2-02热力学第一定律

合集下载

热力学第一二定律

热力学第一二定律

热力学第一二定律热力学是物理学的一个分支,研究能量的转化和能量之间的关系。

其中,热力学第一定律和热力学第二定律是热力学的两个基本定律。

本文将详细介绍热力学第一定律和热力学第二定律的概念和应用。

热力学第一定律,又称能量守恒定律,表明能量在物理过程中的转化是守恒的。

简单来说,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。

热力学第一定律的数学表达式为:∆U = Q - W其中,∆U代表系统内能量的变化,Q代表从外界传递给系统的热量,W代表系统对外界做的功。

根据热力学第一定律,一个封闭系统的内能变化等于系统所吸收的热量减去系统所做的功。

热力学第一定律的一个重要应用是热机效率的计算。

根据热力学第一定律,热机工作时,吸收的热量用来产生功和增加系统内能。

热机效率定义为输出功与吸收热量的比值,数学表达式为:η = W/Qh其中,η代表热机效率,W代表输出功,Qh代表吸收的热量。

根据热力学第一定律和热机效率的定义,可以计算出热机的效率。

热力学第二定律是指自然界中热量只能从高温物体传递到低温物体的方向性规律。

热能不可能自发地从低温物体传递到高温物体,这是因为熵增加的原因。

熵是一个衡量系统无序程度的物理量,也可以理解为系统的混乱程度。

热力学第二定律可以用多种方式表达,常见的表达方式之一是克劳修斯表达式:ΔS ≥ Q/T其中,ΔS代表系统的熵变,Q代表系统吸收的热量,T代表系统的温度。

根据热力学第二定律,系统的熵在吸收热量的情况下只能增加或者不变,但绝不会减少。

热力学第二定律的应用之一是热力学循环的研究。

热力学循环是指热机、制冷机等设备在工作中所经历的一系列热量和功的转化过程。

根据热力学第二定律,热力学循环的效率不可能达到100%,存在一个理论上的极限值,即卡诺循环效率。

卡诺循环效率由热机工作温度的比值决定,只有在温度无限接近的情况下,热机的效率才能无限接近卡诺循环效率。

总结起来,热力学第一定律和热力学第二定律是热力学的两个基本定律。

工程热力学-热力学第一定律

工程热力学-热力学第一定律
热力学第一定律的应用有助于开发更高效的节能技术,如改进热力发动机的效率,优化建筑物的能源 性能等。
减排措施
根据热力学第一定律,减少不必要的能量损失和排放是可行的,例如通过改进设备的保温性能和减少 散热损失来降低能耗。
环境保护
可持续发展
减少污染
热力学第一定律强调能量的有效利用和转换, 这有助于推动可持续发展,通过更环保的方 式满足人类对能源的需求。
该定律是热力学的基本定律之一,它 为能量转换和利用提供了理论基础。
内容
热力学第一定律可以表述为:在一个封闭系统中,能量总和保持不变,即能量转 换和传递过程中,输入的能量等于输出的能量加上系统内部能量变化。
该定律强调了能量守恒的概念,即能量不能被创造或消灭,只能从一种形式转化 为另一种形式。
符号和单位
热力平衡状态下的应用
能量转换
热力学第一定律可以用于分析能量转 换过程,如燃烧、热电转换等,以确 定转换效率。
热力设备设计
在设计和优化热力设备时,如锅炉、 发动机等,可以利用热力学第一定律 来分析设备的能量平衡,提高设备的 效率。
非平衡状态下的应用
热传导
在研究非平衡状态下的热传导过程时, 可以利用热力学第一定律来分析热量传 递的方向和大小。
VS
热辐射
在研究物体之间的热辐射传递时,可以利 用热力学第一定律来分析辐射能量的交换 。
热力过程的应用
热力循环
在分析热力循环过程,如蒸汽机、燃气轮机等,可以利用热力学第一定律来计算循环效 率。
热量回收
在热量回收过程中,如余热回收、热泵等,可以利用热力学第一定律来分析回收效率。
04 热力学第一定律的推论
熵增原理
定义
熵增原理是热力学第二定律的一个推论,它指出在一个封 闭系统中,自发过程总是向着熵增加的方向进行。

02热力学第一定律

02热力学第一定律
H U pV H U ( pV ) U nRT (2731 2 8.314 54)J 3629J
压缩机工作时,速率很快,来不及进行热交换
Q0
W U 2731J
3. 摩尔恒压热容与摩尔恒容热容的关系
C p ,m CV ,m
H m T U m T
T2 T1
U QV n CV ,mdT
2.4.2
应用——计算单纯pVT 过程的U 恒容过程:
U QV n CV ,mdT
T2 T1
非恒容过程: U QV n

T2
T1
CV ,mdT
(理想气体)
nCV ,m (T2 T1 )
2. 摩尔定压热容
C p ,m
•自由膨胀过程
∵pamb=0 • 恒容过程 dV=0 W=0 ∴W=0
热力学能U:系统内部储存的能量,是广度量的状态函数。
分子平动能 动能 分子转动能 系统总能量 势能 分子振动能 热力学能 分子间作用能 电子运动能 核运动能
符号规定: 若热力学能增加+,若热力学能减小U 的绝对值无法求,但U可求
T,p 2HCl(aq)+Zn(s) ZnCl 2 (aq)+H2 (g)
这是什么体系?界面在什么位置?
如果上述反应是在恒容、绝热,不透光、不导 电的容器中进行,它又是什么体系?
作业:以电解水为例确定界面使系统分别为隔离系统、 封闭系统、敞开系统
2. 状态与状态函数 (1)状态与状态函数 系统的性质:决定系统状态的物理量(如p,V,T,Cp,m)
系统的状态:热力学用系统所有的性质来描述它所处 的状态,当系统所有性质都有确定值时,则系统处于一 定的状态

物理化学讲义02 热力学第一定律

物理化学讲义02 热力学第一定律

第二章 热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。

2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的和的值。

3.了解为什么要定义焓,记住公式的适用条件。

4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,的计算。

5.掌握等压热与等容热之间的关系,掌握使用标准摩尔生成焓和标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握与之间的关系。

6.了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。

二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。

热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。

这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。

例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。

功和热的计算一定要与变化的过程联系在一起。

譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。

在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。

功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。

在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。

传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。

同样,在环境内部传递的能量,也是不能称为功(或热)的。

例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以。

热力学基础知识热力学第一定律和第二定律

热力学基础知识热力学第一定律和第二定律

热力学基础知识热力学第一定律和第二定律热力学基础知识:热力学第一定律和第二定律热力学是物理学的一个重要分支,研究的是能量转化和能量传递规律。

在热力学中,有两个基本定律,即热力学第一定律和热力学第二定律。

这两个定律是热力学研究的基础,对我们理解自然界中的能量转化过程具有重要意义。

一、热力学第一定律热力学第一定律,也被称为能量守恒定律,是指在一个封闭系统内,能量既不能创造也不能毁灭,只能从一种形式转化为另一种形式。

它可以用一个简单的公式来表示:△U = Q - W其中,△U表示系统内部能量的变化,Q表示系统所吸收的热量,W表示系统所做的功。

根据热力学第一定律,能量的转化是相互平衡的。

系统吸收的热量等于所做的功加上内部能量的变化,这一平衡关系保证了能量守恒的原理。

它告诉我们,能量不会凭空消失,也不会突然出现,而是在转化过程中得以保存。

二、热力学第二定律热力学第二定律是热力学中的另一个重要定律,它研究的是能量转化的方向和过程中的不可逆性。

热力学第二定律有多种表述方式,其中最常见的是开尔文表述和克劳修斯表述。

1. 开尔文表述开尔文表述是基于热量不会自发地从低温物体转移到高温物体的原理,它给出了一个重要的结论:热量是自然界中不能自发转化为功的能量形式。

这一定律被称为热力学第二定律的开尔文表述。

2. 克劳修斯表述克劳修斯表述是基于热力学中的循环过程和热量无法从一个唯一的热源完全转化为功的原理。

克劳修斯表述给出了一个重要结论:不可能制造出一个热机,使之完全将吸收的热量转化为功,而不产生任何其他效果。

这一定律被称为热力学第二定律的克劳修斯表述。

热力学第二定律告诉我们,能量转化过程中总会产生一定的损失,而且损失不可逆。

这很好地解释了自然界中许多现象,如热量的自发流动、热机效率的限制等。

总结:热力学是研究能量转化和能量传递规律的科学,其中热力学第一定律和第二定律是基本定律。

热力学第一定律表明能量在系统中的转化是相互平衡的,能量守恒不变。

02 热力学第一定律

02 热力学第一定律
(4)物理意义:开口系中随工质流动而携带的、取决于热力 状态的能量。
2–5 开口系统能量方程式
1 2 q h c f g z wi 2
1 2 微元 q dh dc f gdz wi 2
适用条件:任何流动工质、任何稳定流动过程 令 技术功
1 2 wt c g z wi 2
z1
CV
2
Wi
z2
能量守恒原则(热一律):
进入系统的能量 - 离开系统的能量 = 系统储存能量的增加
2–5 开口系统能量方程式
1 c f 1 , p1 , u1 , v1
Ein Eout ECV
进入: 离开:
Q
1
c f 2 , p2 , u2 , v2 2
dE1 p1dV1 Q dE2 p2dV2 Wi
第二章
实质
热力学第一定律
2-1 热力学第一定律的实质
能量守恒与转换定律在热力学中的应用。
两种表述
1 热是能的一种,机械能变热能,或热能变机械能的时候, 他们之间的比值是一定的。 2 热可以变为功,功也可以变为热;一定量的热消失时必 定产生相应量的功;消耗一定量的功时,必出现与之相应
量的热。
2-2 热力学能和总能
q 0, wt 0 h 0, h1 h2
绝热节流过程,前后 h 不变, 但 h 不是处处相等。 h1 h1
热力学解题思路总结
1、仔细审题,掌握已知条件,根据题意画出物理模型; 2、取好热力系统; 3、区分工质,根据工质性质的不同确定描述工质参数的方
法;
4、画热力学图,结合题意在热力学图上画出相应的状态点、
对推进功的说明
(1)与宏观流动有关,流动停止,推进功不存在;

物理化学-02章_热力学第一定律

物理化学-02章_热力学第一定律
定律延伸:任一热力学均相体系,在平衡态各自存 在一个称之为温度的状态函数,对所有达到热平衡 的均相体系,其温度相同。
温标:a)摄氏温标,以水为基准物,规定水的凝 固为零点,水的沸点与冰点间距离的1/100为1℃。
热力学第零定律
b)理想气体温标 以低压气体为基准物质,规定水 的三相点为273.16 K,温度计中低压气体的压强为P ,则恒容时,任意其它压力时的温度为
§2.0 热力学概论
热力学方法特点和局限性
• 热力学方法是一种演绎的方法,结合经验所 得的基本定律进行演绎推理,指明宏观对象的 性质、变化方向和限度。
• 研究对象是大数量分子的集合体,研究宏 观性质,所得结论具有统计意义。
• 只考虑平衡问题,考虑变化前后的净结果, 但不考虑物质的微观结构和反应机理。
状态函数的特性可描述为: 异途同归,值变相等;
人的状态,变化,性质。
周而复始,数值还原。
状态函数在数学上具有全微分的性质。
状态函数的特性
(1)体系的状态确定,则状态函数也就确定了, 状态变化,状态函数也随着变化。
(2)状态函数的改变值只与始终态有关,与变 化途径无关。如果进行了一个微小的变化,可以 用数学的全微分表示状态函数的微小的变化:如 dp、dT。
(3)隔离体系(isolated system)
有时把体系和影响所及的环境一起作为孤立体
系来考虑。
大环境
无物质交换
孤立体系(2)
Siso Ssys Ssur
无能量交换
体系分类
若以体系中存在的物质种类或均匀的物质部分 数为分类依据,热力学体系还有:
单组分和多组分体系,如水和水溶液。
单相和复相体系/均相和多相体系, 体系中只 含一个均匀的物质部分称为单相体系,含有二个以 上均匀物质部分的体系称复相体系。如水和冰。

02第二章 热力学第一定律 重点和难点

02第二章 热力学第一定律  重点和难点

系统内部储能增量: ΔECV
考虑到稳流特征: ΔECV=0 qm1=qm2=qm; 及h=u+pv 有
2 2 cf2 cf1 Q H 2 H1 qm qm g z2 z1 WS 2 2 1 2 q h2 h1 cf2 cf21 g z2 z1 ws 2
3)第一定律第二解析式 把wt的概念代入(B)式,可得第一定律第二解析式
1 2 q h2 h1 cf 2 cf21 g z2 z1 ws 2 ( B)
2
q h wt δq dh δwt
可逆 q h 1 vdp
δq dh vdp
几种功及相互之间的关系
名称 含义 说明
1)当系统可逆时δw=pdv 2)膨胀功是简单可压缩系热变功的源泉 3)膨胀功往往对应闭口系所求的功 1)轴功是开口系所求的功 W 2) 当工质进出口间的动、位能差被忽略时, pdV Wt=Ws此时开口系统所求的功也是技术功
2 1
体积变化 系统体积变化 功W 所完成的功
轴功Ws 流动功 Wf. 系统通过轴与 外界交换的功
开口系付诸于质 量迁移所作的功
流动功是进出口推动功之差, 即Wf=Δ(pV)=p2V2-p1V1
技术功Wt 技术上可资利 用的功
1)Wt与Ws的关系 Wt=m Δ cf2/2+mg Δz+Ws 2) Wt与W,Wf的关系 Wt=W-Wf 3)当过程可逆时, δ W=-Vdp,这也是动、 位能差不计时的最大轴功
2)技术功(technical work)—技术上可资利用的功 wt 1 2 wt ws cf g z 2 由(C)

q u wt p2v2 p1v1 (D)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2-2 热力学第一定律
§2-2 热力学第一定律
1、热力学第一定律的数学式
1. 第一定律的数学式
对于隔离系统的能量永恒不变.
U = 0 (孤立系统)
对于封闭系统
在极微小过程中:
U Q W
dU = δQ + δW (系统状态变化无限小)
当系统从状态1变化到状态2, 不同途径的 Q、W不同, U1 状态1 Q1 W1 ≠ ≠ 但 Q + W却相同. U2 状态2 Q1 + W1= Q2 + W2 = U U = U2 - U1
0=
0≠
几种常见的低级错误:
dU
dT
dQ dW
• 不区分 d 和 δ两种符号的使用
• 将 Q 和 W 误写成 Q 和 W
Q = 50J Q = 50J
δQ δW
W = 50J W = 50J
• 将有限量和无限小量混写, 如 W = -p(环) dV
δQ = 50J 3. 热力学第一定律的其它叙述方式 • 第一类永动机是不可能制成的。 • 内能是系统的状态函数。 • 隔离系统中发生任何变化,其内能不变。
Q2 W2
从总体上讲,可将系统与环境看作一个大的隔离系统 U(总) = U(系统) + U (环境)= 0
2. 焦耳实验
Байду номын сангаас
——理想气体向真空膨胀
实验结果: 气体膨胀前后, 水浴温度未变. 结果分析: 水温T 不变, Q=0;
自由膨胀, 外压为零,W=0;
W p环 d V
由U =Q +W 得 U=0. =0 nB一定时 p p U= f ( T、V ): dU U / T V dT U / V T dV =0 p p
U U U U 0 及 0 , 0, 及 p p 0 V T V T T T(理想气体、恒温、纯pVT变化)
结论:单纯 pVT 变化时理想气体的热力学能 U 只是温度的函数. U= f ( T ) (理想气体单纯 pVT 变化) 理想气体只有“内动 能”!
3. 其它说法
相关文档
最新文档