Superconducting Nb-film LC resonator

合集下载

SUPERCONDUCTING MAGNESIUM BORIDE THIN-FILM AND PRO

SUPERCONDUCTING MAGNESIUM BORIDE THIN-FILM AND PRO

专利名称:SUPERCONDUCTING MAGNESIUM BORIDETHIN-FILM AND PROCESS FOR PRODUCINGTHE SAME发明人:Yoshitomo Harada,MasahitoYoshizawa,Haruyuki Endo申请号:US11909512申请日:20060322公开号:US20090062128A1公开日:20090305专利内容由知识产权出版社提供专利附图:摘要:A magnesium boride thin film having a B-rich composition represented by the general formula of MgB(x=1 to 10) and a superconducting transition temperature of 10K or more has superior crystallinity and orientation and is used as a superconducting material. This thin film is formed by maintaining a film forming environment in a high vacuum atmosphere of 4×10Pa or less, and simultaneously depositing Mg and B on a substrate maintained at a temperature of 200° C. or less so as to grow the film at agrowth rate of 0.05 nm/sec or less. It is preferable to supply an Mg vapor and a B vapor into the film forming environment at an Mg/B molar ratio of 1/1 to 12/1.申请人:Yoshitomo Harada,Masahito Yoshizawa,Haruyuki Endo 地址:Iwate JP,Iwate JP,Iwate JP国籍:JP,JP,JP更多信息请下载全文后查看。

基于同轴线的低通滤波器设计

基于同轴线的低通滤波器设计

• 149•基于同轴线的低通滤波器设计南京邮电大学 仲维扬同轴线滤波器是被广泛使用的微波传输结构。

应用高低阶跃阻抗技术,通过实现高低阻同轴线间的耦合,设计了应用15G 的低通滤波器。

EM 仿真结果表明,该基于同轴线的低通滤波器通带回波损耗小于-22dB ,带内最小插入损耗小于0.5dB 。

仿真结果表明该滤波器具有较好的性能,满足设计要求。

低通,带通,带阻滤波器通常用于抑制功率放大器和整流器中的高次谐波和杂散信号。

一些滤波器已经很成熟,如开路短截线滤波器和阶跃阻抗谐振器(Stepped-impedance resonator ,SIR )滤波器。

开路短截线结构更容易控制工作频率,而SIR 滤波器结构往往更紧凑。

现代卫星通信系统和整流天线需要具有低插入损耗和宽阻带的小型高性能低通滤波器。

SIR 可以在谐振器的无负载Q 因子不变的情况下显小谐振器的长度。

为了实现尖锐的截止频率和宽阻带,需要更多的SIR 组,这意味着更高的损耗和更大的尺寸。

因此,由SIR 和开路短截线组成的具有奇模和偶模的步进阻抗谐振器,通过调节开路短截线的尺寸,可以在通带中实现最小尺寸和良好的选择性。

在本文中,介绍了一种新型的阶跃阻抗谐振器谐振器(SIR )及其集总电路(LC )分析,然后在谐振器中间采用了糖葫芦型的同轴线来锐化过渡,最终实现了具有优异性能的紧凑型滤波器。

1.同轴线传输特性同轴传输线几何结构如图1所示,其中内导体的电位为Vo 伏,外导体的电压为零伏。

图中的场可以从标量势函数Φ(ρ,φ)导出,这是拉普拉斯方程的解。

在圆柱坐标系中,拉普拉斯方程形式为:该方程必须根据边界条件求解Φ(ρ,φ),边界条件是:通过变量分离的方法,将Φ(ρ,φ)表示为:图1 同轴线几何结构把上式带入拉普拉斯方程,得到:通过通常的变量分离参数,其中的两个项必须等于常数,这样有:其中k φ=n 必须是整数,因为将φ增加2π的倍数不应改变结果。

因为边界条件不随φ变化,所以电位Φ(ρ,φ)不应随φ变化。

超分辨率成像技术的原理与应用

超分辨率成像技术的原理与应用

超分辨率成像技术的原理与应用超分辨率成像技术(Super-resolution Imaging)是指通过一系列图像处理算法和技术手段,将多幅低分辨率图像合成成一幅高分辨率图像的技术方法。

其原理是基于图像信息的冗余性和统计特性,通过利用不同图像之间的互补信息,提高图像的细节和清晰度。

一、图像插值:图像插值是指通过对已有的低分辨率图像进行像素级别的插值,从而得到更为精确的重建高分辨率图像。

其常用的插值方法包括最近邻插值、双线性插值、双三次插值等。

1.最近邻插值:对于每一个像素点,最近邻插值选择离该点最近的高分辨率图像像素点的灰度值作为该点的灰度值,适用于图像中存在锯齿状或明显颗粒状的像素点。

2.双线性插值:对于每一个像素点,双线性插值通过线性插值的方法,根据该点附近的四个高分辨率图像像素点的灰度值来计算该点的灰度值,适用于图像中存在平滑过渡的像素点。

3.双三次插值:对于每一个像素点,双三次插值通过三次样条插值的方法,根据该点附近的16个高分辨率图像像素点的灰度值来计算该点的灰度值,适用于图像中存在细微细节的像素点。

二、图像重建:图像重建是指通过利用插值得到的高分辨率图像和已有的低分辨率图像之间的信息互补性,通过一系列的算法和技术手段,进行图像的重建和增强。

常用的重建方法有基于边缘的重建、基于模型的重建和基于深度学习的重建等。

1.基于边缘的重建:该方法主要通过提取低分辨率图像和高分辨率图像之间的边缘信息,通过边缘的插值和重建,提高图像的边缘分辨率和清晰度。

2.基于模型的重建:该方法利用图像之间的相关性和统计特性,通过构建图像模型,通过模型的推断和优化过程,从而得到重建的高分辨率图像。

3.基于深度学习的重建:深度学习方法是目前超分辨率成像技术中应用最为广泛和有效的方法之一、通过搭建深度卷积神经网络(CNN)模型,利用大量的低分辨率和高分辨率图像对进行训练,从而得到提高图像分辨率的能力。

超分辨率成像技术的应用非常广泛。

【超分辨率】—图像超分辨率(Super-Resolution)技术研究

【超分辨率】—图像超分辨率(Super-Resolution)技术研究

【超分辨率】—图像超分辨率(Super-Resolution)技术研究⼀、相关概念1.分辨率图像分辨率指图像中存储的信息量,是每英⼨图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英⼨。

⼀般情况下,图像分辨率越⾼,图像中包含的细节就越多,信息量也越⼤。

图像分辨率分为空间分辨率和时间分辨率。

通常,分辨率被表⽰成每⼀个⽅向上的像素数量,例如64*64的⼆维图像。

但分辨率的⾼低其实并不等同于像素数量的多少,例如⼀个通过插值放⼤了5倍的图像并不表⽰它包含的细节增加了多少。

图像超分辨率重建关注的是恢复图像中丢失的细节,即⾼频信息。

在⼤量的电⼦图像应⽤领域,⼈们经常期望得到⾼分辨率(简称HR)图像。

但由于设备、传感器等原因,我们得到的图像往往是低分辨率图像(LR)。

增加空间分辨率最直接的解决⽅法就是通过传感器制造技术减少像素尺⼨(例如增加每单元⾯积的像素数量);另外⼀个增加空间分辨率的⽅法是增加芯⽚的尺⼨,从⽽增加图像的容量。

因为很难提⾼⼤容量的偶合转换率,所以这种⽅法⼀般不认为是有效的,因此,引出了图像超分辨率技术。

2.图像超分辨率图像超分辨率(Image Super Resolution)是指由⼀幅低分辨率图像或图像序列恢复出⾼分辨率图像。

图像超分辨率技术分为超分辨率复原和超分辨率重建。

⽬前,图像超分辨率研究可分为 3个主要范畴:基于插值、基于重建和基于学习的⽅法。

超分辨率(Super-Resolution)即通过硬件或软件的⽅法提⾼原有图像的分辨率,通过⼀系列低分辨率的图像来得到⼀幅⾼分辨率的图像过程就是超分辨率重建。

超分辨率重建的核⼼思想就是⽤时间带宽(获取同⼀场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换。

3.与其他图像处理技术的关系图像修复技术 VS 图像超分辨率技术:图像修复的⽬标是恢复⼀个被模糊或者噪声破坏的图像,但是它不改变图像的尺⼨。

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
连绝性动脉自旋标记表记标帜
Contrast enhanced magnetic resonance angiography,CE-MRA
对于比巩固磁共振血管成像
Chemical shift selective saturation,CHESS
化教位移采用鼓战
Contrast to noise ratio,CNR
霍我效力
Diameter of spherical volume ,DSV
球形空间曲径
Build-in body coil
内置体线圈
Gradient system ,orgradients
梯度系统
Gradient magnetic field
梯度磁场
Field of view , FOV
视线范畴
Slew rate
沉复时间
True Fast Imaging with Steady-state Precession,True FISP
实稳态进动赶快支集
Turbo spin echo,TSE
赶快自旋回波
Volume interpolated body examination, VIBE
容积内查体部查看
Static magnetic field
静磁场
Signal noise ratio,SNR
疑噪比
Homogeneity
磁场匀称性
Permanent magnet
永磁型磁体
Conventional magnet
常导型磁体
Resistive magnet
阻抗型磁体
Super conducting magnet
超导磁体
Low temperature superconducting material

图像增强器的介绍

图像增强器的介绍

图像增强器的介绍介绍图像增强是一个真空管装置,直径为一般18-25 毫米。

增压器包括一个光电阴极和荧光屏,光电阴极是输入窗的内侧,和多碱图层或半导体层的荧光屏,这是对的内侧上的荧光磷光体涂层输出窗口。

还包括无论是简单的网格状电极(即,早期增强技术)通过管或加速电子,在以后的增强器,一个复杂的电子倍增的微通道板(MCP)(图1)。

MCP技术在本附注后面讨论。

入射的光子撞击光阴极的引起光电效应释放电子。

然后,这些电子被加速(再乘以在更近的增强器)到荧光屏,电子撞击涂层,引起的光。

这释放的光由每次射入光子撞击的光电阴极的表面产生的光子构成。

影像增强器的发展由在军事上使用的夜视镜为主要动机。

各种类型的图像已经用于近红外(NIR),晚上的主要形式优化照度的战斗环境。

这种军事影响力导致了图像的类型和增强器正式的命名惯例。

类型被称为?代?目前包括(以技术开发)一代,第二代,超第二代的(或第二代+),和第三代。

后来在本附注进行讨论增压式代之间的区别。

影像增强器的掺入高性能的充电耦合器件(CCD)摄像机已经产生增强型CCD(ICCD)系统成像和光谱学是拥有超低照度高灵敏度条件,并允许极短的现象,时间分辨率(小于2毫微秒)。

这些ICCD系统被广泛用于此类国家的最先进的中应用激光诱导荧光(LIF),激光诱导击穿光谱(LIBS),燃烧研究,等离子体研究,非破坏性的检测(NDT),和单分子荧光成像。

图像增强的组件光电阴极光电阴极是在一个图像增强器的第一个主要部件。

光电阴极涂层将入射的光的光子的一部分插入电子。

并非由光电捕获光子被从输由增压器产生的最终信号。

因此,量子效率(Q巳,定义为入射光子的比例转换为电子费用,是增强器非常重要。

早期的增压器使用多碱涂料组成的化合物与在可见光公平光转化性能(VIS)和紫外(UV)的区域,但在近红外波长相对有限的反应。

这些涂料普遍类似物钠,钾,锑,铯,或银。

砷化镓(GaAs)是一个较新的半导体,低带隙涂层具有高量子效率在可见光和近红外区域。

5.2_W_高重频257_nm_深紫外皮秒激光器

5.2_W_高重频257_nm_深紫外皮秒激光器

文章编号 2097-1842(2023)06-1318-065.2 W 高重频257 nm 深紫外皮秒激光器范灏然1,陈 曦1 *,郑 磊1,谢文侠1,季 鑫1,郑 权1,2(1. 长春新产业光电技术有限公司, 吉林 长春 130012;2. 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)摘要:为了提高半导体检测用深紫外激光器的检测效率,需要搭建高功率、高重频257 nm 深紫外皮秒激光器实验平台。

本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm 深紫外激光器的实验研究。

种子源采用中心波长为1 030 nm 、脉冲宽度为50 ps 的光纤激光器,输出功率为20 mW ,重复频率为19.8 MHz 。

通过两级掺镱双包层(65 μm/275 μm )光子晶体光纤棒放大结构,获得了1 030 nm 高功率基频光。

利用二倍频晶体LBO 、四倍频晶体BBO ,采用腔外倍频方式获得了257 nm 深紫外激光。

种子源通过两级光子晶体光纤放大器输出的1 030 nm 基频光,输出功率为86 W ,经过激光聚焦系统后,倍频得到二次谐波515 nm 激光输出功率为47.5 W ,四次谐波257 nm 深紫外激光输出功率为5.2 W ,四次谐波转换效率为6.05%。

实验结果表明,该结构可获得高功率257 nm 深紫外激光输出,为提高半导体检测用激光器的检测效率提供了新思路。

关 键 词:深紫外皮秒激光器;高重频;光子晶体光纤放大器;四次谐波产生中图分类号:TP394.1;TH691.9 文献标志码:A doi :10.37188/CO.2023-0026High repetition frequency 257 nm deep ultraviolet picosecondlaser with 5.2 W output powerFAN Hao-ran 1,CHEN Xi 1 *,ZHENG Lei 1,XIE Wen-xia 1,JI Xin 1,ZHENG Quan 1,2(1. Changchun New Industries Optoelectronics Technology Co., Ltd , Changchun 130012, China ;2. Changchun Institute of Optics , Fine Mechanics and Physics ,Chinese Academy of Sciences , Changchun 130033, China )* Corresponding author ,E-mail : *******************Abstract : To improve the detection efficiency of deep ultraviolet laser for semiconductor detection, it is necessary to develop 257 nm deep ultraviolet picosecond laser with high power and high repetition frequency. In this study, a 257 nm deep ultraviolet laser was experimentally investigated based on photonic fiber amplifier and extra-cavity frequency quadrupling. The seed source uses a fiber laser with a central wavelength of 1 030 nm and a pulse width of 50 ps, delivering a power output of 20 mW and a repetition frequency of 19.8 MHz. High power 1 030 nm fundamental frequency light was obtained through a two-stage ytterbium-doped double cladding (65 μm/275 μm) photonic crystal fiber rod amplification structure, and收稿日期:2023-02-11;修订日期:2023-03-13基金项目:长春市科技发展计划重点研发专项(No. 21ZGG15)Supported by the Key R & D Projects of Changchun Science and Technology Development Plan (No.21ZGG15)第 16 卷 第 6 期中国光学(中英文)Vol. 16 No. 62023年11月Chinese OpticsNov. 2023257 nm deep ultraviolet laser was generated using double frequency crystal LBO and quadruple frequency crystal BBO. The seed source uses a two-stage photonic crystal fiber amplifier to get a 1 030 nm laser with output power of 86 W. After the laser focusing system and frequency doubling, a second harmonic output power of 47.5 W at 515 nm and a fourth harmonic output power of 5.2 W at 257 nm were obtained.The fourth harmonic conversion efficiency was 6.05%. The experimental results show that this structure can ob-tain high power 257 nm deep ultraviolet laser output, providing a novel approach to improve the detection ef-ficiency of the lasers for semiconductor detection.Key words: deep ultraviolet picosecond laser;high repetition frequency;photonic crystal fiber amplifier;fourth harmonic generation1 引 言高重频深紫外皮秒激光器,因具有分辨率高、加工速率快、热损伤低等特性,被广泛应用于半导体检测、光刻以及精密材料加工等工业领域[1-6]。

使用计算机视觉技术进行图像超分辨率重建的方法

使用计算机视觉技术进行图像超分辨率重建的方法

使用计算机视觉技术进行图像超分辨率重建的方法图像超分辨率(Super-Resolution,SR)重建是计算机视觉领域的一个重要任务,旨在从低分辨率(Low-Resolution,LR)图像中重建出高分辨率(High-Resolution,HR)图像的细节。

随着人工智能和深度学习的迅猛发展,利用计算机视觉技术进行图像超分辨率重建的方法也得到了长足的进步。

目前,常见的图像超分辨率重建方法可以分为传统方法和基于深度学习的方法两大类。

在传统方法中,双立方插值(Bicubic Interpolation)是一种常用的插值方法,可将低分辨率图像放大至目标尺寸。

然而,这种方法无法恢复图像的细节和边缘信息,导致重建图像质量较差。

因此,研究人员提出了一系列基于信号处理和统计模型的传统方法,如插值滤波、边缘保持重建算法等。

其中,自适应边缘保持算法(Adaptive Edge-Preserving)利用边缘信息和局部像素特征,能够在重建过程中更好地保持图像的细节和纹理信息。

然而,传统方法对于非线性模糊和复杂纹理的图像重建效果有限。

因此,利用深度学习的方法在图像超分辨率重建领域取得了重大突破。

深度学习方法通过构建卷积神经网络(Convolutional Neural Network,CNN)或生成对抗网络(Generative Adversarial Network,GAN),能够学习到底层特征表示和复杂映射关系,从而实现更精细的图像重建。

基于深度学习的图像超分辨率重建方法主要有单图像超分辨率重建和多图像超分辨率重建两种。

在单图像超分辨率重建中,研究人员设计了一系列基于CNN的模型,如SRCNN、ESPCN、VDSR等。

这些模型通过学习低分辨率图像和高分辨率图像之间的映射关系,直接将低分辨率图像映射到高分辨率域中,从而实现图像的重建。

此外,为了提升重建图像的细节和真实感,研究者还引入了残差学习(Residual Learning)和注意力机制(Attention Mechanism)等技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :p h y s i c s /0012052v 1 [p h y s i c s .i n s -d e t ] 21 D e c 2000Superconducting Nb-film LC resonatorA.Finne 1,L.Gr¨o nberg 2,R.Blaauwgeers 1,3,V.B.Eltsov 1,4,G.Eska 5,M.Krusius 1,J.J.Ruohio 1,R.Schanen 1,6,I.Suni 21Low Temperature Laboratory,Helsinki University of Technology,P.O.Box 2200,FIN-02015HUT,Finland2Microelectronics Centre,VTT Electronics,P.O.Box 1101,FIN-02044VTT,Finland3Kamerlingh Onnes Laboratory,Leiden University,P.O.Box 9504,2300RA Leiden,The Netherlands4Kapitza Institute for Physical Problems,Kosygina 2,117334Moscow,Russia 5Physikalisches Institut,Universit¨a t Bayreuth,D-95440Bayreuth,Germany6CRTBT-CNRS,BP 166,F-38042Grenoble Cedex 9,France(February 2,2008)Sputtered Nb thin-film LC resonators for low frequencies at 0.5MHz have been fabricated and tested in the temperature range 0.05–1K in magnetic fields up to 30mT.Their Q value increases towards decreasing temperature as Q ∝T −0.5and reaches ∼103at 0.05K.As a function of magnetic field Q is unstable and displays variations up to 50%,which are reproducible from one field sweep to the next.These instabilities are attributed to dielectric losses in the plasma deposited SiO 2insulation layer,since the thin-film coil alone reaches a Q 105at 0.05K.I.INTRODUCTIONAn electrical resonator with a high quality factor Q is a sensitive device for the measurement of materials’properties.At low frequencies (up to several MHz)the inductive and capacitive elements are spatially separated and allow well-defined characterization of the magnetic or dielectric properties of the sample piece.Such resonators can be assembled from discrete components,i.e.a coil wound from superconducting wire and a high-Q capaci-tor [1].With a parallel-coupled LC resonator,Q -values up to 9×104have been reached at temperatures below 0.1K,when the solenoidal coil is wound from 25µm Nb wire,and the resonator is directly coupled to the gate of a GaAs FET amplifier which is operated in a 4K envi-ronment [2].In our application the resonators have been employed for low-frequency continuous-wave NMR [3].In most measuring applications a more efficient geometry for the resonators is a planar Nb thin-film construction where the inductively or capacitively coupled sample is sandwiched between two thin-film devices (Fig.1).The sensitivity of the measurement is often determined by the intrinsic losses of the resonator,i.e.by its unloaded Q 0value.The magnetic susceptibility χm of the sample changes the inductanceL =L 0(1+χm ),(1)or equivalently in a capacitive measurement,the dielec-tric susceptibility χe is seen in the capacitanceC =C 0ǫ0(1+χe )=C 0ǫ.(2)The frequency-dependent complex susceptibilities,χ=χ′−iχ′′,consist of the dispersion χ′(ω)and absorption χ′′(ω).In the case of dielectrics,the dielectric constant is usually used:ǫ=ǫ′−iǫ′′.L 0and C 0are constants whichCoils SampleFIG.1.(Left)Principle of the Q-meter measurement,where the sample is coupled either inductively or capaci-tively to the resonator.(Right)The sample is sandwiched between two thin-film devices.In our magnetic measure-ments the sample is placed between two planar coils,which are connected in series,while the capacitors are fabricated as complete thin-film components on the 0.5mm thick wafer,as shown in Fig.2.are defined by the thin-film component ually the sample does not fill the entire active volume,which is accounted for by introducing a filling factor,to modify the effective susceptibility (see e.g.[4]).In Fig.1the resonator is driven from a constant cur-rent source and the output voltage is proportional to the impedance Z (ω)of the parallel LC circuit.The width of the resonance peak is determined by the losses,while the resonance frequency ωr depends on the real component of the susceptibility χ′.Both quantities can be extracted by recording the transfer function Z (ω)as a function of ωand by fitting the measured curve to the expected impedance of the equivalent circuit.Frequently applications are in the limit where χ(ω)is small and one may use linear response at resonance.Then the sensitivity of the measurement improves withincreasing Q.This limit is usually applied in continuouswave NMR measurement,where the resonator is drivenat resonance and its output is modulated by taking thesample through magnetic resonance,by sweeping an ex-ternally applied magneticfield H.Dispersion and ab-sorption are then extracted from the resonance response[4]ω0L0Q0Z=1−iQ0(δǫ′Function Material Thickness Fabrication4Conductor Nb400Sputtering2Insulation Nb2O5140Anodization1b1aFIG.3.Measuring circuit.The resonator is excited with a function generator and the response is recorded with an amplifier chain consisting of a wide-band FET preamplifier in the liquid He bath,plus of a narrow band amplifier and a lock-in amplifier at room temperature.temperature resistance measurements for fabrication fail-ures.Less than10%of the capacitors show very low re-sistance and are assumed short circuited.The expected value for the coil resistance is106kΩat room tempera-ture.However,only about20%of the coils reach this value.Others have a reduced resistance indicating that a parallel shunt resistance exists across some turns in the coil.In this respect the most delicate section of the present design is the return lead from the center of the coil in the top most Nb layer.This lead crosses all25 turns of the coil winding,with50steps in layer height. In most cases coils with a reduced resistance at room-temperature recover the proper value of30kΩon cooling to77K.To cure problems with the SiO2insulation,some resonators were annealed at1000◦C for2h.This turned out detrimental to the Nbfilm.Other annealing efforts at a lower temperature of800◦C were equally unsuccessful. Otherwise the resonators are durable,both with respect to storage at room temperature and thermal cycling to 4K.III.MEASUREMENT SETUPThe measuring setup is shown in Fig.3.The resonator is placed inside the mixing chamber of a small3He–4He dilution refrigerator which cools to50mK.To minimize losses,the resonator is housed in an extension of the mix-ing chamber which is machined from araldite epoxy.A heat treated high-conductivity copper shield is inserted between the mixing chamber and the steel vacuum jacket, to reduce dissipation in the metal parts.A superconduct-ing solenoid outside the vacuum jacket in the liquid He bath is used to generate a homogenous magneticfield parallel to the Nbfilm.0100200300400500600700800900Q 440.2440.4440.6440.8440.1441.2441.4T [mK]f[kHz]FIG. 4.Temperature dependences of Q(⋄)and f=ωr/(2π)( )of a thin-film resonator on silicon substrate (no anodization in capacitors).Thefitted curve represents the temperature dependence Q∝T−0.5.The same results were measured for resonators on sapphire substrate.Ultrasonic bonding with∅25µm Al alloy wire is used to connect to the bonding pads on the resonators.High Q values are achieved,even when the bonding wire is part of the resonance circuit with two Nb-film coils connected in series.This indicates good contact of the bonding wire to the Nb pad.Unfortunately the Al alloy loses its superconductivity at a low magneticfield(≈8mT). The voltage across the resonator is measured with a FET preamplifier operating at4K in the liquid He bath, similar to that described in Ref.[1].The resonator is connected to the preamplifier via a twisted pair of super-conducting wires.The resistance in these leads outside the resonator loop is not critical since most of the cur-rentflow occurs within the resonator.The resonator is excited via a transformer and a coupling capacitance C ex. This represents a nonideal current source,especially for a high-Q resonator,but it can be shown to be equivalent to an ideal source if the resonator capacitance C is replaced with an effective capacitance C+C ex.Thus the feeding capacitor C ex needs to be small with high Q,not to load the resonator.The liquid-He-temperature preamplifier is an integral part of the resonator since measurements with Q values approaching105are not possible without a high-input-impedance device.Even so,wefind that the input FET has a leak resistance and parasitic capacitance which load the resonator at the highest impedance levels.In the present measurements the total noise reduced to the in-put of the preamplifier is∼4nV/√100120140T [mK]Q [103]FIG.5.Q values of thin-film coils on silicon substrate con-nected in parallel with external high-Q capacitors measured at 440kHz.The upper curve (3)applies for a single thin-film coil while the lower (•)describes a series connection of two coils.IV.RESULTS ON Q V ALUESIn Fig.4the temperature dependences of Q and the resonance frequency ωr are shown for a single resonator of the type shown in Fig.2,with only SiO 2insulation in the capacitors.The Q values turned out to be low,(1–2)×103at 50mK,on both silicon and sapphire sub-strates,and within measuring precision did not depend on the resonance excitation level in the regime 0.01–1mV across the resonator (at constant applied magnetic field).The resonance frequency has a maximum at about 400mK,which corresponds to a minimum in the dielec-tric constant of the SiO 2insulation in the capacitors.To resolve the origin of the low Q value,the thin-film components were tested separately.If the thin-film coil on the resonator plate is replaced with an external wire-wound Nb coil with a similar inductance and high Q value,then the resonator Q is not significantly changed from those recorded in Fig.4.In contrast,when the thin-film capacitance on the resonator plate is replaced with external low-loss capacitors [5],much higher Q val-ues are measured,as shown in Fig.5:Q climbs at 50mK to 1.2×105with a single thin-film coil and to 0.8×105with two coils on different resonator plates coupled in series with Al bonding wires.Thus the thin-film coils perform well,at least in terms of their Q value.On warming to 500mK,the Q value drops by a factor of 3,which is approximately the same behavior as for the complete thin-film resonators in Fig.4.With external capacitances the change in resonance frequency is small,∆ωr /(2π)∼1Hz,compared to ∼1kHz in Fig.4.From these test we conclude that the losses of the resonator areV gs [V]Q [10 ]3∆f [H z ]FIG.6.Dependence of the measured Q value (•)and the change in resonance frequency ∆f (3)on the gate-to-source bias voltage V gs (Fig.3)of the input FET of the preamplifier in the liquid He bath.When V gs is reduced below -0.72V,the circuit becomes unstable and starts oscillating.A single thin-film coil on silicon substrate is used here at 50mK and 445kHz,coupled in parallel with external capacitors.dominated by the SiO 2insulation layer in the capacitors.Finally,it is instructive to note that the high Q val-ues in Fig.5are sensitive to the preamlifier bias set-tings.Fig.6shows the dependence on the gate-to-source voltage of the input FET.An equivalent circuit for the FET input [6]is shown in the inset where the input is replaced with a parasitic capacitance C p and a shunt re-sistance R s which both are connected in parallel to the resonator.Their values depend on the FET bias set-tings.The change in capacitance,as calculated from ∆ωin Fig.6,corresponds to 0.1pF.To obtain the measured Q =1.2×105,the input resistance would be R s ≈11MΩin the case of an ideal resonator.Since the resonator is not ideal,the FET input resistance is higher.Assum-ing,as an example,the resonator Q 0to be 2×105,then the input resistance of the FET needs to be 30MΩ,to produce a loaded Q of 1.2×105.V.MAGNETIC FIELD EFFECTSThe resonators turned out to be highly sensitive to ap-plied magnetic field.Fig.7shows an example where the voltage across the resonator is recorded at resonance as a function of magnetic field.The resonance frequency is not substantially changing during the measurement,thus the changes in output voltage are due to absorption and correspond roughly to similar changes in Q value.The output is not reproducible from one resonator to the next,but reproduces from one measurement to the nextV [m V ] B [mT]V [ V ]µou t ou t FIG.7.Examples of unstable resonator operation as a function of the externally applied magnetic field intensity B at 90mK and 440kHz.The output voltage V out of the pream-plifier is monitored at two different amplitudes of resonance excitation:The peak voltage in the thin-film capacitors across the SiO 2insulation corresponds to 1mV (top)and 10µV/m (bottom).The resonator is fabricated on sapphire substrate.In both panels the magnetic field is swept twice back and forth.Apart from the change in magnetic field dependence,the ac electric field does not change the average Q value sig-nificantly at excitation levels in the 0.01–1mV range.as a function of field for one particular resonator.At low excitation (bottom panel)the changes in output voltage as a function of field have the appearance of noise,with both positive and negative changes from the average.At higher excitations (top panel)the changes look more like reductions in Q value.The output appears to be inde-pendent of the sweep rate of the magnetic field and if the sweep is stopped,then the last value is preserved.The unstable behavior continues all the way to zero magnetic field.The magnetic field dependence of Q is present in simi-lar magnitude in resonators on both silicon and sapphire substrates,also with and without the extra Nb 2O 5in-sulation.If the thin-film coil is replaced with a high-Q wire-wound coil,then the output as a function of field remains unchanged.In contrast,a thin-film coil con-nected in parallel with external high-Q capacitors pro-duces a much more stable output as a function of field (at a much increased Q value).However,the thin-film coil also suffers from the magnetic field dependence,al-though to a smaller extent.For instance,with the two thin-film coils in series in Fig.5,the changes in output voltage are ∼2%at 62mK,where Q =8×104.In ad-dition,the thin-film coil exhibits a monotonous drop in Q value as a function of magnetic field.A measurement on the series connection of two thin-film coils at 63mK showed a Q =6×104at zero field which dropped by about 10%when the field was increased to 7mT,whilethe resonance frequency remained unchanged to within 1Hz.This is a sufficiently small change that it would not be measurable for the complete resonator,where the low Q value is determined by the capacitors.In the last example the bonding to the coils was done with Al al-loy wire.This results in a drastic drop in Q when the bonding wire loses its superconductivity above 8mT.Our measurements suggest that the unstable magnetic field dependence originates primarily from the SiO 2insu-lation:The effects are strong when the thin-film capaci-tors are used.The thin-film coil has a small parasitic ca-pacitance of about 0.3pF,which also involves the SiO 2insulation:This capacitance arises when the lead from the center of the coil crosses over all the turns of the planar windings.Thus the magnetic field effects of the complete thin-film resonator and those of the thin-film coil alone are scaled roughly in proportion to their ca-pacitances with SiO 2insulation.Similar magnetic-field-dependent effects have been observed previously in thin-film coils of much smaller size [7].VI.AMORPHOUS THIN-FILM INSULATORBoth the reduced Q of the resonators and their un-stable losses as a function of magnetic field have here been traced to originate primarily from the amorphous PECVD-deposited SiO 2insulation in the capacitors.Amorphous dielectrics are known to be lossy and to ex-hibit as a function of temperature a minimum in the di-electric constant at a few hundred mK [8],as was the case here.Recently the dielectric constant of the mul-ticomponent glass BaO-Al 2O 3-SiO 2has been reported to be sensitive to magnetic fields at temperatures of a few mK [10,9].These measurements were conducted at 1kHz,whereas here we operate at a higher frequency of 400kHz.The dielectric constant has also been found to be sensitive to the excitation amplitude [11].With our low excitation levels,we did not find significant depen-dence of the average dielectric losses or the resonance frequency on the applied ac electric field in the measure-ments of Figs.4or 5.In addition to the amorphous structure of the insula-tion layer,impurities,or the interface between the di-electric and the Nb may also contribute to the observed effects.VII.CONCLUSIONSThe present work shows that Nb-film fabrication meth-ods turn out a good yield of durable resonators,and that the sputtered Nb film is a high-quality conductor on a standard doped silicon substrate at frequencies of about 1MHz at mK temperatures.In contrast,PECVD deposited SiO 2insulation does not reach correspondingquality levels:Its dielectric losses are large and highly magneticfield dependent,even around zerofield.Ad-ditional anodized Nb2O5insulation did not increase the losses and might be of better quality.Secondly,the thin-film inductor is of sufficiently high quality such that it can be used to investigate the prop-erties of the dielectric in the capacitor,tofind better alternatives.The resonator method with a high-Q coil and a GaAs MESFET preamplifier thereby allows access to the frequency range from0.1MHz up to several MHz, which so far has been only rarely investigated in studies of amorphous solids.ACKNOWLEDGEMENTSThis work was funded in part by the EU-IHP pro-gramme(contract no.HPRI-1999-00098).We thank the personnel at the Microelectronics Centre for their help with the fabrication of the resonators.。

相关文档
最新文档