一次函数复习教学案

合集下载

《一次函数图象与性质 复习课》

《一次函数图象与性质 复习课》

《一次函数图象与性质 复习课》
翠园中学东晓校区 吴剑辉
一、学习目标:
1.会画出一次函数的图象;
2.掌握一次函数及其图象的基本性质;
3.会根据函数表达式求其图象与两坐标轴的交点坐标;
4.培养交流合作的意识,提高观察和分析问题的能力,养成良好的学习习惯.
二、学习重点:
一次函数的图象和性质的运用
三、学习难点:
根据一次函数表达式和图象解决与图形的平移和三角形的面积有关的综合问题.
四、教学方式:
小组合作与师生互动的“习本课堂”
五、教学流程:
课前习
课中习 课后习 六、教学环节:
(一)探究“一次函数的图象与性质”,并进行习题展示;
(二)探究“一次函数图象特殊点的坐标”,并进行习题展示;
(三)探究“一次函数图象的位置关系及平移问题”,并进行习题展示;
(四)应用习得知识解决综合应用题;
(五)归纳小结;
(六)课堂习题巩固;
完成课前习的
任务单。

完成习题任务单并进行习得
应用和成果展
示。

巩固练习,提高学生对于本节课知识的巩固
精品文档考试教学资料施工组织设计方案精品文档考试教学资料施工组织设计方案精品文档考试教学资料施工组织设计方案。

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数叫做一次函数。

当时,一次函数就成为叫做正比例函数,常数叫做比例系数。

强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。

(2)正方形周长与面积之间的关系。

(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱与所存月数之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。

得,是的一次函数,也是正比例函数。

(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。

(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。

练习:1.已知若是的正比例函数,求的值。

2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。

(2)求当时,的值。

例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。

2、直线y = — 2X — 2 不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

第19章 一次函数(小结与复习)(教案 )-八年级数学下册同步精品课件(人教版)

第19章 一次函数(小结与复习)(教案 )-八年级数学下册同步精品课件(人教版)
【分析】(1)由函数是正比例函数得m-3=0且2m+1≠0; (2)由两直线平行得2m+1=3;(3)一次函数中y随着x 的增大而减小,即2m+1<0;(4)代入该点坐标即可求 解.
考题分类:
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0, 解得m=3;
(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3, 解得m=1;
4.等腰三角形的周长为10cm,将腰长x(cm)表示底边长y(cm)
的函数解析式为 y=10-2x
,其中x的范围为 2.5<x<5
.
5.若一次函数 y (m 3)x m2 9 是正比例函数,则m的值
为 -3
.
6.一次函数y=-3x+6的图象与x轴的交点坐标是(2,0) ,与y轴 的交点坐标是 (0,6) ,与坐标轴围成的三角形面积为 6 .
∴31≤x≤33.
x
33
x
31
∵x 是整数,x 可取 31,32,33,
∴可设计三种搭配方案:
①A 种园艺造型 31 个,B 种园艺造型 19 个;
②A 种园艺造型 32 个,B 种园艺造型 18 个;
③A 种园艺造型 33 个,B 种园艺造型 17 个.
考题分类:
(2)方法一: 方案①需成本:31×800+19×960=43040(元); 方案②需成本:32×800+18×960=42880(元); 方案③需成本:33×800+17×960=42720(元).
【答案】D
考题分类:
[考点二]: 一次函数的图象与性质
例2 已知函数y=(2m+1)x+m﹣3; (1)若该函数是正比例函数,求m的值; (2)若函数的图象平行直线y=3x﹣3,求m的值; (3)若这个函数是一次函数,且y随着x的增大而减小,求m的

一次函数复习教案

一次函数复习教案

(4)图像平行于直线y=-4x+3(5)图像与y轴交点在x轴下方2.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标(四)小结教师引导学生进行小结:1.看图应先看横轴和纵轴所表示的意义。

2.“数”用“形”表示,由“形”想到数,数与形结合,是我们数学学习中一种很重要的思想方法,这就是数形结合法。

3.函数图象不仅与函数解析式有关,还直接与自变量的取值范围有关(五)课下作业布置教材97-101页复习题学生认真听讲,并仔细体会学生课下独立完成课堂达标检测题如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标板书设计一次函数一、知识网络概念函数的表示方法函数图像函数概念一次函数的图像、性质一次函数解析式的确定一次函数与一元一次方程的关系与二元一次方程(组)的关系应用教学反思本节课设计思路:1.没有提示用1分钟时间回忆本章内容2.根据课本目录提示用1分钟时间回忆本章内容3.根据自己做的知识网络图复习本章内容4.直接看课本复习本章内容5.老师引领复习本章内容6.练习7.小结8.作业本节课优点:思路清晰,前五步是复习本章知识点,每一步都为下一步做准备,下一步又都在为上一步查漏补缺,经过一个这样的过程,学生就会知道自己对各部分知识的掌握程度,找到自己以后的努力方向。

在练习题的设置上,我用尽量少的题去涵盖尽量多的知识点,综合性较强,能够起到拔高的作用。

并且在出示题后,鼓励学生大胆去做,对一部分同学能起到克服恐惧数学的作用。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

一次函数教案人教版

一次函数教案人教版

一次函数教案人教版一、教学目标1. 知识与技能:理解一次函数的概念,掌握一次函数的定义和性质。

学会用图像表示一次函数,并能解读图像。

能够运用一次函数解决实际问题。

2. 过程与方法:通过观察和实验,培养学生的观察能力和实验能力。

利用图形计算器或计算机软件,帮助学生直观地理解一次函数的图像。

3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

培养学生运用数学知识解决实际问题的能力,提高学生的应用意识。

二、教学内容1. 一次函数的定义和性质引入一次函数的概念,解释一次函数的定义。

讲解一次函数的性质,如斜率和截距。

2. 一次函数的图像利用图形计算器或计算机软件,展示一次函数的图像。

引导学生观察图像,理解图像与一次函数的关系。

3. 解决实际问题给出实际问题,引导学生运用一次函数的知识解决问题。

引导学生总结解题过程,提高学生的应用能力。

三、教学资源1. 图形计算器或计算机软件2. 教学PPT或黑板3. 教学素材和练习题四、教学过程1. 引入一次函数的概念,解释一次函数的定义。

2. 讲解一次函数的性质,如斜率和截距。

3. 利用图形计算器或计算机软件,展示一次函数的图像。

4. 引导学生观察图像,理解图像与一次函数的关系。

5. 给出实际问题,引导学生运用一次函数的知识解决问题。

6. 学生总结解题过程,教师进行点评和讲解。

五、作业与评价1. 布置练习题,巩固学生对一次函数的理解和应用能力。

2. 学生完成作业,教师进行批改和评价。

3. 学生进行自我评价,反思学习过程中的优点和不足。

4. 教师进行总结性评价,对学生的学习情况进行分析和指导。

六、教学目标1. 知识与技能:学会一次函数的表示方法,包括解析式和表格法。

能够分析一次函数的增减性质和比例关系。

掌握一次函数的图像与解析式之间的关系。

2. 过程与方法:通过小组合作,培养学生的团队协作能力。

利用数学软件绘制一次函数图像,提高学生的信息技术能力。

3. 情感态度价值观:培养学生在解决问题时的批判性思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:一次函数复习
一、目标展示:
教学目标:1、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

2、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx
+b(k≠0)探索并理解其性质(h>0或b<0时,图象的变化情
况)。

3、理解正比例函数。

4、能根据一次函数的图象求二元一次方程组的近似解。

5、能用一次函数解决实际问题。

重点难点:
1.一次函数的解析式、图象、性质
2.一次函数性质的应用
二、自主学习
1 已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,当y=-2时,则x= ;
(2)画出函数图象;
(3)不等式-2x-6>0解集是_____,不等式-2x-6<0解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为;
(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;(6)如果y 的取值范围-4≤y≤2,则x的取值范围__________;
(7)如果x的取值范围-3≤x≤3,则y的最大值是________,最小
值是_______.
2 。

已知一次函数y=3
2x+m和y=-1
2
x+n的图象交于点A(-2,0)且与y
轴的交点分别为B、C两点,求△ABC的面积.
三、合作探究:
1、已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,•求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
2.已知一次函数的图像交x轴于点A(-6,0),交正比例函数于点B,若B
点的横坐标是-2,△AOB 的面积是6,求:一次函数与正比例函数的解析式。

3.某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

(1)分别写出两个印刷厂的收费y 甲、y 乙(元)与印刷数量x (份)之间的函
数关系式;
(2)在同一坐标系中作出它们的图像; (3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算? ②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些? 四、展示交流
1、已知一次函数b ax y +=1与a bx y +=2,它们在同一坐标系中的图象如图,可能是
A y
x
O B y
x
O C y
x O
D y
x
O
2、若一次函数42+=x y 的图象与x 轴交于A 点,A 点的坐标为 与y 轴交于B 点,B 点的坐标为 ,O 为原点,则的△AOB 面积为 ;当
x 时,0≥y ,当x 时,0y <。

3、直线8)2(3--=x y 与y 轴的交点的纵坐标是 ,交点到x 轴的距离是
4、若要使函数)34(--=m mx y 的图象过原点,m 应取 ,若要使其图象和y 轴交于点)5,0(,m 应取
5、已知:一次函数的图象如图所示, 求此函数的解析式。

5、两条直线1y k x =与2y k x b =+交点为A (-1,2),它们与x 轴围成的三角形的面积为5
3,求两直线的解
析式。

3-4
O
y x
B
A
五、教师点拨:
1、“数形结合”的思想,是把几何中研究的基本对象“点”与代数中研究的基本对象“数”联系起来,使代数知识变得形象、直观,便于理解;另一方面,几何问题也可以用代数方法来研究。

2、用运动的观点来看问题的方法。

函数是以变量为基础,研究变量之间的相互关系的。

学习函数概念之后,要学会用“变”的、“运动”的观点来看待已学的和未学的知识,加深对知识的理解。

3、通过“等与不等”、变与不变“的对比,进一步认识对立统一规律是宇宙的基本规律。

4、“待定系数法“是重要的学习方法,务必熟练掌握。

六、目标测评:
(一)填空题
1、已知函数y=(k–3)x k -8是正比例函数,则k=________.
2、函数y=
x-1
x-2
自变量x的取值范围是_________.
3、已知一次函数经过点(–1 , 2)且y随x增大而减小,请写出一个满足上述条件的函数关系式 .
4、直线y=x–1和y=x+3的位置关系是_________,由此可知方程组
y=x-1 y=x+3⎧


解的情况为__________________.
5、已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a、b的大小关系是a____b.
(二)选择题
1、已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是()
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
2、y=kx+k的大致图象是()
A B C D
3、直线y=x+1与y=–2x–4交点在()
A.第一象限B.第二象限C.第三象限D.第四
象限
4、正确反映,龟兔赛跑的图象是()
A B C D
(三)解答题:
1、已知一次函数图象经过点(3 , 5) , (–4,–9)两点.
①求一次函数解析式.
②求图象和坐标轴交点坐标.
③求图象和坐标轴围成三角形面积.
④点(a , 2)在图象上,求a的值.
2、甲、乙两人分别骑自行车和摩托车从甲地到乙地
(1)谁出发较早,早多长时间?谁到达乙地早?早多长时间
(2)两人行驶速度分别是多少?
(3)分别求出自行车和摩托车行驶过程的函数解析式?
3、某地拔号入网有两种收费方式,A计时制3元/时,B全日制54元/月,
另加通信费1.2元/时,问选择哪种上网方式省钱?。

相关文档
最新文档