农学文献
农业学术文献英语

农业学术文献英语Agricultural academic literature plays a pivotal role in the advancement of agricultural science and technology. It encompasses a wide range of topics, from soil science and crop management to agricultural economics and sustainable farming practices. The following is an excerpt from an academic paper that delves into the impact of integrated pest management (IPM) on sustainable agriculture.The Evolution of Integrated Pest Management in Sustainable AgricultureIn the quest for sustainable agricultural practices, the concept of Integrated Pest Management (IPM) has emerged as a cornerstone strategy. IPM is an ecosystem-based strategy that focuses on long-term prevention of pests and their damage, reduction of the risks associated with pests, and minimal use of chemical control. This approach is designed to be economically viable and socially acceptable while minimizing the negative impact on the environment and human health.The origins of IPM can be traced back to the early 20th century when farmers began to recognize the limitations of chemical control methods. The overuse of pesticides led to the development of resistance in pest populations, negative impacts on non-target organisms, and the contamination of the environment. In response, researchers and practitioners began to explore alternative methods of pest control that would bemore compatible with the principles of sustainability.One of the key components of IPM is the use of biological control, which involves the introduction of natural enemies of pests to suppress their populations. This can be achieved through the release of predators, parasites, or pathogensthat specifically target the pest species. Biological control has proven to be an effective and environmentally friendly alternative to chemical pesticides, reducing the need for chemical inputs and the associated risks.Another critical aspect of IPM is the implementation of cultural practices that make the agricultural environment less conducive to pest development. This includes crop rotation, which disrupts the life cycle of pests by changing the host plants, and the use of pest-resistant crop varieties that have been bred to withstand pest attacks. These practices not only reduce the reliance on chemical control but also contribute to the overall health and resilience of the agricultural system.Monitoring and decision-making are also integral to IPM. Regular scouting and the use of decision-making tools allow farmers to make informed choices about when and how to intervene against pests. By monitoring pest populations and their natural enemies, farmers can determine the most appropriate control measures to take, minimizing the use of chemical pesticides and maximizing the effectiveness of other control methods.The integration of these various strategies into acohesive management plan is what distinguishes IPM from other pest control methods. It requires a comprehensive understanding of the agricultural ecosystem and the interactions between pests, crops, and the environment. By adopting an IPM approach, farmers can achieve better pest control outcomes while also promoting biodiversity, reducing chemical inputs, and ensuring the long-term viability oftheir farming operations.In conclusion, the adoption of Integrated Pest Management in agriculture is a critical step towards achieving sustainability. It represents a paradigm shift from areliance on chemical control to a more holistic and ecologically sound approach to pest management. As the world faces increasing pressures from population growth and climate change, the principles of IPM will be essential in ensuring that agriculture can continue to meet the needs of society while protecting the environment for future generations.This excerpt highlights the importance of IPM in sustainable agriculture and the various strategies employed to achieve it. It underscores the need for a comprehensive and integrated approach to pest management that is both economically and environmentally sound.。
中国农业科学文献格式

中国农业科学文献格式
中国农业科学文献格式一般遵循以下要求:
1. 书面文献(图书、论文、报告等)的格式:作者. 文献标题[文献类型标识]. 出版地:出版者,出版年份.
例如:李明. 中国农业可持续发展研究[博士论文]. 北京:中国农业出版社,2021.
2. 期刊文献的格式:作者. 文献标题. 期刊名称,年份,卷号(期号):起止页码.
例如:张三,李四. 中国农业现代化的挑战与机遇. 农业科学,2021,59(1):10-18.
3. 会议文献的格式:作者. 文献标题. 会议名称,会议年份,会议地点. 出版地:出版者,出版年份. 起止页码.
例如:王五,赵六. 农业科技创新与中国农村发展战略. 第十届中国农业科学大会,2019年11月4-7日,北京. 北京:中国农业出版社,2020. 102-108.
4. 报纸文献的格式:作者. 文献标题. 报纸名称,出版日期(版次).
例如:钱八. 我国粮食储备现状分析. 中国经济报,2021年3月10日(第2版).
以上为一般情况下的农业科学文献格式,实际撰写时还需根据具体要求进行调整。
在正式写作中,不应出现任何网址、超链接和电话等直接识别的信息。
古代文献中的农业与耕作

古代文献中的农业与耕作农业自古以来就是人类社会的基石,而古代文献中对于农业与耕作的记录成为了了解古代农业生产方式和农民生活的重要窗口。
这些文献中描述的农业技术、种植方式和耕作工具不仅反映了古代社会的农业水平,还给我们提供了宝贵的历史信息。
本文将通过对古代文献的梳理,探讨古代文献中农业与耕作的相关内容。
古代文献中记录了丰富多样的农业技术和耕作方式。
在中国,最早的文献之一《诗经》就有了关于农耕的描述。
其中的《国风·周南·关雎》中写道:“关关雎鸠,在河之洲。
窈窕淑女,君子好逑。
”这句诗意味着春耕时节的到来,预示着农业生产的开始。
《诗经》中还有其他关于农耕的描写,如《国风·秦风·地黍》中记载了古代农民种植小麦的情景。
除了《诗经》,《尚书》、《礼记》等古代文献中也有大量关于农业与耕作的内容。
《尚书》是中国古代历史上第一部记载典章制度和历代君王事迹的史书,其中记载了古代农耕的重要政策和制度。
《尚书》中的《周书·周官》记载了周朝时期的农田水利建设和耕作技术,标志着古代农业生产进入了规模化的阶段。
在古代文献中,记载了不同地区的耕作技术和农业特色。
例如,在埃及古老的文明中,农业起到了至关重要的作用,这也在《古代埃及史》中有所体现。
埃及人的农业主要依赖尼罗河的洪水,洪水退去后,埃及人利用沉积物丰富的土壤进行种植,以满足人们的食物需求。
另一个例子是古代印度尼西亚,那里的农业是以稻米种植为主。
在《马萨诸塞大学农学院学报》中,论文《古代印度尼西亚:稻米农业与气候学关系》中详细描述了古代印度尼西亚地区农民使用的各种农业方法,包括水稻种植和水利工程的建设。
在欧洲,古希腊和罗马时代的农业也有相关的文献记载。
《农艺8卷》是罗马时期的一本古代农业手册,详细描述了当时的耕作技术、作物种植、畜牧业等农业相关内容。
这本手册不仅介绍了耕作工具的使用方法,还详细描述了土地选择、肥料应用和灌溉系统等农业管理方面的知识。
最新 我国古代农业文献发展历程及其分类研究-精品

我国古代农业文献发展历程及其分类研究我国古代的农业历史源远流长,留下了卷帙浩繁、内容丰富的古代农业文献,是极为宝贵的农业遗产。
古代农业文献是指古代论述农业生产及与农业生产有直接关系的知识著作,据统计,从春秋战国至清末,官私撰著的农书500多种,现存者尚有300 多种,属古代大宗科技文献之一。
1古代农业文献根据《四库全书总目提要》记载:古代农业文献包括子部农家类中的历代古农书,以及散见于经史子集四大部类之中记载有关农业生产经验、技术和知识的专书、专篇与资料,具有宝贵的文献收藏价值、学术史料价值与科学使用价值。
子部农家类:“农家条目、至于芜杂。
诸家著录, 大抵辗转旁牵。
因耕而及牛经, 因相牛经及相马经相鹤经鹰经, 蟹略至于相贝经, 因香谱线谱相随入也,因谱史而及竹谱、荔支谱、橘谱至于梅谱、菊谱, 而唐昌玉药辨证, 扬州琼花谱相随入也。
因蚕桑而及茶经, 因茶经及酒史, 糖霜谱至于蔬菜食谱, 而易牙遗意, 饮膳正要相随入也。
触类蔓延, 将因四民月令而及算术、天文, 因田家五行而及风脚、鸟占, 因救荒本草而及素问、灵枢乎。
”可见,古代农业文献归属芜杂,学科交叉的现象明显。
2不同时期的古代农业文献2.1春秋战国时期中国现存最早的有关农学的文献是春秋战国时代的《吕氏春秋》,《吕氏春秋》第二十六卷《士容论》中的《上农》《任地》《辩土》《审时》四篇讲的是农业,《上农》篇主要介绍农业生产的重要性,以及鼓励农桑的政策和措施,强调精耕细作技术。
《任地》《辩土》《审时》等3篇论述了从耕地、播种、定苗、中耕除草、收获以及农时等一整套具体的农业技术和原则,内容十分丰富。
在此时期一些有远见卓识的思想家和家也先后提出了重农思想和重农政策。
2.2秦汉时期秦汉时期先后出现了一批总结和推广生产经验的农书,大部分已经失传,其中有《氾胜之书》的辑佚本为代表,氾胜之著名古代农学家。
《氾胜之书》是西汉晚期的一部重要农学著作,书中记载黄河中游地区耕作原则、作物栽培技术和种子选育等农业生产知识,反映了当时汉族劳动人民的伟大创造。
农学经典书籍:齐民要术、王祯农书、农政全书

农学经典书籍:齐民要术、王祯农书、农政全书 中国是世界农来的重要起源地之⼀。
古史中关于神农⽒始播百⾕、发明⽾耜等农具的传说,实际上告诉我们:在过去⼀个⾮常遥远的年代,我国的农业就产⽣和确⽴了。
这个年代的确很早,河北磁⼭和河南新郑裴⾥岗等新⽯器时代遗址中发掘出的农业⼯具和⾕物遗存向我们证明,我国的农业有着近万年的发展史。
中国古代⼀直以农⽴国,古语常说“民以⾷为天”,因此历代对农业⽣产的发展都是⼗分重视的。
商代甲⾻⽂中,就有许多关于农事的⼘辞,内容涉及农作物的⽣长、天⽓的晴⾬、收成如何、粮⾷储藏等等。
其中出现了稻、⽲、稷、粟、麦、来(⼤麦)等农作物名称,还有畴、疆、甽(圳)、井、圃等⼟地整治的⽂字,说明当时的农业已经达到相当⾼的⽔平了。
周⼈的祖先后稷,传说是夏代的农官。
他们很早就是⼀个经营农业的部落。
从⾦⽂、《尚书》、《诗经》等古⽂献中的零星记载,我们知道周代在耕地整治、⼟壤改良、作物布局、良种选育、农时掌握、除⾍除草等农业技术⽅⾯都有了初步发展,精耕细作技术已在其中萌芽。
春秋战国时期,铁犁和⽜耕的出现,以及农⽥⽔利事业的发达,标志着我国传统农业的真正到来。
当时的耕作制度已从休闲制向连种制过渡,深耕、熟耘技术逐渐普及,⽥间施肥⽇益受到重视,⼈们更加强调良种的选育并提出了良种选育的标准;另外,当时对“农时”、“地宜”以及病⾍害防治的认识也越来越深⼊。
所有这些,说明我国传统农业的精耕细作的⽣产技术体系在这⼀时期已开始形成。
随着农业⽣产技术的进步,我国的农学研究也开展起来。
到战国时期,重农思想已经形成,并且深⼊⼈⼼。
在诸⼦百家的著作中⼏乎都可以找到重农⾔论以及相关的农学知识的记述。
当时形成的众多学派中,有⼀个学派被称为“农家”,是⼀个专门研究农业政策和农学知识的学术团体。
我国最早的农学著作《神农》、《野⽼》等就是他们的作品。
但是,这⼀时期的农学著作现在都已失传,我们所能见到的只有《吕⽒春秋》中的《上农》、《任地》、《辩⼟》、《审时》四篇。
古代中国的历史农学与农业技术

古代中国的历史农学与农业技术古代中国的历史农学与农业技术源远流长,自从五千多年前的新石器时代至今,农业一直是中华民族的生命线和基石。
在这个悠久的历史长河中,中国人民用智慧和勤劳创造了许多独特的农学知识和农业技术,为中国的农业生产做出了重要贡献。
古代中国的农学起源于原始社会,进化至奴隶社会之时,已经形成了一定的农业规模和技术体系。
农业技术的进步使得农民们能够更高效地进行农作物的种植和养殖。
这其中,最重要的农学文献之一是春秋战国时期的《吕氏春秋》。
这部著作对土地利用、农事安排以及农作物种植等提供了详尽的指导。
多种农学技术和方法也在这一时期被广泛采用,比如早稻和晚稻的栽培方法,不同作物的轮作,农作物间的休耕和耕作间隙的利用等。
随着秦统一六国,统一思想和文化的传播,农学知识也得到了进一步的发展。
秦代的《尚书》、《礼记》、《周礼》等文献都涉及到了农学方面的内容。
李斯、乐毅、石崇等经师在书写《秦记》时,也记录了很多关于农业的经验和技术。
这一时期,中国的农学知识进入了一个新的时代。
随着农业生产和国家经济的发展,农学研究也逐渐深入和细化。
东汉时期著名的贾谊就在其代表作《新论》中提到了农学的发展。
他主张农作物的育种和选种技术,还阐述了土壤肥力的研究。
这些对农业生产的改进和创新,使得农民们能够在有限的土地上获得更好的产量。
随着时间的推移,农学技术和知识在中国的土地上不断演化和创新。
唐代的洪仁玕等农学家通过自己的亲身实践,将农业课题转化为农学的研究,从而科学地解决了一系列农业生产中的难题。
《洪氏改稻法》、《洪氏种养殖法》等著作成为了当时农学研究和农耕实践的重要参考。
宋代是中国农学研究的鼎盛时期,较早出现了有组织的农学研究机构和农学院。
王宏的《谷梁传》、俞正声的《田修侯》等著作被誉为当时最重要的农学著作之一。
通过系统的研究,农民们能够更好地了解和掌握土地的利用技术,从而提高了农作物的产量和农民的生活水平。
到了明清时期,大规模的农业生产和农村经济的发展要求更高的农学知识和农业技术。
农 学

农学
田地改良方面,战国时有了土地连作复种的利用方式;汉 代在土地多余的地方,推广轮作制。江南有一种浮田,以筏盛 土,浮在水面,无旱涝之患。北方有一种石子田,具有蓄水保 土的作用。
蔬菜种植方面,蔬菜品种有一百多种。人们合理利用土地 种植,发明了加温培育法。汉代有了温室种菜技术。汉代还懂 得人工栽培食用菌,唐代普遍栽培木耳和冬菇。南宋陈仁玉撰 《菌谱》,这是中国最早的有关食用菌的专著。
农学
(3) 因地制宜,农牧(或农林)结合。从全国范围来讲,我国 传统的农业结构是以农为主、农牧结合的小而全结构。自古我国的黄 河流域、长江中下游及东南沿海一带,一般是以农业生产为主的综合 经济,这一地区的北部,以黍、粟、麦、高粱等作物栽培为主,南部 则主要经营水稻生产。边远的草原地区则是以畜牧饲养为主的综合经 济地区。长江中下游和东南沿海一带以外的南方地区,虽然同样经营 农业,但渔猎仍占较大的比重。这样的生产布局,可以说几千年来没 有发生过根本性的改变,只是随着时代的推移,农业生产地区逐渐扩 大,即介于农业生产地区与畜牧地区之间的半农半牧地区,逐渐转化 为以农业生产为主的综合经济;南方的渔猎地区逐渐缩小,其渔猎生 产在经济中的比重也逐渐降低。
农学
三、 中国古代农学文献
中国古代农学文献有600多种。战国时成书的《吕氏春秋 》中的《上农》《任地》《辩土》《审时》等文章是中国现存 最早的农学论文。汉代氾胜之撰写的《氾胜之书》总结了北方 的耕作经验,介绍了区田法和溲种法,是中国现存最早的农书 。北魏贾思勰撰写的《齐民要术》叙述了大田作物的种植技术 、树木栽种技术,家禽、家畜和鱼类养殖方法,以及农副产品 的加工和储藏等,是中国现存最早、最完整的古代农书。
农学
春秋战国时代,中国已确立耕作与时令的关系,按季节种庄稼, 不违农时;并且有了各种金属农具,如耒耜、耨、镰、锤、犁。尤其 是牛耕和铁犁的推广使用,奠定了此后2 000多年中国最基本的耕地方 式。当时还发明了灌溉提水工具桔槔和辘轳。为了发展农业,大兴农 田水利,有了整套田间灌溉系统,秦国蜀守李冰及其子修建都江堰, 使川西南变成了旱涝保收的“天府之国”。为了充分利用土地,汉代 普遍推广牛耕技术。西汉出现了风车、水碓、钩镰、三齿耙,东汉有 曲柄锄、钹镰等农具。三国时马钧发明了龙骨水车,这是比较先进的 灌溉或排水机械,当时还有耧车,类似于播种机。到宋元时代,农具 发明、改进已基本定型。
有关农业科技的参考文献

有关农业科技的参考文献近年来,随着科技的进步和农业现代化的推进,农业科技在提高农业生产力、保护农业生态环境等方面发挥着重要作用。
以下是一些与农业科技相关的参考文献,供大家参考学习。
一、农业科技创新与发展1.《农业科技创新与农业现代化发展研究》(徐永恒,2018):该文研究了农业科技创新对农业现代化发展的影响,探讨了如何加强农业科技创新,促进农业现代化进程。
2.《农业科技创新对农业增产的影响分析》(张明,2017):该文分析了农业科技创新对农业增产的影响因素,提出了加强农业科技创新的措施和建议,为提高农业生产力提供了参考。
3.《农业科技创新驱动农业现代化发展的路径研究》(王建军,2016):该文通过实证研究,揭示了农业科技创新驱动农业现代化发展的路径和模式,为农业科技创新提供了理论指导。
二、农业科技推广与应用1.《农业科技推广模式的研究与创新》(李志刚,2019):该文研究了农业科技推广模式的创新,提出了适合中国农村特点的农业科技推广模式,为农业科技的应用和推广提供了借鉴。
2.《农业科技推广对农民收入的影响研究》(刘红,2018):该文通过调查研究,分析了农业科技推广对农民收入的影响因素,探讨了提高农民收入的途径和策略。
3.《农业科技推广与农业可持续发展研究》(陈卫国,2017):该文研究了农业科技推广与农业可持续发展的关系,提出了加强农业科技推广的措施和方法,促进农业可持续发展。
三、农业科技与农产品质量安全1.《农业科技对农产品质量安全的影响研究》(杨晓明,2019):该文研究了农业科技对农产品质量安全的影响,提出了加强农业科技创新和监管的建议,保障农产品质量安全。
2.《农业科技在农产品质量安全中的应用研究》(王建国,2018):该文探讨了农业科技在农产品质量安全中的应用情况,总结了农业科技在提高农产品质量和安全方面的作用和效果。
3.《农业科技创新与农产品质量安全监管的研究》(李明,2016):该文研究了农业科技创新与农产品质量安全监管的关系,提出了加强农业科技创新和监管的建议,保障农产品质量安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Update on Legume UtilizationLegumes:Importance and Constraints to Greater UsePeter H.Graham*and Carroll P.VanceDepartment of Soil,Water,and Climate(P.H.G.)and United States Department of Agriculture,Agricultural Research Service,Plant Science Research Unit,Department of Agronomy and Plant Genetics(C.P.V.), University of Minnesota,1991Upper Buford Circle,St.Paul,Minnesota55108Legumes,broadly defined by their unusual flower structure,podded fruit,and the ability of88%of the species examined to date to form nodules with rhi-zobia(de Faria et al.,1989),are second only to the Graminiae in their importance to humans.The670to 750genera and18,000to19,000species of legumes (Polhill et al.,1981)include important grain,pasture, and agroforestry species.Cohen(1977;cited by Bryan [2000])reported domestication of lentils(Lens escu-lenta)at a site in Iran dating to9,500to8,000BP; Roosevelt et al.(1996)noted the use of Hymenaea as a food source in Amazonian prehistory.Bean(Phaseo-lus vulgaris)and soybean(Glycine max),staple crops in the Americas and Asia,respectively,were each domesticated more than3,000years ago(Hymowitz and Singh,1987;Kaplan and Lynch,1999).Use of legumes in pastures and for soil improvement dates back to the Romans,with Varro(37BC;cited by Fred et al.[1932])noting“Legumes should be planted in light soils,not so much for their own crops as for the good they do to subsequent crops.”This paper briefly overviews the legumes and their importance in different agricultural and natural environments.GRAIN AND PASTURE PRODUCTIONGrain and forage legumes are grown on some180 million Ha,or12%to15%of the Earth’s arable sur-face(Table I).They account for27%of the world’s primary crop production,with grain legumes alone contributing33%of the dietary protein nitrogen(N) needs of humans(Vance et al.,2000).Under subsis-tence conditions,the percentage of legume protein N in the diet can reach twice this figure.In rank order, bean,pea(Pisum sativum),chickpea(Cicer arietinum), broad bean(Vicia faba),pigeon pea(Cajanus cajan), cowpea(Vigna unguiculata),and lentil constitute the primary dietary legumes(National Academy of Sci-ence,1994).Legumes(predominantly soybean and peanut[Arachis hypogeae])provide more than35%of the world’s processed vegetable oil(Table II),and soybean and peanut are also rich sources of dietary protein for the chicken and pork industries.The po-tential of legume crops is evident in the huge increase in soybean production in Brazil,with national mean yields increased from1,166kg haϪ1in1968to1969to 2,567kg haϪ1in2001to2002(M.Hungria,personal communication).This followed selection for later ma-turity,aluminum tolerance,and calcium-use efficiency (Spehar,1995).In the same crop,the controversy over molecular engineering,with some countries refusing to grow transgenic soybean illustrates the need for balance in future breeding activities. Unfortunately,improvement in legume crop yields have not kept pace with those of cereals.Jeuffroy and Ney(1997)note that wheat(Triticum aestivum)yields in France increased120kg haϪ1yearϪ1between1981 and1996;those for pea increased only75kg haϪ1 yearϪ1over the same period.The situation is worse in the developing countries where Oram and Agcao-ili(1992)note that pea yields are only45%,and faba bean and chickpea are only75%,of those achieved in developed countries.In part,this difference is due to the unfavorable environmental conditions under which many legume species are grown.Legumes are often grown after corn or rice and are seeded toward the end of the growing season.They may have short growing seasons and may be subject to intermittent or terminal drought.Progressive soil chemical and physical degradation and acid soil conditions may also limit their productivity.Drought problems for legumes are likely to worsen with the projected rapid expansion of water-stressed areas of the world from28to30countries today to50 countries encompassing3billion people by2030 (Postel,2000).There is a crucial need to increase drought tolerance in legumes;increasing salinity tol-erance is a parallel requirement in many areas.The more drought-tolerant legumes,such as cowpea,are deeply rooted and may have reduced leaf size with thickened cuticles to reduce water loss.Less tolerant legumes such as beans can be selected for early ma-turity,efficiency in the partitioning of nutrients to-ward reproductive structures,and phenotypic plas-ticity(Beaver et al.,2003).Pinto Villa,now grown over90%of the pinto bean area in Mexico,has these characteristics.Nutrient depletion of soil is a particular problem for small landholders in developing countries,where much grain-legume production occurs,and many farmers cannot afford to use fertilizers.Sanchez (2002)suggests average annual nutrient depletion rates across37African countries of22kg N haϪ1,2.5 kg P haϪ1,and15kg K haϪ1.Soil acidity affects more*Corresponding author;e-mail pgraham@;fax 612–625–2208./cgi/doi/10.1104/pp.017004.than1.5billion ha worldwide,with acid soil con-straints to legume production likely to increase as the result of acid rain,long-term N fertilization,and natural weathering(Graham and Vance,2000).H ion concentration per se,Al and Mn toxicity,and P,Mo, or Ca deficiency all contribute to the problem(Gra-ham,1992).Nodulation and N fixation and survival of rhizobia in soil are particularly affected under low P,acid soil conditions and will be considered in more detail later in this paper.Diseases and pests are also major constraints to legume production,especially in the tropics and sub-tropics.In common bean,for example,important pathogens include several viruses,fungi-causing root rots,anthracnose,angular leaf spot,bean rust,white mold and web blight,and the bacteria responsible for common bacterial blight and halo blight(Coyne et al.,2003).In Minnesota alone,losses due to root rot are estimated at$4million annually.A number of these pathogens are seed transmitted;others can be carried by insects.Limiting crop losses requires an integrated approach that may include certified seed programs,fallow periods to reduce vector popula-tions,plowing to bury infected plant tissue,biologi-cal control of root disease,chemical application,and resistance breeding(Beaver et al.,2003;Coyne et al., 2003).Molecular markers have permitted rapid progress in disease resistance breeding in beans (Kelly et al.,2003),but many of the measures sug-gested above are beyond the resources of the subsis-tence farmer,which is another reason why legume yields in third-world countries are low.Use of legumes in the human diet can also be problematic.Legume seeds generally contain20%to 30%protein and are Lys rich,complementing the nutritional profiles of cereals and tubers in the diet (Duranti and Gius,1997).However,legumes are lim-ited in sulfur amino acids,contain antinutritional factors including lectins and flatulence factors,and are commonly hard to cook.Preference for particular grain types or seed color also affects marketability. Forage legumes have been the foundation for dairy and meat production for centuries(Russelle,2001). When properly managed,they are rich sources of protein,fiber,and energy.Even in intensive animal and milk production,where grain crops are major feed sources,forage legumes are required to main-tain animal health(Wattiaux and Howard,2001). Meat and dairy production in developing countries is almost solely dependent upon forage legumes and grasses.Alfalfa(Medicago sativa)is the prevalent for-age legume in temperate climates(Russelle,2001), with more than72million Mg of alfalfa worth$7 billion produced annually in the U.S.alone.Alfalfa is the third or fourth most valuable crop in the U.S. (U.S.Department of Agriculture,National Agricul-tural Statistics Service,: 81/ipedb/hay.htm).Other important temperate pas-ture species include clovers(Trifolium spp.),trefoil (Lotus corniculatus),sweetclovers(Melilotus spp.),and vetches(Vicia spp.).Inclusion of legumes is critical for sustainable meat and dairy production on the infertile savannah soils of the tropics and subtropics(Consultative Group on International Agricultural Research,http://www. /research/res_cattle.html).Incorporation of improved legumes into these ecosystems has lagged due to lack of information,seed costs,and poor in-frastructure.Species from the genera Aeschynomene, Arachis,Centrosema,Desmodium,Macroptilium,and Stylosanthes offer promise for improved tropical pas-ture systems(Thomas and Sumberg,1995;Giller, 2001).Of these,Stylosanthes spp.with some30species distributed throughout the tropics(de Leeuw et al., 1994),has been most widely adopted,with Stylosan-thes guyanensis and Stylosanthes hamata now grown as improved pasture in Australia,China,Latin America, and West Africa.Presently underutilized crop and pasture legumes could still dizinsky and Smartt(2000)ad-dress opportunities for improved adaptation via fur-ther domestication.More exotic examples include marama bean(Tylosema esculentum;Dakora et al., 1999),sword beans(Canavalia gladiata;Ekanayake et al.,2000),and Desmanthus illinoensis among grain crops,and annual medics and Biserrula pelecinus among pasture species(Howieson et al.,1995,2000).Table I.Crop production and area harvestedSource:Food and Agriculture Organization of the United Nations(FAO)database(/page/collections).Crop Production Area HarvestedMtϫ106haϫ106Grain legumes275160Forage legumes60520Wheat583214Rice(Oryza sativa)590152Maize(Zea mays)609138Barley(Hordeum vulgare)14154Potatoes(Solanum tuberosum)30819Cassava(Manihot esculenta Crantz.)17920Total3,320777Table II.Major crops oil productionSource:FAO Database(/page/collections).Crop Oil ProductionMtϫ106Soybean26.8Peanut 5.3Palm23.9Canola(Brassica napus)12.6Sunflower(Helianthus annuus)9.1Cotton(Gossypium hirsutum) 4.1Olive 2.7Coconut(Cocos nucifera) 3.6Maize 2.0Total90.1Legumes:Importance and Constraints to Greater UseAgain,germplasm collection and evaluation must continue to be a research emphasis.AGROFORESTRYSprent and Parsons(2000)discuss the importance of woody tree legumes in forestry.Important genera include Acacia,Anadenathera,Calliandra,Dalbergia, Erythrina,Gliricidia,Melanoxylon,Parkea,Prosopis, Pterocarpus,and Samanea.Values for the percentage of plant N derived from fixation in such species listed by Giller(2001)range from2%to100%but need to be treated with caution.J.Grossman(personal commu-nication)suggests that Inga oerstediana,widely used in southern Mexico as a shade tree with coffee,may not even be capable of establishing an effective symbiosis.Food security issues,pressure on the land,and increasing soil degradation(Franzluebbers et al., 1998;Cassman,1999;Sanchez,2002)have led to in-creasing research interest in tree-fallow and alley-cropping systems for subsistence farmers in Africa and Asia.These are reviewed by Buresh et al.(1997) and by Buresh and Cooper(1999).In tree fallows, Sesbania spp.,Leucaena spp.,Tephrosia spp.,Crotalaria spp.,Glyricidia spp.,or Cajanus spp.are interplanted into corn,and allowed to grow as dry-season or longer-term fallows.The wood is harvested,and the N-rich leaves,pods,and green stem material are hoed into the soil just before the rainy season (Sanchez,1999).Gathumbi et al.(2002)reported aboveground biomass production in a6-month pe-riod of8to15Mg haϪ1,with total N accumulation of 100to178kg haϪ1.Significant crop yield increases in the season after tree fallow have been reported.Le-gume tree fodder with high levels of crude protein and minerals,and in some cases,good digestibility is readily accepted by livestock.Fertilization with rock phosphate is often needed to improve the N benefits from tree fallows.Alley cropping,with crops grown between hedg-erows,and tree prunings used as mulch or green manure can also provide significant N to the inter-spersed crop.In Costa Rica,Phaseolus spp.beans grown between Erythrina poeppigiana rows and sup-plied prunings from these trees yielded15%to50% more than beans grown in monoculture(Henriksen et al.,2002).Sesbania sp.has been used similarly for alley cropping in rice.Nevertheless,Giller(2001) points to problems with this system,including com-petition for moisture between trees and crop plants, and declining yield benefits over time on infertile or acid soils.The increased role for N-fixing legumes under sub-sistence conditions has recently been recognized with the award of the2002World Food Prize to Dr.Pedro Sanchez,former director-general of the International Center for Research in Agroforestry.NATURAL ECOSYSTEMSN is the primary nutrient limiting plant production in most natural ecosystems(Seastedt and Knapp, 1993;Vitousek et al.,1997).Legumes,through their symbiotic abilities,can play an important role in colonizing disturbed ecosystems,including those that are fire prone(Arianoutsou and Thanos,1996). Rates of N2fixation in such environments are often low,but can still satisfy much of the legume’s N needs.B.Tlusty and P.H.Graham(personal commu-nication)found the percentage of plant N derived from fixation values for five legumes in a seeded and inoculated long-grass prairie to range from36%to almost100%.Spehn et al.(2002)examined plant spe-cies and functional groupings among grassland com-munities in seven countries in Europe.Two years after sowing,the presence of legumes affected N pool size in five of the seven sites.Such a build-up in soil N is probably not open ended,because Pearson and Vitousek(2001)noted a10-to20-fold decline in nodule mass and N fixation between6-and20-year-old regenerating stands of Acacia koa.A model devel-oped by Vitousek and Field(1999)associated reduc-tion in N2fixation with shade,P limitation,and grazing.Atmospheric CO2enrichment and N deposition, each a major ecological concern,are likely to have opposing effects in natural ecosystems.Hardy and Havelka(1976)showed N2fixation enhanced under CO2enrichment,and both legume biomass and fre-quency were enhanced in free-air CO2enrichment studies(Reich et al.,2001;Teyssonneyre et al.,2002). Total N in Lespedeza capitata and Lupinus perrenis increased58.3%and32.0%,respectively at560mol molϪ1CO2(Reich et al.,2001).In contrast,C3and C4 grasses were responsive to N deposition,whereas legumes showing little response.Influence of N on legume/grass balance in pastures is well docu-mented.In a model developed by Thornley et al. (1995),the legume fraction in pasture declined from 18%to1%as N supply was increased.INDUSTRIAL AND MEDICINAL USE OF LEGUMES In addition to traditional food and forage uses, legumes can be milled into flour,used to make bread, doughnuts,tortillas,chips,spreads,and extruded snacks(R.Phillips personal communication)or used in liquid form to produce milks,yogurt,and infant formula(Garcia et al.,1998).Pop beans(Popenoe et al.,1989),licorice(Glycyrrhiza glabra;Kindscher, 1992),and soybean candy(Genta et al.,2002)provide novel uses for specific legumes.Legumes have been used industrially to prepare biodegradable plastics(Paetau et al.,1994),oils, gums,dyes,and inks(Morris,1997).Galactomannan gums derived from Cyamopsis spp.and Sesbania spp. are used in sizing textiles and paper,as a thickener, and in pill formulation.Graham and VanceMany legumes have been used in folk medicine (Duke,1992;Kindscher,1992).Isoflavones from soy-beans and other legumes have more recently been suggested both to reduce the risks of cancer and to lower serum cholesterol(Kennedy,1995;Molteni et al.,1995).Soybean and soyfood phytoestrogens have been suggested as possible alternatives to hormone replacement therapy for postmenopausal women. Several U.S.cities and states now require that fleet vehicles be powered in part by biodiesel fuel from soybean.Some states require that biodiesel be in-cluded at a fixed percentage in all diesel fuels ().BIOLOGICAL N FIXATIONA hallmark trait of legumes is their ability to de-velop root nodules and to fix N2in symbiosis with compatible rhizobia.This is often a critical factor in their suitability for the uses outlined above. Formation of symbiotically effective root nodules involves signaling between host and microsymbiont. Flavonoids and/or isoflavonoids released from the root of the legume host induce transcription of nod-ulation genes in compatible rhizobia,leading to the formation of lipochitooligosaccharide molecules that, in turn,signal the host plant to begin nodule forma-tion(Long,1996).Numerous changes occur in host and bacterial gene expression during infection,nod-ule development,and function(Vance,2002),with approximately100host legume and rhizobial genes involved.Some40to60million metric tons(Mt)of N2are fixed by agriculturally important legumes annually, with another3to5million Mt fixed by legumes in natural ecosystems(Smil,1999).This is amazing ef-ficiency given the miniscule quantities of nitrogenase involved(Delwiche,1970).Why is symbiotic N fixation in legumes so impor-tant?In addition to its role as a source of protein N in the diet,N from legume fixation is essentially“free”N for use by the host plant or by associated or subsequent crops.Replacing it with fertilizer N would cost$7to10billion annually,whereas even modest use of alfalfa in rotation with corn could save farmers in the U.S.$200to300million(Peterson and Russelle,1991).Furthermore,fertilizer N is fre-quently unavailable to subsistence farmers,leaving them dependent on N2fixation by legumes or other N2-fixing organisms.One of the driving forces behind agricultural sus-tainability is effective management of N in the envi-ronment(Graham and Vance,2000).Application of fertilizer N increased approximately10-fold to90 million Mt between1950and1995(Frink et al.,1999) with significant energy consumption for N fertilizer synthesis and application.Further increases in N needs for agriculture are projected for the period to 2030(Tilman,1999),and these needs will contribute to environmental pollution.To the extent that farm-ing practices can make use of the more economically viable and environmentally prudent N2fixation(Peo-ples et al.,1995;Vance,2001),agriculture and the environment will benefit.The ability of legumes to sequester C has also been seen as a means to offset increases in atmospheric CO2levels while enhancing soil quality and tilth.Resh et al.(2002)found that soils under N2-fixing trees sequestered0.11Ϯ0.07kg m2yearϪ1of soil organic carbon,whereas there was no change under Eucalyptus spp.Carbon sequestra-tion under Prosopis spp.has also been reported. Giller(2001)suggests that rates of N2fixation of1 to2kg N haϪ1growing season dayϪ1should be possible in all legumes.Rates reported by Unkovich and Pate(2000)and van Kessel and Hartley(2000) are clearly less than this,with the latter authors re-porting a decline in average N2fixation rate for both soybean and beans over the period since1985.Con-straints to N2fixation include drought(Sinclair et al., 1987),soil acidity,N fertilization,and nutrient limi-tations.Many cultivars also show only limited ability to fix N2in symbiosis.Management of soil acidity for temperate and trop-ical regions has often differed but increasingly de-pends on acid-tolerant legume cultivars and rhizobia (Howieson et al.,2000),with soil liming only to a pH at which Al and Mn are no longer toxic.Acid soil management was of critical importance in opening the Brasilian Cerrado to agriculture,but it was ser-endipitous that the acid-tolerant Rhizobium tropici could replace other less tolerant bean rhizobia(Hun-gria et al.,1997).Identification of additional acid-tolerant host and rhizobial germplasm and the de-ployment of acid tolerance genes such as occur in R. tropici CIAT899(Graham et al.,1982)are priority areas.Maximum benefits from N2fixation depend on soil P availability(Kennedy and Cocking,1997),with 33%of the world’s arable land limited in P(Sanchez and Euhara,1980).Acid-weathered soils of the trop-ics and subtropics are particularly prone to P defi-ciency.Even where P fertilization is adequate,Ͻ15% of that P may be taken up by plants in the first year (Holford,1998).Perhaps of greater concern,reserves of rock phosphate could be depleted in only60to90 years(Abelson,1999).Plants dependent on symbiotic N2fixation have ATP requirements for nodule development and func-tion(Ribet and Drevon,1996)and need additional P for signal transduction and membrane biosynthesis. Phosphorus concentrations in the nodule are often significantly higher than those in shoot or root tissue (Israel,1987).Al-Niemi et al.(1997)suggest that bac-teroids can be P limited even when plants have re-ceived otherwise adequate P levels.Given this re-quirement for symbiosis,approaches leading to improved P acquisition and use in legumes(rhizo-sphere acidification,acid phosphatase secretion,root Legumes:Importance and Constraints to Greater Usearchitectural changes at low P,enhanced P transport and use-efficiency,and functional differences in my-corrhizal symbioses)all need further study.White lupine(Lupinus albus)and common bean are excel-lent model legumes for such studies.Each undergoes change in root architecture and rhizosphere chemis-try at low P(Johnson et al.,1996;Nielsen et al.,1998; Miller et al.,2001),improving soil exploration and phosphate scavenging.Transgenic alfalfa has proved extremely useful in understanding the genetic and molecular basis of low soil P,acid,and aluminum stress responses(Tesfaye et al.,2001).Results in this study highlight the need for more effective transfor-mation and regeneration protocols in the more recal-citrant legumes,including bean and cowpea. Progress in the study of nodulation and N2fixation under drought or salinity stress has been minimal, largely because the legume and the process of nod-ulation are more susceptible to these constraints than is the microorganism.SYNOPSISLegumes play a critical role in natural ecosystems, agriculture,and agroforestry,where their ability to fix N in symbiosis makes them excellent colonizers of low-N environments,and economic and environ-mentally friendly crop,pasture,and tree species.Le-gume yields unfortunately continue to lag behind those of cereals.A research orientation that better balances the needs of third-world or sustainability-oriented agriculture with the breakthrough technol-ogies of genomics and bioinformatics is needed.It requires stronger and more adventurous breeding programs,better use of marker-assisted technologies, and emphasis on disease resistance,enhanced N fix-ation,and tolerance to edaphic soil constraints.It also requires extension of existing low-cost technologies, such as rhizobial inoculation,to the small farmer.To paraphrase a comment by Catroux et al.(2001)“we enter the era of biotechnology knowing more and more about the growth of legumes at the gene level, but except for some producers in developed coun-tries,unable to effectively translate these into major gains in productivity.”Received November1,2002;returned for revision November29,2002; accepted December12,2002.LITERATURE CITEDAbelson PH(1999)A potential phosphate crisis.Science283:2015Al-Niemi TS,Kahn ML,McDermott TR(1997)P metabolism in the bean Rhizobium tropici symbiosis.Plant Physiol113:1233–1242Arianoutsou M,Thanos CA(1996)Legumes in the fire-prone Mediterra-nean regions:an example from Greece.Int J Wildland Fire6:77–82 Beaver JS,Rosas JC,Myers J,Acosta J,Kelly JD,Nchimbi-Msolla S, Misangu R,Bokosi J,Temple S,Arnaud-Santana E et al.(2003)Contri-butions of the bean/cowpea CRSP program to cultivar and germplasm development in common bean.Field Crops Res(in press)Bryan JA(2000)Nitrogen-fixing trees and shrubs:a basic resource of agro-forestry.In MS Ashton,F Montagnini,eds,The Silvicultural Basis for Agroforestry Systems.CRC Press,Baton Rouge,LA,pp41–60Buresh RJ,Cooper PJM(1999)The science and practice of short-term improved fallows.Agrofor Syst47:1–356Buresh RJ,Sanchez PA,Calhoun F(1997)Replenishing Soil Fertility in Africa.Special Publication51,Soil Science Society of America, Madison,WICassman KG(1999)Ecological intensification of cereal production systems: yield potential,soil quality and precision agriculture.Proc Natl Acad Sci USA96:5952–5959Catroux G,Hartmann A,Revellin C(2001)Trends in rhizobial inoculant production and use.Plant Soil230:21–30Cohen MN(1977)The Food Crisis in Prehistory:Overpopulation and the Origins of Agriculture.Yale University Press,New Haven,CTCoyne DP,Steadman JR,Godoy-Lutz G,Gilbertson R,Arnaud-Santana EA,Beaver JS,Myers JR(2003)Contributions of the bean/cowpea CRSP to the management of bean diseases.Field Crops Res(in press) Dakora FD,Lawlor DW,Sibuga KP(1999)Assessment of symbiotic nitro-gen nutrition in marama bean(Tylosema esculenta L.)a tuber-producing underutilized African grain legume.Symbiosis27:269–277de Faria SM,Lewis GP,Sprent JI,Sutherland JM(1989)Occurrence of nodulation in the leguminosae.New Phytol111:607–619de Leeuw PN,Mohamed-Saleem MA,Salati E(1994)Stylosanthes as a Forage and Fallow Crop.International Livestock Centre for Africa,Addis Ababa,EthiopiaDelwiche CC(1970)The nitrogen cycle.Sci Am223:136–146Duke JA(1992)Handbook of Legumes of Economic Importance.Plenum Press,New YorkDuranti M,Gius C(1997)Legume seeds:protein content and nutritional value.Field Crops Res53:31–45Ekanayake S,Jansz ER,Nair BM(2000)Literature review of an underuti-lized legume:Canavalia gladiata L.Plant Sources Human Nutr55:305–321 Franzluebbers K,Hossner LR,Juo ASR(1998)Integrated Nutrient Man-agement for Sustained Crop Production in Sub-Saharan Agriculture.A Review.Trop Soils Texas A&M University Technol.Bull98–03.Texas A&M University,College StationFred EB,Baldwin IL,McCoy E(1932)Root nodule bacteria and leguminous plants.University of Wisconsin Press,MadisonFrink CR,Waggoner PE,Ausubel SH(1999)Nitrogen fertilizer:retrospect and prospect.Proc Natl Acad Sci USA96:1175–1180Garcia MC,Marina ML,Laborda F,Torre M(1998)Chemical characteriza-tion of commercial soybean products.Food Chem62:325–331 Gathumbi SM,Ndufa JK,Giller KE,Cadisch G(2002)Do species mixtures increase above-and below-ground resource capture in woody and her-baceous tropical legumes?Agron J94:518–526Genta HD,Genta ML,Alvarez NV,Santana MS(2002)Production and acceptance of a soy candy.J Food Eng53:199–202Giller KE(2001)Nitrogen fixation in tropical cropping systems.CABI Publishing,Wallingford,UKGraham PH(1992)Stress tolerance in Rhizobium and Bradyrhizobium,and nodulation under adverse soil conditions.Can J Microbiol38:475–484 Graham PH,Vance CP(2000)Nitrogen fixation in perspective:an overview of research and extension needs.Field Crops Res65:93–106Graham PH,Viteri SE,Mackie F,Vargas AT,Palacios A(1982)Variation in acid soil tolerance among strains of Rhizobium phaseoli.Field Crops Res5: 121–128Hardy RWF,Havelka UD(1976)Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with an emphasis on soybeans.In PS Nutman,ed,Symbiotic Nitrogen Fixation in Plants.Cambridge University Press,Cambridge,UK pp421–439Henriksen I,Michelsen A,Schlonvoigt A(2002)Tree species selection and soil tillage in alley cropping systems with Phaseolus vulgaris L.in a humid premontane climate:biomass production,nutrient cycling and crop re-sponses.Plant Soil240:145–159Holford ICR(1998)Soil phosphorus:its measurement and uptake by plants.Aust J Soil Res35:227–239Howieson JG,Loi A,Carr SJ(1995)Biserrula pelecinus L.:a legume pasture species with potential for acid duplex soils which is nodulated by unique root-nodule bacteria.Aust J Agric Res46:997–1009Howieson JG,O’Hara GW,Carr SJ(2000)Changing roles for legumes in Mediterranean agriculture:developments from an Australian perspec-tive.Field Crops Res65:107–122Hungria M,Andrade DD,Colozzi A,Balota EL(1997)Interactions among soil organisms and bean and maize grown in monoculture or inter-cropped.Pesqui Agropecu Bras32:807–818Graham and Vance。