2012年高考数学大纲(大纲版)

合集下载

2012年高考文科数学大纲卷

2012年高考文科数学大纲卷
D. x2 y2 1 12 4
()
6.已知数列{an} 的前 n 项和为 Sn , a1 1 , Sn 2an1 ,则 Sn
A. 2 n1
B. ( 3)n1 2
C. ( 2)n1 3
() D. 1
2n1
7.6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共
20.(本小题满分 12 分)(注意:在.试.题.卷.上.作.答.无.效.) 乒乓球比赛规则规定:一局比赛,双方比分在 10 平前,一方连续发球 2 次后,对方再 连续发球 2 次,依次轮换.每次发球,胜方得 1 分,负方得 0 分.设在甲、乙的比赛中, 每次发球,发球方得 1 分的概率为 0.6,各次发球的胜负结果相互独立.甲、乙的一局 比赛中,甲先发球. (Ⅰ)求开始第 4 次发球时,甲、乙的比分为 1 比 2 的概率; (Ⅱ)求开始第 5 次发球时,甲得分领先的概率.
.
16.已知正方体 ABCD A1B1C1D1 中, E 、 F 分别为 BB1 、CC1 的中点,那么异面直线 AE
与 D1F 所成角的余弦值为
.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分 10 分)(注意:在.试.题.卷.上.作.答.无.效.)
绝密★启用前

2012 年普通高等学校招生全国统一考试(大纲卷)
文科数学(必修+选修Ⅰ)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 2 页.第Ⅱ卷
3 至 4 页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷

注意事项:
1.答题前,考生在答题卡上务必用直径 0.5 毫米黑色墨水签字笔将自己的姓名、准考

2012全国高考大纲数学卷

2012全国高考大纲数学卷

2012年普通高等学校招生全国统一考试理科数学(123lwxy)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. m},B={1,m} ,A B=A, 则m=A 0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=22E为CC1的中点,则直线AC1与平面BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

2012年青海省高考数学试卷(理科)(大纲版)(附答案解析)

2012年青海省高考数学试卷(理科)(大纲版)(附答案解析)
由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.
【解答】
由题意,可按分步原理计数,
首先,对第一列进行排列,第一列为 , , 的全排列,共有 种,
再分析第二列的情况,当第一列确定时,第二列第一行只能有 种情况,
当第二列一行确定时,第二列第 , 行只能有 种情况;
所以排列方法共有: = 种,
则 ,
∵ , , ,
∴ .
, 表示开始第 次发球时乙的得分,可取 , , , ,




∴ 的期望 .
【考点】
相互独立事件的概率乘法公式
离散型随机变量的期望与方差
【解析】
(1)记 表示事件:第 次和第 次这两次发球,甲共得 分, , , ; 表示事件:第 次发球,甲得 分; 表示事件:开始第 次发球,甲、乙的比分为 比 ,则 ,根据 , , ,即可求得结论;
三角函数中的恒等变换应用
正弦定理
【解析】
由 = = ,可得 ,由 = 及正弦定理可得 = ,联立可求
【解答】
由 = 可得 =
∴ = = =
∴ ①
由 = 及正弦定理可得 = ②
①②联立可得,


= 即
【答案】
证明:以 为坐标原点,建立如图空间直角坐标系 ,
设 ,则 , ,
, ,
∴ , ,

∴ , ,
∴ , , ,
可以得到回到 点时,需要碰撞 次即可.
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)
【答案】
【考点】
简单线性规划
【解析】
作出不等式组表示的平面区域,由 = 可得 = ,则 表示直线 = 在 轴上的截距,截距越大 越小,结合图形可求

2012大纲版高考数学理科

2012大纲版高考数学理科

2012大纲理一、选择题 1 .复数131ii -+=+ ( )A .2i +B .2i -C .12i +D .12i -2 .已知集合{{},1,,A B m A B A ==⋃=,则m =( )A .0B .0或3C .1D .1或33 .椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 4 .已知正四棱柱1111ABCD A BC D -中,12,AB CC E ==为1CC 的中点,则直线1AC与平面BED 的距离为 ( )A .2BCD .15 .已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( )A .100101 B .99101C .99100 D .1011006 .ABC ∆中,AB 边的高为CD ,若CB = a , CA =b , 0⋅=a b , 1=a , 2=b ,则AD =( )A .1133-a b B .2233-a b C .3355-a b D .4455-a b 7 .已知α为第二象限角,sin cos αα+=,则cos 2α= ( )A.B.CD8 .已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=( )A .14 B .35C .34D .459 .已知125ln ,log 2,x y ze π-===,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<10.已知函数33y xx c =-+的图像与x 轴恰有两个公共点,则c =( )A .2-或2B .9-或3C .1-或1D .3-或111.将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( )A .12种B .18种C .24种D .36种12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .16B .14C .12D .10二、填空题13.若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为_________________.14.当函数sin (02)y x x x π=≤<取得最大值时,x =_______________.15.若1()n x x +的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为___________.16.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为_____________.三、解答题17.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .18.(注意:在试题卷上作答无效.........) 如图,四棱锥P A B C -中,底面A B C D 为菱形,PA ⊥底面A B C D,AC=2,PA E =是PC 上的一点,2PE EC =. (1)证明:PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.19.(注意:在试题卷上作答无效.........) 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立,.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(注意:在试题卷上作答无效.........) 设函数()cos ,[0,]f x ax x x π=+∈. (1)讨论()f x 的单调性;(2)设()1sin f x x ≤+,求a 的取值范围.21.(注意:在试卷上作答无效........) 已知抛物线2:(1)C y x =+与圆2221:(1)()(0)2M x y r r -+-=> 有一个公共点A ,且在A 处两曲线的切线为同一直线l . (1)求r ;(2)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.22(注意:在试卷上作答无效........) 函数2()23f x x x =--.定义数列{}n x 如下:112,n x x +=是过两点(4,5),(,n n n P Q x f x 的直线n PQ 与x 轴交点的横坐标.(1)证明:123n n x x +≤<<; (2)求数列{}n x 的通项公式D22.函数2()23f x x x =--。

2012 年全国各地高考数学试题及解答汇编大全

2012 年全国各地高考数学试题及解答汇编大全

3、 (2012 全国卷大纲版●理)将字母 a,a,b,b,c,c 排成三行两列, 要求每行的字母 互不相同,每列的字母也互不相同,则不同的排列方法共有(A). A. 12 种; B. 18 种; C. 24 种; D. 36 种. 4、 (2012 全国卷大纲版●理)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE BF
2、 (2012 新课标●理)已知三棱锥 S ABC 的所有顶点都在球 O 的球面上, ABC 是边 长为 1 的正三角形, SC 为球 O 的直径,且 SC 2 ,则此棱锥的体积为(A). A. B. C. D.
2 ; 6
3 ; 6 2 ; 3
2 . 2
【解析】 ABC 的外接圆的半径 r 1 1 o 3 ,球心 O 到面 ABC 的距离 2 sin 60 3 第 1 页/共 64 页
1 1 1 1 f ( y),即 y f 1 ( x) g ( x) 知, y f (2 x) 的 2 2 2
反函数是 y 1 g ( x) ,故函数 y f (2 x) 与 y 1 g ( x) 的图像也关于直线 y x 对称;正 2 2 确. ③ f ( x) f (2 x) f ( x 2) f [2 ( x 2)] f (4 x) f ( x 4) .故 f ( x) 是周期为 4 的函数. 故选 C.
由对称性知, y x,y 1 , ( x 1) 2 ( y 1) 2 1 围成的面积与 x
1 y x,y , ( x 1)2 ( y 1)2 1 围成的面积相等. x
故 A B 所表示的平面图形的面积为 y x , ( x 1)2 ( y 1)2 1 围成的面积

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。

2012年高考数学全国卷大纲版(理科)

2012年高考数学全国卷大纲版(理科)

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )第I 卷(60分)一、 选择题 1、复数=++-ii131 (A )i +2 (B )i -2 (C )i 21+ (D )i 21-2、已知集合{}{}m B m A ,1,,3,1==,A B A = ,则=m (A )0或3 (B )1或3 (C )1或3 (D )1或3 3、椭圆的中心在原点,焦距为4,一条准线为4-=x ,则该椭圆的方程为(A)1121622=+y x (B) 181222=+y x (C) 14822=+y x (D) 141222=+y x 4、已知正四棱柱1111D C B A ABCD -中,22,21==CC AB ,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A)2 (B) 3(C) 2(D)15、已知等差数列{}n a 的前n 项和为n S ,15,555==S a ,则数列⎭⎬⎫⎩⎨⎧+11n n a a 的前100项和为(A)101100 (B) 10199(C) 10099 (D) 100101 6、在ABC ∆中,AB 边的高为CD,若210,,===⋅==,则=(A)b a 3131- (B)b a 3232- (C) b a 5353- (D) b a 5454-7、已知α为第二象限角,33cos sin =+αα,则=α2cos (A)35-(B) 95- (C) 95 (D) 35 8、已知21,F F 为双曲线2:22=-y x C 的左、右两个焦点,点P 在C 上,212PF PF =,则=∠21cos PF F(A)41 (B)53 (C)43 (D)54 9、已知215,2log ,ln -===e z y x π,则(A)z y x << (B)y x z << (C)x y z << (D)x z y <<10、已知函数c x x y +-=33的图象与x 轴恰有两个公共点,则=c(A)2-或2 (B)9-或3 (C)1-或1 (D)3-或111、将字母c c b b a a ,,,,,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排法共有(A)12种 (B)18种 (C)24种 (D)36种 12、正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,73==BF AE 。

2012年高考理科数学大纲卷

2012年高考理科数学大纲卷

()
A. x2 y2 1
B. x2 y2 1
C. x2 y2 1
D. x2 y2 1
16 12
12 8
84
12 4
4.已知正四棱柱 ABCD-A1B1C1D1 中, AB 2 , CC1 2 2 ,E 为 CC1 的中点,则直线 AC1

与平面 BED 的距离为
已知抛物线 C : y ( x 1)2 与圆 M : x 12 ( y 1)2 r2 (r 0) 有一个公共点 A ,
2 且在 A 处两曲线的切线为同一直线 l . (Ⅰ)求 r ; (Ⅱ)设 m, n 是异于 l 且与 C 及 M 都相切的两条直线, m、n 的交点为 D ,求 D 到 l 的 距离.
△ABC 的内角 A、B、C 的对边分别为 a、b、c ,已知 cos A C cos B 1,a 2c ,
求C .
数学试卷 第 3 页(共 4 页)
18.(本小题满分 12 分)(注意:在.试.题.卷.上.作.答.无.效.) 如图,四棱锥 P ABCD 中,底面 ABCD 为菱形, PA 底面 ABCD , AC 2 2 , PA 2 , E 是 PC 上的一点, PE 2EC . (Ⅰ)证明: PC 平面 BED ; (Ⅱ)设二面角 A PB C 为 90 ,求 PD 与平面 PBC 所成角的大小.
.
15.若 (x

1 )n 的展开式中第 x
3
项与第
7
项的二项式系数相等,则该展开式中
1 x2
的系数

.
16.三菱柱 ABC A1B1C1 中,底面边长和侧棱长都相等, BAA1 CAA1 60o ,则异面直
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考数学大纲(理科)I.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取,因此,高考应具有较高的性度、效度,必要的区分度和适当的难度。

II.考试要求《2012年普通高等学校招生全国统一考试大纲(理科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修II的教学内容,作为理工农医类高考数学科考试的命题范围。

数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。

数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又考查考生进入高校继续学习的能力。

一、考试内容的知识要求、能力要求和个性品质要求1、知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理及其中的数学思想和方法。

对知识的要求,依次为了解、理解和掌握、灵活和综合运用三个层次。

(1)了解:要求对所列知识的含义及相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它。

(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用秘列知识分析和解决较为复杂的或综合性的问题。

2、能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。

数学是一门思维的科学,思维能力是数学能力的核心。

数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体。

(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

运算能力是思维能力和运算能力的结合。

运算包括对数值的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。

运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。

(3)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确分析出图形中的基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力。

识图是指观察、研究所给的图形中几何元素之间的相互关系;画图是指将文字语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志。

(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明。

实践能力是将客观事物数学化的能力。

主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决。

(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。

创新意识是理性思维的高层次表现。

对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。

3、个性品质要求个性品质是指学生个体的情感、态度和价值观。

要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

二、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系。

要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架。

(1)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。

注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。

从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度。

(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想和方法的理解;要从学科的整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。

(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同的情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。

对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际。

对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性,对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算。

对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合。

(4)对实践能力的考查主要采用解决应用问题的形式。

命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合我国中学数学教学的实际,考虑考生的年龄和实践经验,使数学应用问题的难度符合考生的水平。

(5)对创新意识的考查是对高层次理性思维的考查。

在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注意问题的多样化,体现思维的发散性。

精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题。

数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。

Ⅲ.考试内容及要求必修(114个)一、平面向量(12课时,8个)内容:1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.要求:1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2.掌握向量的加法和减法。

3.掌握实数与向量的积,理解两个向量共线的充要条件。

4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用。

掌握平移公式。

二、集合、简易逻辑(14课时,8个)内容:1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑联结词;7.四种命题;8.充要条件.要求:1.理解集合、子集、补集、交集、并集的概念。

了解空集和全集的意义。

了解属于、包含、相等关系的意义。

掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

2.理解逻辑联结词“或”、“且”、“非”的含义。

理解四种命题及其相互关系。

掌握充分条件、必要条件及充要条件的意义。

三、函数(30课时,12个)内容:1.映射;2.函数;3.函数的单调性、奇偶性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数;12.函数的应用举例.要求:1.了解映射的概念,理解函数的概念。

2.了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。

3.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。

4.理解分数指数幂的概念,掌握有理数指数幂的运算性质。

掌握指数函数的概念、图像和性质。

5.理解对数的概念,掌握对数的运算性质。

掌握对数函数的概念、图像和性质。

6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

四、不等式(22课时,5个)内容:1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.要求:1.理解不等式的性质及其证明。

2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

3.掌握分析法、综合法、比较法证明简单的不等式。

4.掌握简单不等式的解法。

5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|.五、三角函数(46课时,16个)内容:1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式(平方关系、商数关系、倒数关系);6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11. 函数sin y=A (x+)ωϕ的图象;12.正切函数的图象和性质;13.已知三角函数值求角;14.正弦定理;15.余弦定理;16.斜三角形解法.要求:1.了解任意角的概念、弧度的意义。

能正确地进行弧度与角度的换算。

2.理解任意角的正弦、余弦、正切的定义。

了解余切、正割、余割的定义。

相关文档
最新文档