie W J.Ozone biofil tration forremoving MIB and geos min[J].Journal of American Water Works As soci ation,2000,92(12):85 95.[28] Bruchet A,Duguet J P.Role of oxi dants and disinfectants on theremoval,masking and generation of tastes and odours[J].WaterScience and Technol ogy,2004,49(9):297 306.[29] Peter A,von Gunten U.Oxidation kinetics of selec ted tas te and odorcompounds during oz onati on of drinking water[J].EnvironmentalScience&Technology,2007,41(2):626 631.[30] As hitani K,His hida Y,Fuji wara K,et al.Behavior of musty odorouscompounds during the process of water treatment[A].In:2.IAWPRCInternational Symposi um on Off flavours i n the Aquatic Environment[C].Japan:Kagoshi ma,1988.[31] Newcombe G,Morrison J,Hepple white C,e t al.Simultaneousadsorpti on of MIB and NOM onto activated carbon .Competitiveeffects[J].Carbon,2002,40(12):2147 2156.[32] Terauchi N,Ohtani T,Ya manaka K,e t al.Studies on a BiologicalFilter for Mus ty Odor Removal in Drinki ng Water Treatment Process es[J].Water Science and Technol ogy,1995,31(11):229 235. [33] Izaguirre G,Wolfe R L,Means E G .Degradation of2 M ethylis oborneol by Aquatic Bacteri a[J].Applied andEnvironmental Microbi ol ogy,1988,54:2424 2431.[34] Lim K H,Shin H S.Operating characteris tics of aerated s ubmergedbiofil m reactors for drinking water treatment[J].Water Science andTechnol ogy,1997,36(12):101 109.[35] 陈忠林,齐飞,徐冰冰,等. Al2O3催化臭氧氧化水中嗅味物质MIB效能研究[J].环境科学,2007,28(2):322 328.[36] Kim Y,Lee Y,Gee C S,et al.Treatment of taste and odor causi ngs ubs tances in drinking water[J].Water Science and Technology,1997,35(8):29 36.[37] M ura moto S,Udagawa T,O kamura T.Effective removal of mus ty odorin the Kanamachi puri fication plant[J].Water Sci ence andTechnol ogy,1995,31(11):219 222.588环 境 科 学30卷。
水环境嗅味问题及控制重点技术

水环境嗅味问题及控制技术嗅味是广大消费者用来判断饮用水水质优劣旳重要根据,水体异味往往容易引起消费者旳恐慌和对水质旳怀疑,甚至会将异味较重旳水视为不安全而回绝饮用。
国内许多都市旳饮用水中均存在口感不好或明显异味旳问题,而随着消费者对饮用水质量规定旳提高,此类问题引起了广泛旳关注。
近年来国内科研单位以及供水行业部门对水中异味问题开始进行了较多旳研究,然而与国外相比研究起步较晚,如何有效解决水中嗅味问题已成为供水行业所面临旳一种严峻挑战。
1 嗅味旳化学基本目前研究中最为普遍关注旳臭味化合物,重要涉及土臭素,2-甲基异莰醇,2-异丙基-甲氧基吡嗦,2-异丁基-甲氧基吡嗦等,其中以土臭素(Geosmin)和2-甲基异莰醇(2-Methyl Isoborneol,2-MIB)为主,她们旳化学构造如下所示,她们产生重要气味是霉臭,樟脑味,药味等等,其臭阈值一般在ng/L级别。
Geosmin 2-MIB目前尚无报道发现Geosmin和2-MIB对生物致死旳现象,但是它们对生物体也许存在一定旳影响。
目前,日本是世界上唯一一种将Geosmin和2-MIB列入饮用水指标旳国家,规定饮用水中Geosmin和2-MIB旳浓度最高为10ng/L。
国内旳《生活饮用水卫生原则》附录A 中也将Geosmin和2-MIB列入生活饮用水水质参照指标,并规定其限值均为10ng/L。
此外,尚有一类硫醇,硫醚类化合物,也是臭味旳重要来源之一,常用旳有硫醇(CH3SH),硫醚(CH3SCH3),二甲基三硫醚(CH3SSSCH3)等,她们产生旳重要气味是蔬菜腐败旳气味,其臭阈值一般在ug/L级别。
2 嗅味旳来源土臭素和2-甲基异莰醇是放线菌和蓝绿藻旳二级代谢物, 具有挥发性。
现已发既有22种放线菌、15种蓝藻、2种真菌、1种粘液性细菌可生成Geosmin,在具有土霉味旳鱼肉中也可得到Geosmin;2-甲基异莰醇具有土霉味, 可由几种链霉菌, 16种放线菌、4种蓝藻所产生,纯品是一种白色固体结晶。
饮用水的臭味物质和对人体健康的影响

06
结论
研究总结
1
饮用水中的臭味物质主要是指有机和无机化合 物,如硫化氢、甲烷硫醇、氨等。
2
这些臭味物质不仅影响饮用水的气味和口感, 而且可能对人体健康产生不良影响。
3
研究发现,臭味物质可以引起急性或慢性毒性 作用,甚至致癌。
研究不足与展望
01
目前的研究主要集中在臭味物质的检测和分类上,但对臭味物质的形成机制及 其在饮用水中的浓度和分布规律仍需深入研究。
损害认知能力
长期饮用含有某些臭味物质的饮用水,可能对儿童的认知能力产生不良影响 ,如降低智力水平、学习能力等。
对心血管系统的影响
心血管疾病风险增加
长期饮用含有臭味物质的饮用水,可能增加患心血管疾病的风险,如冠心病、高 血压、动脉硬化等。
心律失常
某些臭味物质可能对心血管系统产生毒性作用,导致心律失常、心肌损伤等问题 。
02
饮用水中常见的臭味物质
硫化氢
臭味特性
硫化氢是一种具有臭鸡蛋气味的化合物,是饮用水中常见的臭味物质之一。
产生原因
硫化氢的产生主要是由于水中的硫酸盐在还原菌的作用下分解产生。
甲基硫醇
臭味特性
甲基硫醇是一种具有腐烂洋葱气味的化合物,其臭味较为强 烈。
产生原因
甲基硫醇是水中有机物分解的产物之一,其产生与水中的有 机物含量和水质有关。
部分臭味物质如二氯甲烷、三氯甲烷等可能 对神经系统产生毒性作用,长期接触可能引 起头晕、头痛、记忆力减退等症状
05
解决饮用水臭味物质的建议
加强水源保护和污染治理
1 2 3
控制点源污染
实施严格的环保法规,减少工业、农业和城市 污水排放,防止对饮用水源的污染。
饮用水中嗅味问题及其研究进展

情况下, 饮用水 中的异嗅昧并不会 给人体健康带来威胁 , 然而水中的异嗅味 容易引起人体感官上的不适而难以饮用 , 同样水中过量的嗅味物质及某些不 良的嗅味化合物容易影响人体健康。因此 , 如何避免饮用水中嗅味问题及其
解 决水 中 嗅味 问题 已引起 国 内外 学术 届 的广 泛关 注 。
相同, 从 而 导致其 测 定结 果 缺乏 客 观性 , 误 差 较大 , 精 密 度不 高 , 重 现性 较差 。
3 . 2仪 器分析 法
仪 器分 析 法就 是利 用 气相 色谱 一 质 谱联 用仪 ( G C — M S ) 对水 体 中 的嗅 味 物
质 进行 定 性定 量 的分 析 。 目前 , 该方 法 为测 定水 中痕量 有 机物 最 为有 效 的 方 法 之一 , 它 可 以对水 中 挥发 性及 半挥 发 性有 机物 很 好地 进 行定 性 定量 。仪 器
施 工技术 与应 用
饮用水 中嗅 味问题及其研 究进展
摘要 : 嗅味问题是我国饮用水 中存在的主要问题之一。本文主要阐述 了我国饮用水 中主要存在 的嗅味问题 , 并着重介绍 了国内
外在 此 方面 的研 究进 展 。从 饮 用水 水 源及 生产 输 配两 方 面阐述 了饮用 水 中嗅 味 问题产 生的 原 因。水 中嗅味检 测技 术 主要 包 括感 官 分析 法 、 仪 器分 析 法及 综 合分 析 法三 大类 , 本 文对 这 三 类方 法 的研 究进 展 进行 了综述 。 嗅味物 质 的去 除技 术 主要包 括 吸 附 去除 、 氧 化去 除及 其 他去 除技 术 , 对不 同 的致 嗅物 质 , 其 去 除 方 法各 不相 同。通 过 分析 比较 , 指 出 了各 检 测 技 术及 去 除技 术 的优 缺 点及 适用 范围, 并 为今 后 的研 究方 向提 出 了几 点建 议 。 关键 词 : 饮用水; 嗅味 ; 检 测技 术 ; 去除技 术
饮用水中嗅味物质的研究进展

饮用水中嗅味物质的研究进展发布时间:2022-12-07T08:57:34.127Z 来源:《城镇建设》2022年第15期8月作者:钱莹莹[导读] 在即将施行的《生活饮用水卫生标准》( GB5749-2022)将土臭素( Geosmin,GSM) 和2-甲基异莰醇( 2-methylisoboneol,2-MIB)由现行标准中的生活饮用水水质参考指标改变为水质扩展指标。
钱莹莹合肥供水集团有限公司摘要:在即将施行的《生活饮用水卫生标准》( GB5749-2022)将土臭素( Geosmin,GSM) 和2-甲基异莰醇( 2-methylisoboneol,2-MIB)由现行标准中的生活饮用水水质参考指标改变为水质扩展指标。
因此对饮用水中嗅味物质的研究进展加以关注具有重要意义。
1.饮用水中典型嗅味物质类型对于饮用水的嗅味分类,国外普遍采用饮用水嗅味轮图,将饮用水中嗅味分为3大类13种,其中鼻子可嗅到的主要有8种,其主要物质和来源见表1。
表1 饮用水中典型嗅味物质及来源2.饮用水中典型嗅味物质的去除技术吸附处理因其便利和经济的特性,常被各水厂采用。
活性炭是最常用的吸附剂,常用活性炭吸附剂有粉末活性炭( PAC) 、颗粒活性炭( GAC) 和活性炭纤维( ACF) ,具有比表面积大、微孔发达、吸附能力强、优先吸附有机物的优点,对嗅味物质的去除效果较好。
其作用机理主要是通过活性炭的物理吸附和微生物降解作用。
目前应用最多的是活性炭吸附。
化学氧化技术主要依靠氧化剂的高氧化电位对目标污染物进行降解,从而实现了污染物的去除。
常使用的氧化剂主要有氯、高锰酸钾、臭氧等。
与氯、二氧化氯等氧化剂相比,臭氧对嗅味物质有着较高的去除能力,但是当臭氧投加量大则会抑制氧化作用,易生成溴酸盐等副产物。
而以臭氧为氧化剂的催化氧化技术既可提高臭氧的氧化能力,还能减少副产物的产生。
近些年兴起的光催化化法则是在光催化剂( TiO2) 的作用下,利用光能降解难降解有机物的新型水处理技术,该方法具有分解能力高、操作简便、不需额外氧化剂等优点。
饮用水异臭异味来源及检测方法研究

进样 口, 热饵 吸涂 层上吸附的物质 。 被萃取 物在汽化室 内解吸后 , 靠流动相将其导人色谱柱 , 完成提取 、 分离 、 浓缩 的全过程。( 5 ) 吹 扫捕集 ( P & : 其 原理是使 吹洗 气体连 续通 过样 品将 其 中的挥发 组分萃取 后在吸附剂 或冷 阱中捕 集 , 再进行 分析测 定 , 因而是一 种非平衡态连续萃取 。 这种方法几乎能全部定量地将被测 物萃取 出来 , 不但萃取效率高 , 而且被测物可 以被浓缩 , 使方法灵敏度大
快速、 成本低廉 的前处理技术 , 预先在微 量注射器 里吸入有机 溶 参考发达 国家的水质标准 , 又要 充分 考虑我 国的实际情况。
剂, 推 动注射器使有 机溶剂悬 挂在注射 器针尖 端 , 并将之伸入 待 在《 生活饮用水标准检验方 法》 和《 水和废水检测分析 方法 书 测水 样 , 萃取一定 时问后将有 机溶剂完 全吸人 注射 器 内 , 再注入 四版) 》 中, 对臭 味的测定 主要 采用传统的 T O N法和 F R A法 , 这两 G C分析 ; ( 3 ) 固相萃取( S P E ) : 利用 固体吸附剂将待测物吸附 , 使 其 种方法简便快速 , 费用低廉 , 但 只能 给出臭 和味的强度 , 缺乏对臭 与样 品基体和 干扰物分离 , 再 用洗脱或 加热解 吸附 , 达到分离 和 和味性质 的描 述 , 而 F P A法是一种半定量 的分析方法 , 提高 了分 富集 的 目的 , 与传 统的液液萃取法相 比较可 以提高分析物 的回收 析结果的重复性和可靠性 , 我们 应积极吸收国外对 检测 人员严格 率; ( 4 )固相 微 萃 取 ( s P ME ) :最 先 由加 拿 大 Wa t e r l o o大学 的 挑 选与培训 的经验 , 培 养一批客 观公正 的嗅辨员 , 建立并完 善一 P a w l i s z y n教授 的研究小组 于 1 9 8 9年首次进行开发研究 ,属 于非 套适合 我国国情 的水 中嗅味评价体系。 溶剂型选择性萃取法 。 将纤维头浸入样品溶液 中或顶空气体 中一 G C — MS 仪 器分 析法选择性强 、 灵敏度高 , 结合适 当的样 品前 段时间 , 同时搅拌溶液 以加速平衡 , 待平 衡后 将纤维头插入 G C的 处 理技术后 , 可 以精确 地完成痕量 有机物 的定 性定量分析 , 但设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国饮用水中嗅味问题及其研究进展李勇,张晓健,陈超(清华大学环境科学与工程系,北京 100084)摘要:综述了我国饮用水中的嗅味问题及其国内外研究进展,着重讨论了我国面临的饮用水中嗅味问题的现状、水中嗅味来源及饮用水中嗅味的定性定量分析技术、致嗅物质组成特性、典型致嗅物质的去除技术及工艺.旨在阐明除了土嗅素(geosmin)和2 甲基异莰醇(2 MIB)等微生物代谢产物外,硫醇硫醚类厌氧分解产物也是我国饮用水中重要的致嗅物质.硫醇硫醚类致嗅物质于2006年首次在东莞饮用水中发现,后被证明也是2007年太湖饮用水危机中的主要致嗅物质.Geosmin 和2 MIB 的吸附效果好于氧化,而硫醇硫醚类致嗅物质易于被氧化去除,不易被吸附去除.需要尽快开展我国饮用水中致嗅物质组成特性及典型致嗅物质去除技术和工艺的研究,形成应对不同水源、不同季节、不同致嗅物质嗅味的饮用水处理工艺.关键词:饮用水;嗅味;硫醇;硫醚;微生物代谢产物;土嗅素;2 甲基异莰醇中图分类号:X52;TU991 21 文献标识码:A 文章编号:0250 3301(2009)02 0583 06收稿日期:2008 02 23;修订日期:2008 04 07基金项目:国家自然科学基金项目(50778097);国家科技支撑计划项目(2007BAC26B03)作者简介:李勇(1979~),男,博士研究生,主要研究方向为饮用水深度处理,E mail:yongli05@Review on the Tastes and Odors Compounds in Drinking Water of ChinaLI Yong,ZHANG Xiao jian,C HE N Chao(Department of Environmental Science and Engineering,Tsinghua Universi ty,Beijin g 100084,China)Abstract :T astes and odors problems (T&Os)in China and studies on T&Os are reviewed,especially on aspects of the present situation in China,sources of T&Os in water,T&Os qualitative &quantitative technology,odorant composing characters,removal technologies and p rocesses on typical odorant in drinki ng water.This review aims to elucidate that besides microbial metabolism product such as geosmin and 2 MIB,organic anaerobic decomposi tion p roduct such as thiol thioether were also main odoran t in drinking water of China.T hiol thi oether odorant which was found in drinking water of Dongguan in 2006for the first ti me,was proved to be the main odorant in Taihu Lake drinking water risk in 2007as well.Geosmin and 2 MIB were more easily removed by adsorption than oxidation,but thiol thioether was easily removed by oxidation not by adsorption.In order to cope with T&Os i n different water source,different season and different odorant,studies on odorant composing character,removal technology,mechanism and process of typical odoran t should be carried out as soon as possible in China.Key words :drinking water;taste and odor;thiol;thioether;microbial metabolism product;geosmin;2 MIB随着人们对饮用水的质量的要求越来越高,水中的嗅味(tastes and odors)已经引起人们的重视.我国新的 生活饮用水卫生标准 (GB 5749 2006)已经于2007年7月1日颁布并实施.新标准中非常规检验项目数量多、要求高,但通常水源中都不会超标,加上水厂的净化工艺,一般都能保证水质合格[1].而常规检验中,嗅味列入了出厂水、管网水的必测项目,水的合格率将会因此而受到影响,因此必须给予足够的重视.国外自20世纪50年代就开始了对水体异味的研究,至今已成为当今世界水环境[2]研究热点之一,而我国在这方面的研究相对较晚,相关研究工作也刚刚起步.本文就我国面临的饮用水中嗅味问题的现状,水中嗅味的危害、分类、来源和水中嗅味的定性定量分析技术、致嗅物质组成特性、典型致嗅物质的去除技术及工艺等方面的国内外研究进展进行综述.1 饮用水中的嗅味问题饮用水中的嗅味问题在国内外普遍存在,成为各供水者必须面临的重要问题.早在1850年,美国就发现了水体异味.1944年,美国Niagara Falls 水厂由于酚污染产生嗅和味后,引起广大居民投诉.1997年在美国Phoenix 市发生的一次饮用水异味事件中,该市水务部门每星期都要接到几百个投诉电话[3].1969年5月,日本的琵琶湖发生严重饮用水异味事件,影响了日本京都、大阪、神户地区的居民供水.在我国,许多城镇都以湖泊、河流作为主要的供水水源.近年来,随着城市建设、工农业生产的发展以及城市人口的增加,大量未经处理的污水与废水排入天然水体,饮用水异味的报道越来越多.表1列出了近年来文献报道的国内饮用水中的嗅味问题,从中可以看出我国面临的饮用水中嗅味问题非常严重,而且分布范围广,已经是一个比较普遍的问题.特别是在2007年5月暴发的太湖水危机第30卷第2期2009年2月环 境 科 学ENVIRONME NTAL SCIENCEVol.30,No.2Feb.,2009表1 近年来文献报道的饮用水嗅味问题Table1 Tas tes and odors accidents reported i n drinking water of China 地区,水源时间报道的TON测定结果江苏,太湖1996200[4]辽宁,浑河1999100[5]湖北,东湖200270[6]安徽,巢湖2002100[4]山东,玉清湖水库200416[7]山东,15个城市水源2004均存在嗅味问题,其中2 M B在100~200 ng L,最高达到700 ng L[7]北京,密云水库2004(每年9~10月)24[8],2 MIB浓度在200ng L以上内蒙古乌素梅尔海,黄河2004黑臭[9]内蒙古包头,黄河200670[10]广东深圳,深圳水库2006>100[11]广东东莞,东江春季、夏季50上海,黄浦江长期(每年7~10月)以2 MIB为主,浓度在50~150ng L河南郑州,黄河春季鱼腥味江苏无锡,太湖2007 05200河北秦皇岛,北戴河2007 091000事件中,自来水中的严重异味影响了无锡市几十万人的正常饮水,引起了国内外的广泛关注.2 饮用水中嗅味的危害一般情况下,水中的嗅味不会对人体健康造成威胁,但人及其它生物通过感知这些不良嗅味而避免饮用.饮用水中的异嗅和异味不仅影响水的可饮性,严重损害饮用水的质量,而且产生不良嗅味的某些化合物,还会直接损害人体健康.1998年9月22日,某地居民饮用了有异味的水后,先后发生腹痛、腹泻等消化道症状病例38例.出现症状者,于饮用该村自来水后最早1h,最晚者3h[12].3 饮用水中嗅味的来源及分类3 1 水中嗅味分类水中的嗅味(flavor)包括嗅(气味,odors)、味(味道,tastes)和口感(mouth feel)3方面,以嗅的问题为主,是水中某些化学物质,即致嗅物质对人的舌、鼻及口等处感觉末梢神经刺激的一种综合感觉.在欧美国家,让一组训练有素的专业人员,饮用待测水,并采用日常用语对水中的嗅味进行描述和评价.依据长时间积累的资料,他们提出了一个嗅味分析轮型图(drinking water taste and odor wheel),在这个图上把人的感官性状描述与水中存在的化合物联系起来(如图1)[13].3 2 饮用水中致嗅物质来源从饮用水的生产过程来看,致嗅物质可能主要来源于3个过程.首先是原水中本身含有致嗅物质.目前国内外关于水中嗅味的问题的研究大多集中于该方面.二是原水经过水厂进行处理时,投加的药剂及其同原水物质反应所产生的物质带来的异嗅和异味(氯味、臭氧味等).国外对活性炭去除嗅味及消毒过程所产生的嗅味方面已有详细研究,而我国在该方面的研究还有待进一步开展.三是处理后的水在经过配水系统输送到用户过程中,在管网系统中引入的杂质产生嗅和味.国外对该方面的研究已经开始,而国内鲜见相关报道.根据其来源,原水中的致嗅物质可分为2大类:一类属于天然来源,大多数是从土壤、岩石中析出的矿物质,如铁、锰等;另一类是人类活动影响的结果,这类致嗅物质是水中致嗅物质最主要的来源.一方面人类直接向水体中排放致嗅化合物,如酚类化合物等,另一方面人类排入水中有机物的分解产物(如硫醇、硫化氢、胺类等)以及水中某些微生物的代谢产物的释放,如土嗅素(geosmin)和2 甲基异莰醇(2 MIB)等,使水产生嗅味.4 水中嗅味问题研究人们对嗅味的研究,最早开始于食品工业,20世纪40年代开始引用于饮用水的研究.水中嗅味问题的研究是一个多学科交叉的研究领域,它涉及化学分析、生物生理、湖沼、食品与数理统计等学科领域[14].其中饮用水中嗅味问题的研究主要集中在嗅味的定量分析技术、典型致嗅物质的去除技术及工艺方面.4 1 水中嗅味的定性定量分析技术水中嗅味的定性定量分析技术是解决水中嗅味问题的前提和基础.通常情况下,水中嗅味组成非常复杂,并且水中致嗅物质的嗅阈值(odor threshold concentration,OTC)浓度极低,因而对水中致嗅物质的定量分析技术比较困难,成为水中嗅味问题研究的关键.水中嗅味的定性定量分析方法有很多,一般可以分为3种,感官分析法、仪器分析法和综合分析法.4 1 1 感官分析法感官分析法主要包括臭阈值法(threshold odor number,TON)、嗅味等级描述法(flavor rating assessment,FRA)和嗅味层次分析法(flavor profile analysis,FPA)[15]等.FPA法首先应用于美国[16],它由584环 境 科 学30卷图1 嗅味分类轮图Fi g.1 Tas tes and odors wheel经过严格训练的分析者对水样进行集体评定嗅味强度与特性.此法不需对水样进行稀释,可对嗅味的种类及强度进行较精确的描述,且具有一定的定性和定量分析能力.该法逐步被欧美等国的许多水厂采用,并已被列入美国水质分析标准方法中,但此法对分析者的要求很高,并且需要专门的培训,还没有在国内推广.感官分析法可以了解水中气味的物理特性,但由于人们对嗅的敏感度各不相同,在感知气味的过程中可能会出现疲劳现象,往往会导致数据客观性不足,重复性差,不同时间、地点的数据也难以比较,而且对于混合气味,由于不同气味间的协同和中和效应,感官分析法难以区别,对气味难以恰当描述,对引起气味的物质也无法判断[17].另外,使用FPA法检测水的味道时首先必需确保样品水的卫生安全饮用性,不适宜含有某些危险性化合物样品的检测.4 1 2 仪器分析法色质联检GC MS是分析痕量有机物的有效手段,可以很好地完成挥发性和半挥发性有机物的定性定量.此法测定结果的选择性强、灵敏度高,故在美、日各国普遍采用[18],而水中气味的分析关键在于气味的富集,气味物质的富集方法有密闭循环吹脱法(closed loop stripping analysis,CLSA[19])、开口循环吹脱法(open loop stripping analysis,OLSA)、吹扫捕集法(purge and trap,P&T)、液液萃取(liquid liquid extraction,LLE)、水蒸气蒸馏萃取(steam distillation extraction,SDE)、固相萃取(solid phase e xtraction, SPE)、固相微萃取(solid phase Microextraction,SP ME)等.其中,C LSA GC是目前世界上各国公认最精确的异味测定方法.但该方法对系统的压力控制和循环泵质量要求较高,国内采用OLAS、P&T和SPME等5852期李勇等:我国饮用水中嗅味问题及其研究进展方法替代[17],并在以土嗅素和2 MIB为主的异味物质检测方面取得一定效果.4 1 3 综合分析法FPA法适用于确定给水是否有异于无臭水和评价人们在使用过程中的接受程度,如果使用经验丰富的评定人员,将会是一个低成本高效率的检测方法,但灵敏度差,不能精确定量.仪器分析法虽然灵敏度高,可以精确地反映水中嗅味物质的量,但是由于其设备比较昂贵,分析周期长,且每次只能对某一种或几种特定物质进行分析,受富集方法及仪器精度的影响,对浓度很低或难萃取污染物的分析具有一定的局限性.因此人们希望通过模型建立一种既快捷、又可以比较精确地测定水中嗅味物质总体数量的方法. 2004年,Davies等[20]对加拿大各湖泊水进行嗅味定量分析,并考察原水各项水质指标,发现水中嗅味物质总量和水中总磷含量存在某种函数关系.因此,通过对具体某地水体的主要水质指标进行模型分析,建立水质指标同致嗅物质浓度的关系也可能成为一种新的快速、较准确评价水体嗅味的方法.现今常用的方法是先用FPA法对样品水进行分析检测,初步确定引起水中不良口感的物质,如有必要,再用化学或仪器分析法进行进一步的鉴定及定量化分析.此外还有一种酶联免疫法(ELISA),是基于抗原 抗体反应原理发展起来的一种新检测方法,因其具有专一性强、灵敏度高、简便快速等优点,近年来广泛应用于生命科学领域.但由于嗅味化合物的相对分子质量一般<300,故不易得到高效的抗体,对2 MIB的检测灵敏度低.4 2 致嗅物质组成特性研究原水中致嗅物质的组成特性,是解决饮用水中异嗅问题的基础,国外对饮用水中致嗅物质的组成开展了大量研究.研究发现国外饮用水中的致嗅物质主要有土嗅素(geosmin)、2 甲基异莰醇(2 MIB)、2 甲氧基 3 异丙基吡嗪(IPMP)、2 甲氧基 3 异丁基吡嗪(IBMP)、2,3,6 三氯苯甲醚(TC A)等.土嗅素和2 MIB最为常见,是导致湖泊、水库等水体中产生土霉味(土腥味)和霉烂味的主要原因.它们主要是藻类和放线菌的代谢产物,嗅阈浓度很低,约为10 ng L,即使在水中的含量很小,也能产生嗅味问题.此外,也有文献报道芳香烃及氧化中间产物[21],2,3 丁二酮(2,3 butanedione)[22]造成了饮用水中的嗅味.我国水污染比发达国家严重,饮用水中致嗅物质的组成要复杂得多.除了土嗅素和2 MIB等微生物代谢产物类致嗅物质外,还有随径流进入江河湖库的污染物和厌氧分解产物中的致嗅物质,比如硫醇、硫醚类物质[23,24].在我国南方,河流密布雨水多,市内河渠成为污染物的排放地,受厌氧分解产物类致嗅物质污染的情况尤其普遍和严重.硫醇硫醚类物质正是2007年5月太湖水危机事件中的最主要的致嗅物质[25].因此,需要尽快开展适合我国国情的不同水源、不同季节、不同原因致嗅物质组成的研究.4 3 饮用水中致嗅物质的去除技术对于土嗅素和2 MIB等微生物代谢产物类致嗅物质的去除技术,国外已有一定研究基础,主要是采用吸附法去除,氧化法也有一定的去除效果.对于其他类型的饮用水致嗅物质,已有研究较少,特别是对硫醇、硫醚类致嗅物质的去除技术鲜见报道,而这类致嗅物质也是我国饮用水中普遍存在的致嗅物质组成的一部分.清华大学2006年在东莞饮用水处理研究中发现了硫醇、硫醚类致嗅物质的存在,并率先展开了对硫醇硫醚类致嗅物质的去除技术研究[23,26],研究成果直接指导了无锡水事件的应急处理[25].4 3 1 氧化技术对于水中土嗅素和2 MIB的去除,在水厂通常所用的氧化剂投加量下,KMnO4、NaClO、H2O2等氧化剂的效果较差,例如在臭氧投加量为2mg L左右时,去除率也只在35%左右[27].因此,对于这类致嗅物质,较低浓度时采用氧化方法可能有效,但无法应对较高浓度的土嗅素和2 MIB类致嗅物质.对于硫醇硫醚类物质的去除,氧化法的去除效果很好[26].在水厂常用投加量条件下,初始浓度相近时,完全氧化乙硫醇所需要的接触时间,臭氧最短,其次为二氧化氯,水厂普遍使用的氯和KMnO4所需要的接触时间>1h.氧化技术的研究主要集中在氧化剂和氧化条件,根据目标去除率确定氧化剂的投加量,缺乏对去除机制的探讨[28],不能直接应用到不同的水源、不同季节、不同原因、不同致嗅物质的去除[29].4 3 2 吸附技术大量的研究表明活性炭可以有效吸附土嗅素和2 MIB,土嗅素的吸附效果稍好于2 MIB[30].但是活性炭吸附容量有限,对于采用颗粒活性炭过滤需要对炭进行周期再生,增加炭床的费用也较高.当嗅味问题只是偶尔存在时可以使用粉状活性炭去除土嗅586环 境 科 学30卷素和2 MIB,但需要根据水源水中致嗅物质的种类和浓度、水源水中其他有机物的性质等确定粉末炭的投加量[31,32].当原水2 MIB为110ng L时,要使出水浓度低于嗅阈值,粉末炭的投加量需40mg L 以上.硫醇硫醚类致嗅物质的活性炭吸附效果较差.乙硫醇30min内的吸附去除率仅为30%左右,30 min以后浓度变化不大.吸附技术去除嗅味的研究主要集中在吸附剂的选择和用量方面,对去除机制的探讨还不够深入.4 3 3 其他技术除了常见氧化、吸附技术外,还有膜技术、生物降解技术和催化氧化技术对土嗅素和2 MIB的去除研究,未见这些技术对其它类致嗅物质去除的报道.膜技术:由于水中致嗅物质的分子量较小,单纯使用超滤膜或微滤膜无法有效去除水中的致嗅物质,必须与活性炭吸附联合使用,以去除水中嗅味.生物降解技术:土嗅素和2 MIB的生物降解速率相对较慢,因此,生物降解技术不适用于水厂净水工艺.Izaguirre等[33]的研究表明,2 MIB从290ng L降解到17ng L需要11d的时间,土嗅素需要的时间稍短些.Lim等[34]采用浸没式生物反应器处理韩国的Daechung湖水时发现,水力停留时间为30min,土嗅素进水为52ng L时,出水为30 4~25ng L,去除率为41 5%~51 9%,在藻类高发期仅采用生物处理难以去除水中的嗅味.Terauchi等[32]研究表明,当进水2 MIB浓度为110ng L时,经生物处理后出水为40ng L,去除率为63 6%.当进水浓度较高时,经过生物处理后的出水嗅味物质难以达到要求.高级氧化技术:高级氧化技术通过氧化剂(O3、KMnO4、H2O2等)与某种催化剂( Al2O3[35]、TiO2光催化、UV)的相互作用,产生 OH氧化分解水中致嗅物质,取得很好的除嗅效果.但该技术需要很高的设备投资,仍然处于试验阶段.4 4 饮用水中致嗅物质的去除工艺同致嗅物质去除技术的研究一样,去除致嗅物质的饮用水工艺的研究多是集中在土嗅素和2 MIB 等微生物代谢产物类致嗅物质上,对其它类致嗅物质的研究鲜见报道.4 4 1 常规工艺常规给水处理工艺难以去除水中的嗅味,如武汉团山水厂现有工艺(预氯化 混凝 接触过滤工艺)对土嗅素的去除率只有23%,滤后水为72 8 ng L[6].Kim等[36]研究认为常规处理工艺对5种致嗅物质的去除率为25%~40%,其中对IPMP的去除率最高为41 3%,其次是土嗅素为33 3%.4 4 2 臭氧 生物活性炭深度处理臭氧生物活性炭除嗅工艺的优势在于可以较长时间保持活性炭的能力,延长了活性炭的工作寿命.日本东京某水厂采用混凝沉淀 臭氧 生物活性炭处理工艺对含2 MIB的原水进行处理,常规处理后2 MIB为16~26ng L,经过O3 B AC技术处理后出水浓度为0~10ng L,去除率达60%~100%[37].臭氧生物活性炭深度处理工艺可高效地去除嗅味物质,同时也可去除水中的有机污染物和消毒副产物的前体物,提高水厂出水的生物稳定性,因此有很好的应用前景.但目前国内外对于臭氧活性炭工艺去除致嗅物质的机制还有待进一步研究.5 结论(1)饮用水嗅味问题是我国当前普遍存在的问题,而此方面的研究与国外存在一定的差距,必须给予足够的重视.(2)由于水污染较发达国家严重,我国饮用水中致嗅物质组成比较复杂,除了常见的微生物代谢产物土嗅素、2 MIB等物质外,还有一些外排的污染物和水体污染厌氧分解产物硫醇、硫醚等.(3)水厂实际运行的对饮用水中致嗅物质的去除技术主要是吸附技术和氧化技术,其中对土嗅素、2 MIB等微生物代谢产物类致嗅物质的去除,吸附法要优于氧化法;对硫醇、硫醚类致嗅物质的去除,宜采用氧化法.(4)国内外对去除致嗅物质的饮用水处理工艺研究大多集中于对土嗅素和2 MIB的去除,并多限于特定水源、一定浓度致嗅物质的去除工艺参数的确定,不能直接应用到不同水源、不同致嗅物质浓度、不同工艺的情况,对于去除技术机制的研究还有待深入.(5)当前,应该尽快开展我国不同地区、不同季节饮用水中致嗅物质组成特性研究,开展针对典型致嗅物质提高饮用水处理技术及工艺除嗅效果及机制的研究,形成可应对不同水源、不同季节、不同致嗅物质种类的饮用水处理工艺.参考文献:[1] 王占生.预计的臭味争议与水质督察[J].给水排水,2007,33(3): 1.[2] Sagehas hi M,Shirais hi K,Fujita H,et al.Oz one decomposition of2 methylisoborneol(M IB)i n ads orpti on phase on hi gh silica zeolites5872期李勇等:我国饮用水中嗅味问题及其研究进展wi th preventing bromate formation[J].Water Research,2005,39(13):2926 2934.[3] Demps ter T A.Taste and odor problems in source waters and watertreatment faci li ties[D].US:Arizona State Universi ty,2006.[4] 李镜明,叶舟,蒋海涛.富营养化湖泊水除臭试验研究[J].给水排水,1996,22(3):5 7.[5] 徐振林.二氧化氯除浑河水、水库水的臭味实验[J].辽宁城乡环境科技,1999,19(5):80 81.[6] 蒋海涛,韩润平,高廷耀.LFSA GC技术测定水体臭气[J].江苏环境科技,2002,15(1):1 2.[7] 刘强.高锰酸钾 湿式粉末活性炭除臭技术研究[D].西安:西安建筑科技大学,2004.[8] 刘洋,张声,张晓健.溶气气浮工艺处理密云水库水的研究[J].工业用水与废水,2004,35(6):17 20.[9] 张亚彤,霍庭秀,王瑞萍,等.黄河内蒙古段 6.26 水污染事件原因及对策[J].内蒙古水利,2006,105(1):62 64.[10] 王春娥,曾慧,赵劲涛,等.二氧化氯预氧化工艺处理微污染黄河水研究[J].环境科学与管理,2006,31(7):115 117.[11] 乔铁军,安娜,尤作亮,等.梅林水厂臭氧 生物活性炭工艺的运行效果[J].中国给水排水,2006,22(13):10 14.[12] 魏良勤,孙桂学,姜伟李,等.一起自来水污染事件[J].预防医学文献信息,1999,5(4):366.[13] Suffet I H,Khiari D,Bruchet A.The drinking water tas te and odorwheel for the millennium:Beyond geosmin and2 me thylis oborneol[J].Water Science and Tec hnology,1999,40(6):1 13.[14] 宋立荣,李林,陈伟,等.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,2004,28(4):434 439.[15] Young J M,Trask B J.The sense of smell:genomics of vertebrateodorant receptors[J].Human Molecular Genetics,2002,11(10):1153 1160.[16] Morran J,Marchesan M.Taste and odour tes ti ng:how valuable istraini ng?[J].Water Science and Technology,2004,49(9):69 74.[17] 周勤,孙伟.给水中的致味物质及其检测方法[J].工业水处理,2004,24(1):5 7.[18] Alfredo D,Francesc V M,Teres a G.Determi nati on of odorous mi xedchloro bro moanisoles in water by s olid phas e micro extraction and gaschromatography mas s detection[J].J ournal of Chromatography A,2005,1064:97 106.[19] Zhang L,Hu R,Yang Z.Routine analysis of off flavor compounds inwater at s ub part per trillion level by l arge volume injection GC MSwi th programmable temperature vaporizi ng inlet[J].Water Research,2006,40(4):699 709.[20] Davies J M,Roxborough M,M az umder A.Origi ns and i mplications ofdrinki ng water odours in lakes and reservoirs of British Columbia,Canada[J].Water Res earch,2004,38(7):1900 1910.[21] Satc hwill T.Dri nki ng water tas te and odor:Compound identi ficationand treatment[D].Canada:Universi ty of Calgary,2001.[22] Diaz A,Ventura F,Galceran M T.Identification of2,3 butanedione(diacetyl)as the c ompound causing odor events at trace levels in theLlobregat Ri ver and Barcelona s treated water(Spain)[J].J ournal ofChromatography A,2004,1034(1 2):175 182.[23] 李勇,张晓健,陈超,等.臭氧活性炭工艺对东江原水中臭味的去除研究[R].浙江嘉兴:中国土木工程学会水工业分会给水深度处理研究会年会,2006.[24] Zhang X J,Li Y,Chen C,et al.Determination and Removal of a kindof R otten Odor i n Surface Water of Southern China[R].Perth,Austrualia:2nd IWA ASPIRE Conference and Exhibiti on,2007. [25] 张晓健,张悦,王欢,等.无锡自来水事件的城市供水应急除臭处理技术[J].给水排水,2007,33(9):7 12.[26] 李勇,张晓健,陈超,等.我国饮用水中致嗅物质组成及其去除技术研究[R].北京:第一届全国博士生学术会议,2007. [27] Robert N,Ri tti mann B E,Soucie W J.Ozone biofil tration forremoving MIB and geos min[J].Journal of American Water Works As soci ation,2000,92(12):85 95.[28] Bruchet A,Duguet J P.Role of oxi dants and disinfectants on theremoval,masking and generation of tastes and odours[J].WaterScience and Technol ogy,2004,49(9):297 306.[29] Peter A,von Gunten U.Oxidation kinetics of selec ted tas te and odorcompounds during oz onati on of drinking water[J].EnvironmentalScience&Technology,2007,41(2):626 631.[30] As hitani K,His hida Y,Fuji wara K,et al.Behavior of musty odorouscompounds during the process of water treatment[A].In:2.IAWPRCInternational Symposi um on Off flavours i n the Aquatic Environment[C].Japan:Kagoshi ma,1988.[31] Newcombe G,Morrison J,Hepple white C,e t al.Simultaneousadsorpti on of MIB and NOM onto activated carbon .Competitiveeffects[J].Carbon,2002,40(12):2147 2156.[32] Terauchi N,Ohtani T,Ya manaka K,e t al.Studies on a BiologicalFilter for Mus ty Odor Removal in Drinki ng Water Treatment Process es[J].Water Science and Technol ogy,1995,31(11):229 235. [33] Izaguirre G,Wolfe R L,Means E G .Degradation of2 M ethylis oborneol by Aquatic Bacteri a[J].Applied andEnvironmental Microbi ol ogy,1988,54:2424 2431.[34] Lim K H,Shin H S.Operating characteris tics of aerated s ubmergedbiofil m reactors for drinking water treatment[J].Water Science andTechnol ogy,1997,36(12):101 109.[35] 陈忠林,齐飞,徐冰冰,等. Al2O3催化臭氧氧化水中嗅味物质MIB效能研究[J].环境科学,2007,28(2):322 328.[36] Kim Y,Lee Y,Gee C S,et al.Treatment of taste and odor causi ngs ubs tances in drinking water[J].Water Science and Technology,1997,35(8):29 36.[37] M ura moto S,Udagawa T,O kamura T.Effective removal of mus ty odorin the Kanamachi puri fication plant[J].Water Sci ence andTechnol ogy,1995,31(11):219 222.588环 境 科 学30卷。