2018_2019学年高中物理第一章碰撞与动量守恒1.3动量守恒定律的应用课件教科版选修3_5

合集下载

动量守恒与碰撞

动量守恒与碰撞

动量守恒与碰撞动量守恒是一个基本的物理原理,它描述了一个系统内的总动量在碰撞或相互作用过程中保持不变。

在碰撞中,物体之间的相互作用会改变它们的运动状态,但总动量保持恒定。

本文将就动量守恒与碰撞这一物理原理进行探讨。

一、动量的定义动量是描述物体运动状态的物理量,定义为物体的质量乘以其速度。

即动量(p)等于物体的质量(m)乘以物体的速度(v)。

这可以用公式表示为:p = mv。

二、动量守恒定律动量守恒定律认为,在一个封闭的系统内,当没有外力作用时,系统的总动量保持不变。

这意味着系统内物体之间的碰撞或相互作用不会改变它们的总动量。

三、碰撞类型在物理学中,碰撞被分为弹性碰撞和非弹性碰撞两种类型。

1. 弹性碰撞弹性碰撞是指碰撞后物体之间没有能量损失,总动能保持不变。

在弹性碰撞中,物体在碰撞中获得的动量相互转移,但总动量保持不变。

2. 非弹性碰撞非弹性碰撞是指碰撞后物体之间存在能量损失,总动能减少。

在非弹性碰撞中,物体在碰撞中获得的动量不仅相互转移,还会转化为其他形式的能量。

四、动量守恒与碰撞的应用动量守恒与碰撞是物理学中重要的概念,在各个领域中都有应用。

1. 动量守恒在交通安全中的应用在交通事故中,动量守恒定律可以用来解释碰撞后车辆的运动轨迹和速度变化。

根据动量守恒定律,两辆车发生碰撞后,它们总动量的大小和方向保持不变。

这对于交通事故的调查和重建起着重要的作用。

2. 动量守恒在运动中的应用在各种运动竞技中,动量守恒定律也有广泛的应用。

例如,在撞球中,当一颗球撞击另一颗球时,根据动量守恒定律,可以计算出球的运动轨迹和速度变化。

在击剑比赛中,运动员必须根据动量守恒定律来控制自己的动作,以保持平衡和优势。

3. 动量守恒在火箭发射中的应用火箭发射是一个涉及到大量动量转移和守恒的过程。

在火箭发射过程中,推进剂喷出的速度和方向与火箭相比产生了相等大小但方向相反的动量,以保持总动量守恒。

五、结论动量守恒与碰撞是物理学中的重要概念。

高二物理1.1动量定理与动量守恒 §1.3一维弹性碰撞鲁教版知识精讲.doc

高二物理1.1动量定理与动量守恒 §1.3一维弹性碰撞鲁教版知识精讲.doc

高二物理1.1动量定理与动量守恒 §1.3一维弹性碰撞鲁教版【本讲教育信息】一. 教学内容:§1.1动量定理与动量守恒 §1.3一维弹性碰撞§1.1动量定理与动量守恒一. 教学目的:1. 认识动量的概念2. 会用动量定理解释简单问题二. 教学重、难点:1. 会推导动量守恒定律2. 会用动量守恒定律解释处理问题 (一)动量的概念1. 定义:运动物体的质量和速度的乘积叫动量。

2. 公式:m v P = 单位:s /m kg ⋅3. 是矢量:方向与v 的方向相同(即有正负)4. 解释:(1)动量是描述物体运动状态的量,通常说物体的动量是指物体在某一时刻的动量,对应该时刻的速度。

(2)动量具有相对性:选不同的参照物,物体的动量不同,但通常选地面为参考系。

(二)冲量1. 定义:力和力的作用时间的乘积叫做力的冲量。

2. 公式:t F I ⋅=单位:N ·s 或说与P 相同为s /m kg ⋅方向:与F 的方向相同 3. 解释(1)是力在时间上的积累效果(2)计算方法就是力与时间相乘,与其它无关。

(三)动量定理 1. 推导:tv v a 12-=则t v v m ma 12-=即tP P F t mv mv F 1212-=-=或或写成P I P t F P P t F 12∆=∆=⋅-=⋅即与2. 内容:物体所受合外力的冲量等于物体的动量变化。

3. 应用:(1)解释一些现象①玻璃杯落在水泥地上会摔碎而落在海绵上不会碎。

②从高处落下时,曲膝以缓冲减小对人体的伤害。

③汽车突然刹车或启动时人体的前扑与后仰。

(2)计算:(四)动量守恒定律的推导1. 推导:如图所示两小球相撞前后的情形:FFB v 1’v 2’AB则对A 球1111v m 'v m t F -=⋅ 对B 球:2222v m 'v m t F -=⋅-则)v m 'v m (v m 'v m 22221111--=- 即:22112211v m v m 'v m 'v m +=+ 或总总P 'P =或:'v m v m v m 'v m 22221111-=- 即:21P P ∆-=∆(五)表述1. 一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。

动量守恒与碰撞的弹性碰撞

动量守恒与碰撞的弹性碰撞

动量守恒与碰撞的弹性碰撞动量守恒与碰撞的弹性碰撞是物理学中重要的概念和定律。

本文将深入探讨动量守恒定律与弹性碰撞的概念、原理、应用以及实验验证等方面的内容。

一、动量守恒定律动量守恒是指在一个孤立系统中,总动量不变,即系统中所有物体的动量之和保持不变。

这是一个基本的物理定律,可以用公式来表示为:总动量 = m1v1 + m2v2 + ... + mnvn。

二、碰撞的分类碰撞分为完全弹性碰撞和非完全弹性碰撞两种情况。

1. 完全弹性碰撞:在完全弹性碰撞中,物体之间没有能量损失,碰撞前后物体的动能和动量都完全守恒。

2. 非完全弹性碰撞:在非完全弹性碰撞中,碰撞前后物体的动能和动量都不完全守恒。

此时,一部分动能可能会转化为其他形式的能量,如热能等。

三、弹性碰撞的实验验证为了验证弹性碰撞的动量守恒定律,可以进行实验。

实验装置通常包括光滑的平面、弹性小球等。

通过调整小球的初始动量和速度,观察碰撞前后的动量变化,可以验证碰撞过程中动量守恒的准确性。

四、动量守恒与碰撞的应用动量守恒与碰撞理论在众多领域都有广泛的应用。

1. 交通事故分析:利用碰撞理论可以分析车辆之间的相互碰撞情况,帮助研究交通事故的发生原因,并制定相应的安全措施。

2. 运动物体的动力学分析:通过碰撞理论可以研究运动物体之间的相互作用,分析和描述运动物体的加速度、速度变化等动力学参数。

3. 球类运动:在球类运动中,碰撞理论可以帮助解释球的弹跳、速度和方向的变化,进而提高球类运动的技能和策略。

4. 工程设计:动量守恒与碰撞理论在工程设计中有着广泛的应用,如防护墙的设计、物体坠落的撞击力分析等。

五、总结动量守恒与碰撞的弹性碰撞是物理学中的重要概念。

通过动量守恒定律,我们可以深入理解碰撞过程中的物体相互作用和动能转化的规律。

实验验证和应用案例进一步巩固了这一定律在物理学和工程学中的重要性。

深入研究与应用动量守恒和弹性碰撞定律,不仅可以推动科学技术的发展,也有助于解决实际问题,提高生活质量。

碰撞和动量守恒知识点总结

碰撞和动量守恒知识点总结

碰撞和动量守恒知识点总结(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章碰撞和动量守恒知识点总结知识点1 物体的碰撞1.生活中的各种碰撞现象碰撞的种类有正碰和斜碰两种.(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.2.弹性碰撞和非弹性碰撞(1)碰撞分为弹性碰撞和非弹性碰撞两种.①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:(3)注意.①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.知识点2 动量、冲量和动量定理一、动量1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。

是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。

单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。

高中物理第一章碰撞与动量守恒第二节动量动量守恒定律课件粤教版选修3-

高中物理第一章碰撞与动量守恒第二节动量动量守恒定律课件粤教版选修3-

p1=mv1=5×10-3×39.06 kg·m/s=0.125 kg·m/s, p2=mv2=-5×10-3×334.62 kg·m/s=-0.475 kg·m/s, 所以动量的变化量 Δp=p2-p1=-0.475 kg·m/s- 0.125 kg·m/s=-0.600 kg·m/s. 即羽毛球的动量变化量大小为 0.600 kg·m/s,方向与 羽毛球飞来的方向相反. (2)羽毛球的初速度:v=25 m/s,羽毛球的末速度:v′
知识点一 动量及其改变
提炼知识 1.动量. (1)定义:运动物体的质量和它的速度的乘积叫作物 体的动量,用符号 p 表示. (2)定义式:p=mv. (3)单位:在国际单位制中,动量的单位是千克米每 秒,符号是 kg·m/s.
(4)矢量性:动量是矢量,它的方向与速度的方向相 同.
2.冲量. (1)定义:物体受到的力和力的作用时间的乘积叫作 力的冲量,用符号 I 表示. (2)定义式:I=F·t. (3)单位:在国际单位制中,冲量的单位是牛·秒,符 号是 N·s.
答案:BD
2.一质量为 m 的物体做匀速圆周运动,线速度的大
小为 v,当物体从某位置转过14周期时,动量改变量的大
小为( )
A.0
B.mv
C. 2mv
D.2mv
解析:物体做匀速圆周运动时,动量大小不变,但方 向在发生变化,故计算动量变化 Δp 时应使用平行四边形 定则.
如图所示,设 p 为初动量,p′为末动量,而由于 p、p′, 大小均为 mv,且 p′与 p 垂直,则 Δp 大小 为 2mv.选项 C 正确.
解析:由 Ft=Δp 知,Ft 越大,Δp 越大,但动量不 一定大,它还与初状态的动量有关;冲量不仅与 Δp 大小 相等,而且方向相同.由 F=p′t-p,物体所受合外力越 大,动量变化越快.

2018版高中物理第一章碰撞与动量守恒1.1碰撞1.2动量导学案教科版选修3_5

2018版高中物理第一章碰撞与动量守恒1.1碰撞1.2动量导学案教科版选修3_5

1 碰撞2 动量[目标定位] 1.知道什么是碰撞及碰撞的分类,掌握弹性碰撞和非弹性碰撞的区别.2.理解动量、冲量的概念,知道动量、冲量的方向.3.知道动量的改变量,并会求动量的改变量.4.理解动量定理的物理意义和表达式,能用动量定理解释现象和解决实际问题.一、碰撞1.碰撞现象做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞.2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变.(2)非弹性碰撞:碰撞后两滑块的总动能减少了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动,完全非弹性碰撞过程动能损失最大.二、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s.2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量是状态量.4.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).想一想质量和速度大小相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动量是矢量,有方向性,而动能是标量,无方向.三、动量定理1.冲量(1)定义:力与力的作用时间的乘积,公式:I=Ft,单位:牛顿·秒,符号N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化.(2)公式:Ft =p ′-p 或I =Δp .预习完成后,请把你疑惑的问题记录在下面的表格中一、碰撞中的动能变化及碰撞分类(1)发生碰撞的两物体,若两物体的形变是弹性的,碰后能够恢复原状,两物体碰撞前后动能不变,这样的碰撞叫弹性碰撞.(2)发生碰撞的两物体,若两物体的形变是非弹性的,碰后不能够完全恢复原状,两物体碰撞后动能减少,这样的碰撞叫非弹性碰撞.(3)若两物体碰后粘在一起,不再分开,此过程两物体损失的动能最大,这样的碰撞叫完全非弹性碰撞.【例1】 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰.试根据以下数据,分析碰撞性质. (1)碰后A 、B 的速度均为2 m/s.(2)碰后A 的速度为1 m/s ,B 的速度为4 m/s. 答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 20=9 J.(1)当碰后A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J<E k0 故碰撞为非弹性碰撞.(2)当碰后v A =1 m/s ,v B =4 m/s 时,碰后系统的动能E k ′=12m A v 2A +12m B v 2B=(12×2×12+12×1×42) J =9 J =E k0 故碰撞为弹性碰撞. 二、动量和动量的变化1.对动量的理解(1)动量的矢量性:动量是矢量,它的方向与速度v的方向相同,遵循矢量运算法则.动量是状态量,进行运算时必须明确是哪个物体在哪一状态(时刻)的动量.(2)动量具有相对性:由于速度与参考系的选择有关,一般以地球为参考系.(3)动量与动能的区别与联系:①区别:动量是矢量,动能是标量.②联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k. 2.动量的变化(Δp)(1)Δp=p′-p为矢量式.若p′、p不在一条直线上,要用平行四边形定则求矢量差.若p′、p在一条直线上,先规定正方向,再用正、负表示p′、p,则可用Δp=p′-p=mv′-mv进行代数运算.(2)动量变化的方向:与速度变化的方向相同.【例2】质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为( )A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同答案 A解析以原来的方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.借题发挥关于动量变化量的求解1.若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.2.若初、末动量不在同一直线上,运算时应遵循平行四边形定则.三、对冲量的理解和计算1.冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,冲量的方向与力的方向相同.2.冲量的计算(1)求某个恒力的冲量:用该力和力的作用时间的乘积.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I合=F合Δt求解.图1(3)求变力的冲量:①若力与时间成线性关系变化,则可用平均力求变力的冲量.②若给出了力随时间变化的图像如图1所示,可用面积法求变力的冲量.③利用动量定理求解.图2【例3】如图2所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,物体所受各力的冲量.(g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)答案见解析解析重力的冲量:I G=Gt=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I F=Ft=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I Ff=F f t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.借题发挥求各力的冲量或者合力的冲量,首先判断是否是恒力,若是恒力,可直接用力与作用时间的乘积,若是变力,要根据力的特点求解,或者利用动量定理求解.四、对动量定理的理解和应用1.动量定理的理解(1)动量定理的表达式Ft=p′-p是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.2.动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)应用动量定理定量计算的一般步骤:①选定研究对象,明确运动过程.②进行受力分析和运动的初、末状态分析.③选定正方向,根据动量定理列方程求解.【例4】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小答案 D解析人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A 错误;落地后静止,末动量一定,人的动量变化是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化,所以两种情况下人受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化一定的情况下,时间t越长则受到的冲力F越小,故选项D正确.【例5】质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s 后停止,则该运动员身体受到的平均冲力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s 停下,则沙坑对运动员的平均冲力约为多少?(g取10 m/s2)答案 1 400 N 7 700 N解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间是t=2hg=1 s从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.对弹性碰撞和非弹性碰撞的理解1.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后甲滑块静止不动,乙滑块反向运动,且速度大小为2v.那么这次碰撞是( )A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .条件不足,无法确定答案 A解析 碰前总动能:E k =12·3m ·v 2+12mv 2=2mv 2碰后总动能:E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 对.对动量和冲量的理解2.关于动量,下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体运动的速度大小不变,物体的动量也保持不变D .质量一定的物体,动量变化越大,该物体的速度变化一定越大 答案 D解析 动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A 、B 均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C 错误;由Δp =m Δv 知D 正确. 3.如图3所示,质量为m 的小滑块沿倾角为θ的斜面向上滑动,经过时间t 1速度为零然后又下滑,经过时间t 2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F 1.在整个过程中,重力对滑块的总冲量为( )图3A .mg sin θ(t 1+t 2)B .mg sin θ(t 1-t 2)C .mg (t 1+t 2)D .0答案 C解析 谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的冲量,根据冲量的定义式I =Ft ,因此重力对滑块的冲量应为重力乘作用时间,所以I G =mg (t 1+t 2),即C 正确.动量定理的理解和应用4.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A .引起小钢球动量变化的是地面给小钢球的弹力的冲量B .引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C .若选向上为正方向,则小钢球受到的合冲量是-1 N·sD .若选向上为正方向,则小钢球的动量变化是1 kg·m/s 答案 BD5.质量为60 kg 的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的缓冲时间是1.5 s ,安全带自然长度为5 m ,g 取10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .1 100 NC .600 ND .1 000 N 答案 D解析 建筑工人下落5 m 时速度为v ,则v =2gh =2×10×5 m/s =10 m/s.设安全带所受平均冲力为F ,则由动量定理得:(mg -F )t =-mv ,所以F =mg +mv t =60×10 N+60×101.5N=1 000 N ,故D 对,A 、B 、C 错.(时间:60分钟)题组一 对弹性碰撞和非弹性碰撞的理解 1.下列属于弹性碰撞的是( ) A .钢球A 与钢球B B .钢球A 与橡皮泥球B C .橡皮泥球A 与橡皮泥球B D .木球A 与钢球B 答案 A解析 钢球A 与钢球B 发生碰撞,形变能够恢复,属于弹性碰撞,A 对;钢球A 与橡皮泥球B 、橡皮泥球A 与橡皮泥球B 碰撞,形变不能恢复,即碰后粘在一起,是完全非弹性碰撞,B 、C 错;木球A 与钢球B 碰撞,形变部分能够恢复,属于非弹性碰撞,D 错.2.在光滑的水平面上,动能为E 0的钢球1与静止钢球2发生碰撞,碰后球1反向运动,其动能大小记为E 1,球2的动能大小记为E 2,则必有( ) A .E 1<E 0 B .E 1=E 0 C .E 2>E 0 D .E 2=E 0 答案 A解析 根据碰撞前后动能关系得E 1+E 2≤E 0,必有E 1<E 0,E 2<E 0.故只有A 项对. 题组二 对动量和冲量的理解 3.下列说法正确的是( )A .动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变答案 B解析动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平衡状态,选项A 错误;物体受恒力,也可能做曲线运动.如平抛运动,选项B正确;合外力不变,加速度不变,速度均匀变化,动量一定变化,C项错误;动能不变,若速度的方向变化,动量就变化,选项D错误.4.(多选)如图1所示为放到水平地面上的物体受到的合外力随时间变化的关系,若物体开始时是静止的,则前3 s内( )图1A.物体的位移为0B.物体的动量改变量为0C.物体的动能变化量为0D.前3 s合力冲量为零,但重力冲量不为零答案BCD解析第1 s内:F=20 N,第2、3 s内:F=-10 N,物体先加速,后减速,在第3 s末速度为零,物体的位移不为零,A错误;根据动量定理I=Δp,前3 s内,动量的变化量为零,B正确;由于初速度和末速度都为零,因此,动能变化量也为零,C正确;无论物体运动与否,某一个力在这段时间的冲量不为零,D正确.5.把质量为10 kg的物体放在光滑的水平面上,如图2所示,在与水平方向成53°的10 N 的力F作用下从静止开始运动,在2 s内力F对物体的冲量为多少?物体获得的动量是多少?(sin 53°=0.8,cos 53°=0.6)图2答案20 N·s12 kg·m/s解析首先对物体进行受力分析:与水平方向成53°的拉力F、重力G、支持力F N.由冲量定义可知,力F的冲量为I F=Ft=10×2 N·s=20 N·s.在水平方向,由牛顿第二定律得F cos 53°=ma2 s 末的速度v =at 物体获得的动量P =mv =Ft cos 53°=10×0.6×2 kg·m/s=12 kg·m/s.题组三 动量定理的理解及定性分析6.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时作用时间长 答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,杯子停下,在此过程中,玻璃杯的动量变化Δp =-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =-(-m 2gh ),所以F =m 2ghΔt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎. 7.从高处跳到低处时,为了安全,一般都是让脚尖着地,这样做是为了( ) A .减小冲量 B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用 答案 C解析 脚尖先着地,接着逐渐到整只脚着地,延缓了人落地时动量变化所用的时间,由动量定理可知,人落地动量变化一定,这样就减小了地面对人的冲力,故C 正确.8.质量为m 的钢球自高处落下,以速度大小v 1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A .向下,m (v 1-v 2)B .向下,m (v 1+v 2)C .向上,m (v 1-v 2)D .向上,m (v 1+v 2)答案 D解析 物体以大小为v 1的竖直速度与地面碰撞后以大小为v 2的速度反弹.物体在与地面碰撞过程的初、末状态动量皆已确定.根据动量定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1 由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).题组四 动量定理的有关计算9.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图3所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均作用力大小为________N.图3答案 90解析 选定小球与墙碰撞的过程,取v 1的方向为正方向,对小球应用动量定理得Ft =-mv 2-mv 1所以,F =-mv 2-mv 1t =-0.5×4-0.5×50.05N =-90 N“-”号说明F 的方向向左.10.如图4所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图4答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t =2gh 2=8 m/s ,分析物体和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(F N -mg )t =mv t -(-mv 0),代入数据,解得F N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.11.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度均为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力为多大?答案 (1)5.4×104 N (2)1.8×103N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m. 设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-mv 0,解得F =-mv 0t =-60×30130N =-5.4×104 N ,与运动方向相反. (2)若人系有安全带,则F ′=-mv 0t ′=-60×301N =-1.8×103 N ,与运动方向相反. 12.将质量为m =1 kg 的小球,从距水平地面高h =5 m 处,以v 0=10 m/s 的水平速度抛出,不计空气阻力,g 取10 m/s 2.求:(1)抛出后0.4 s 内重力对小球的冲量;(2)平抛运动过程中小球动量的增量Δp ;(3)小球落地时的动量p ′的大小.答案 (1)4 N·s 方向竖直向下(2)10 N·s 方向竖直向下 (3)10 2 kg·m/s解析 (1)重力是恒力,0.4 s 内重力对小球的冲量 I =mgt =1×10×0.4 N·s=4 N·s方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h =12gt ′2, 落地时间t ′=2h g=1 s. 小球飞行过程中只受重力作用,所以合外力的冲量为I ′=mgt ′=1×10×1 N·s=10 N·s,方向竖直向下.由动量定理得Δp =I ′=10 N·s,方向竖直向下.(3)小球落地时竖直分速度为v y=gt′=10 m/s.由速度合成知,落地速度v=v20+v2y=102+102m/s=10 2 m/s,所以小球落地时的动量大小为p′=mv=10 2 kg·m/s.。

2018-2019学年高中物理 第一章 碰撞与动量守恒 1.1 碰撞 教科版选修3-5

2018-2019学年高中物理 第一章 碰撞与动量守恒 1.1 碰撞 教科版选修3-5

m1v′1+m2v′2
mv2/(kg·m2·s-2)
v /(m·s-1·kg-1)
m
其他可能的猜想 实验得出的结论
碰撞前
m1v12 m2v22
v1 v2 m1 m2
碰撞后
m1v12 m2v22
v1 v2 m1 m2
【误差分析】 1.系统误差: (1)碰撞是否为一维碰撞,设计实验方案时应保证碰撞 为一维碰撞。 (2)碰撞中其他力(例如,摩擦力、空气阻力等)的影响 带来的误差。实验中要合理控制实验条件,避免除碰撞 时相互作用力外的其他力影响物体速度。
2.探究过程:
(1)先用_天__平__分别测出带弹簧片的滑块1、滑块2的质
量m1、m2,然后用手推动滑块1使其获得初速度v1,与静 止的滑块2相碰(相碰时,两弹簧片要_正__对__),测定碰撞 前、后两滑块的_速__度__大__小__,算出相关数据,填入表中。
(2)再换用不带弹簧片的两滑块按照上面的步骤进行实 验,并读取实验数据,填入表中。 (3)将滑块上的弹簧片换成_橡__皮__泥__,用_天__平__分别测出 滑块1、滑块2的质量;使有橡皮泥的两端_正__对__,让滑块 1与滑块2相碰,测算出相关数据,并填入表中。
【归纳总结】 1.实验原理: (1)一维碰撞: 两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线 运动的碰撞。
(2)探究碰撞中的不变量和动能变化: 在一维碰撞的情况下,设两个物体的质量分别为m1、m2, 碰撞前的速度分别为v1、v2,如果速度的方向与我们规 定的方向一致取正值,相反取负值,依次探究以下关系 是否成立:
【典例探究】 【典例】某同学运用以下实验器材,设计了一个碰撞实 验来寻找碰撞前后的不变量:打点计时器、低压交流电 源(频率为50Hz)、纸带、表面光滑的长木板、带撞针 的小车A、带橡皮泥的小车B、天平。

2019_2020学年高中物理第1章碰撞与动量守恒第1节物体的碰撞第2节动量动量守恒定律课件粤教版选修3_5

2019_2020学年高中物理第1章碰撞与动量守恒第1节物体的碰撞第2节动量动量守恒定律课件粤教版选修3_5

【题后反思】由动量定理知 F=ΔΔpt ,对一定的动量变化, 延长作用时间可以减小作用力,这种过程称为缓冲,缓冲过程 中是通过延长作用时间减小了冲击力,并没有减少动量的变化 量.
2.(2018年鸡西名校期中)放在水平桌面上的物体质量为
m,用一个水平推力F推它,用时t,物体始终不动,那在t时间
内,推力对物体的冲量应为( )
【题后反思】(1)因为p=mv是矢量,只要m的大小、v的大 小和v的方向三者中任何一个或几个发生了变化,动量p就发生 了变化.
(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv 的方向相同.
(3)动量变化量Δp的大小,一般都是用末动量减初动量, 也称为动量的增量.
Δp = pt - p0 , 此 式 是 矢 量 式 , 若 pt 、 p0 不 在 一 条 直 线 上 时,要用平行四边形定则(或矢量三角形法则)求矢量差.若在 一条直线上,先规定正方向,再用正、负表示p0、pt,则可用 Δp=pt-p0=mvt-mv0进行代数运算求解.
3.动量的变化量 物体在某段时间内__末__动__量__与_初__动__量___的矢量差(也是矢 量),Δp=__p_′_-__p__(矢量式).
4.动量定理 (1) 内 容 : 物 体 所 受 __合__外__力__ 的 冲 量 , 等 于 物 体 的 ___动__量__变__化___. (2)公式:I=Δp或Ft=__m__v2_-__m__v_1 __.
四、一维碰撞中的动量守恒定律 1.内容:物体在碰撞时,如果系统所受到的__合__外__力__为 零,则系统的总动量保持不变. 2.表达式 (1)p=p′或m1v1+m2v2=m1v1′+m2v2′,表示相互作用前的 总动量等于相互作用后的总动量. (2)Δp1=-Δp2,表示一个物体的动量变化量与另一个物体 的动量变化量大小相等,方向相反. (3)Δp=0,表示系统的总动量增量为零,即系统的总动量 保持不变.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提示:(1)根据反冲运动的特点可得(1)正确。 (2)反冲运动中,若内力远大于外力也可用动量守恒定 律进行分析,故(2)错误。 (3)根据反冲运动的适用范围可得(3)正确。
(4)根据火箭的工作原理可得(4)正确。
知识点一、对碰撞问题的认识与理解
思考探究:
如图所示,光滑的水平面上有A、B两个物体,其中带有 轻弹簧的物体B静止,质量为m的物体A以速度v0向物体B 运动。
3
动量守恒定律的应用
一、几个碰撞问题的定量分析 1.弹性碰撞: (1)碰撞规律:在光滑水平面上质量为m1的小球以速度 v1与质量为m2的静止小球发生弹性碰撞。其动量和动 守恒 。 能均_____
m1v1=m1v′1+m2v′2
1 1 2 2 m v m v 1 1 1 2 2 2 2 2 m1v1 ________________ 。 2
(1)碰撞过程中动量守恒原则。
(2)碰撞后总动能不增加原则。
(3)碰撞后状态的合理性原则(碰撞过程的发生必须符 合客观实际)。比如追及碰撞:碰撞后在前面运动的物 体速度一定增加,若碰撞后两物体同向运动,后面的物 体速度一定不大于前面物体的速度。
v0 恒,mv0=2mv′,v′= ,系统具有最大弹性势能 2 1 1 1 1 2 2 2 故选B。 E p mv0 2 mv mv0 , 2 2 2 2
【总结提升】处理碰撞问题应把握好三个基本原则
在碰撞过程中,系统的总动能不可能增加,如果是弹性
碰撞,碰撞前后总动能不变,如果是非弹性碰撞,则有部 分动能转化为内能,系统总动能减少。其中碰撞后结合 为一体的情形,损失的动能最多。所以,在处理碰撞问 题时,通常要抓住三项基本原则:
2.火箭的发射: 反冲 现象,靠喷出高速气 (1)原理:火箭的发射利用了_____ 流获得较大速度。 (2)影响火箭获得速度大小的因素:一是向后的喷气速
质量比 。喷气速度越大,质量比越大,最终速 度;二是_______
越大 。 度就_____
【判一判】 (1)反冲运动是相互作用的物体之间的作用力与反作用 力产生的作用效果。 律来分析。 子。 (4)火箭应用了反冲的原理。 ( ( ( ( ) ) ) ) (2)只有系统合外力为零的反冲运动才能用动量守恒定 (3)反冲运动的原理既适用于宏观物体也适用于微观粒
2.完全非弹性碰撞:碰撞后两物体粘在一起,获得共同 动量 守恒。 速度,其_____
【想一想】质量相等的两个小球发生弹性碰撞,一定交 换速度吗? 提示:质量相等的两个小球只有发生对心的弹性碰撞时 , 系统动量守恒,总动能守恒,才会交换速度,否则不会交
换速度。
二、火箭的发射与反冲现象
动量守恒 定律。 1.反冲现象:遵循_________
变,m2以2v1的速度被撞出去。 相反 1被弹 ②若m1<m2,v′1为负值,表示v′1与v1方向_____,m -v1 0 表示m 被反向以原速 回;若m ≪m ,v′ =___,v′ =__,
1 2 1 2 1
率弹回,而m2仍静止。
v1 即碰撞后两球交换了 0 ③若m1=m2,则有v′1=__,v′ 2=__, 速度 。 _____ 弹性碰撞 的规律,通过 (2)中子的发现:查德威克利用_________ 定量分析发现了中子。
(2)系统动能不增加,即Ek1+Ek2≥E′k1+E′k2或
2 2 2 2 p1 p2 p1 p2 。 2m1 2m 2 2m1 2m 2
(3)符合实际情况,如果碰撞前两物体同向运动,则后面
的物体速度必大于前面物体的速度,即v后>v前,否则无
法实现碰撞。碰撞后,原来在前的物体的速度一定增大, 且原来在前的物体速度大于或等于原来在后的物体的 速度,即v′前≥v′后,否则碰撞没有结束。如果碰撞前 两物体相向运动,则碰撞后两物体的运动方向不可能都 不改变,除非两物体碰撞后速度均为零。
A.P的初动能 C.P的初动能的2倍
1 B.P的初动能的 2 D.P的初动能的 1 4
【思路点拨】
解答本题需掌握以下两点:
(1)碰撞过程系统的总动量守恒。 (2)弹簧的弹性势能最大时,弹簧最短,此时P、Q具有共 同的速度。
【正确解答】选B。设P的初速度为v0,当弹簧具有最大
弹性势能时,P、Q速度相等,由动量守
碰后两个物体的速度分别为
2m1 m1 m 2 v1 v1 v′1= m1 m2 ,v′2= m1 ′1和v′2都是正值,表示v′1和v′2都与v1 v1 2v1 表示m 速度不 相同 若m ≫m ,v′ =__,v′ 方向_____; =___,
1 2 1 2 1
【特别提醒】 (1)当遇到两物体发生碰撞的问题,不管碰撞环境如何, 要首先想到利用动量守恒定律。 (2)对心碰撞是同一直线上的运动过程,只在一个方向
上列动量守恒方程即可,此时应注意速度正、负号的选
取。
【典例探究】
【典例】如图所示,位于光滑水平桌面上的小滑块P和Q
都可视为质点,质量相等。Q与轻质弹簧相连。设Q静 止,P以某一初速度向Q运动并与弹簧发生碰撞。在整个 碰撞过程中,弹簧具有的最大弹性势能等于 ( )
请思考以下问题:
(1)碰撞过程中系统的动量守恒吗?
(2)弹簧最短时,A、B的速度有什么关系?
(3)弹簧最短时,系统的总动量为多少?
【归纳总结】 1.碰撞过程的特点: (1)发生碰撞的物体间一般作用力很大,作用时间很短, 各物体作用前后各自动量变化显著,物体在作用时间内 的位移可忽略。 (2)即使碰撞过程中系统所受合力不等于零,因为内力 远大于外力,作用时间又很短,所以外力的作用可忽略, 认为系统的动量是守恒的。
(3)若碰撞过程中没有其他形式的能转化为机械能,则
系统碰撞后的总机械能不可能大于碰前的系统机械能。
(4)对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞, 碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后 动能损失最大。
2.碰撞过程的分析: 判断依据:在所给条件不足的情况下,碰撞结果有各种 可能,但不管哪种结果必须同时满足以下三条: (1)系统动量守恒,即p1+p2=p′1+p′2。
相关文档
最新文档