NTC负温度系数热敏电阻工作原理
负温度系数

NTC热敏电阻器在室温下的变化范围在10Ω~Ω,温度系数-2%~-6.5%。
NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
谢谢观看
NTC热敏电阻的工作原理、种类、符号表示、型号表示、引线介绍、专业术语详解。
如何在实际应用中确定需要的NTC热敏电阻类型、应用环境、精度、灵敏度、稳定性、线性范围。
NTC热敏电阻在红酒瓶塞读温度、智能马桶、冷却液温度传感器的应用。
如何进行简单的NTC热敏电阻阻值测试及可靠性测试
专业术语
编辑 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC热敏电阻阻值。 T :规定温度( K )。 B : NTC热敏电阻的材料常数,又叫热敏指数。 exp:以自然数e为底的指数( e = 2. …)。
热敏电阻
负温度系数热敏电阻又称NTC热敏电阻,是一类电阻值随温度增大而减小的一种传感器电阻。广泛用于各种 电子原件中,如温度传感器、可复式保险丝及自动调节的加热器等。
工作原理
1
说明
2
简介
3
选型要求
4
实际应用
5
技术操作
《NTC热敏电阻宝典》是行业内第一本专业的电子书籍,其内容包含NTC热敏电阻所涉及到的各种知识,是从 业人员必不可少的工具书。具体内容如下:
NTC热敏电阻工作原理是什么?

NTC热敏电阻工作原理是什么?NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。
NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。
NTC负温度系数热敏电阻构成NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料.NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。
NTC负温度系数热敏电阻历史NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器.NTC负温度系数热敏电阻温度范围它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.。
NTC热敏电阻原理及应用资料

NTC热敏电阻原理及应用资料NTC热敏电阻是一种电阻值随温度变化的电阻器件,NTC即Negative Temperature Coefficient的缩写,意思是负温度系数。
其电阻值随温度的升高而下降,这是因为NTC热敏电阻的材料具有随温度上升,电子浓度增加,电阻减小的特性。
NTC热敏电阻的原理是基于半导体材料的特性。
在室温下,材料中的导电能力主要由载流子提供,当温度升高时,载流子的激发和活动增加,电子浓度增加,而导致电阻值下降。
不同材料的NTC热敏电阻具有不同的温度系数,其中具有较大负温度系数的材料可以用来测量高温,而具有较小负温度系数的材料则可以用来测量低温。
1.温度测量与控制:NTC热敏电阻可以直接作为温度传感器使用,常用于温度测量和控制领域。
它们可以测量物体表面温度、液体温度和空气温度等。
2.功率电子器件的保护:NTC热敏电阻可以用于电源电路、发动机和电机等设备中,用来保护功率电子器件。
当器件温度升高超过设定值,NTC热敏电阻的电阻值将迅速下降,从而触发过流或过温保护,避免电子器件的损坏。
3.温度补偿:由于NTC热敏电阻的电阻值随温度变化,可以用于温度自动补偿电路中。
例如,在电子设备中,微电流增大会导致偏移,而将NTC热敏电阻与其他元件串联,可以实现自动补偿,减小传感器的偏差。
4.温度补偿电源:NTC热敏电阻可以用来补偿电源的温度系数,保持电源的稳定性。
在高温环境下,NTC热敏电阻的电阻值下降,从而提高电源输出电压,使得输出电压保持相对稳定。
总结起来,NTC热敏电阻作为一种根据温度变化而改变电阻值的器件,具有广泛的应用领域。
它们可以用于温度测量与控制、功率电子器件的保护、温度补偿和温度补偿电源等方面。
在实际应用中,根据需求选择合适的NTC热敏电阻材料和参数,可以实现各种不同的功能和应用。
ntc热敏电阻原理

ntc热敏电阻原理NTC热敏电阻原理引言:NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种根据温度变化而产生变化的电阻器件。
它在温度上升时呈现出电阻值下降的特性,因此被广泛应用于温度测量、温度补偿和温度控制等领域。
本文将介绍NTC热敏电阻的原理及其应用。
一、NTC热敏电阻的基本原理NTC热敏电阻的基本原理是基于半导体材料的温度变化特性。
半导体材料中的载流子浓度与温度呈负指数关系,即当温度升高时,半导体内的载流子浓度会减少。
而载流子浓度的变化会导致电阻值的变化,使NTC热敏电阻呈现出温度敏感的特性。
二、NTC热敏电阻的结构和特点NTC热敏电阻通常由氧化物陶瓷材料制成,如锌、锰、铁等金属氧化物。
它的结构包括电阻体、引线和封装材料。
电阻体是NTC热敏电阻的核心部件,它由氧化物陶瓷粉末制成,具有高温度系数和良好的温度敏感性。
引线用于连接电阻体与电路,通常采用铜或镍等导电材料。
封装材料用于保护电阻体和引线,通常采用环氧树脂或硅胶等材料。
NTC热敏电阻的特点如下:1. 温度敏感性高:NTC热敏电阻的电阻值随温度变化迅速,具有较高的温度敏感性。
2. 稳定性好:NTC热敏电阻的温度系数稳定,能够在一定温度范围内提供准确可靠的测量和控制。
3. 响应速度快:NTC热敏电阻对温度变化的响应速度较快,能够实时监测温度变化。
4. 体积小:NTC热敏电阻的体积较小,适合在空间有限的场合使用。
三、NTC热敏电阻的应用1. 温度测量:NTC热敏电阻可以根据其电阻值与温度之间的关系,实现温度的测量和监控。
它被广泛应用于家用电器、电子设备和工业自动化等领域。
2. 温度补偿:NTC热敏电阻可以用于温度补偿电路,提高电路的稳定性和精度。
例如,在电压检测电路中,可以通过NTC热敏电阻对温度进行补偿,从而减小温度对电压测量的影响。
3. 温度控制:NTC热敏电阻可以用于温度控制回路,实现温度的自动调节。
ntc热敏电阻与温度的关系

ntc热敏电阻与温度的关系NTC热敏电阻是一种温度传感器,其电阻值随温度的变化而变化。
本文将探讨NTC热敏电阻与温度的关系,并分析其工作原理和应用领域。
一、NTC热敏电阻的工作原理NTC热敏电阻是一种负温度系数热敏电阻,即其电阻值随温度的升高而下降。
其工作原理基于热敏效应,即材料的电阻随温度的变化而变化。
NTC热敏电阻的材料通常是氧化物,如氧化镍、氧化锡等,这些材料具有较高的电阻温度系数。
当温度升高时,材料的电导增加,电阻减小;反之,当温度降低时,材料的电导减小,电阻增加。
二、NTC热敏电阻与温度的关系NTC热敏电阻的电阻值与温度之间存在着一种非线性的关系。
通常情况下,NTC热敏电阻的电阻值在室温(25摄氏度)时最大,随着温度的升高,其电阻值逐渐减小。
然而,不同型号和材料的NTC热敏电阻具有不同的电阻温度特性曲线。
一般来说,NTC热敏电阻的电阻温度特性曲线可以通过温度系数和额定电阻值来描述。
三、NTC热敏电阻的应用领域由于NTC热敏电阻具有温度敏感性强、体积小、响应速度快等特点,因此在许多领域得到广泛应用。
1. 温度测量与控制:NTC热敏电阻可用于温度测量和控制。
通过测量NTC热敏电阻的电阻值,可以推算出所测量的温度。
常见的应用场景包括温度计、恒温控制器、温度补偿等。
2. 温度补偿:许多电子元器件的性能受温度影响较大,为了保证其工作稳定性,常需要进行温度补偿。
NTC热敏电阻可以作为温度补偿元件,通过监测环境温度的变化,对其他元件的电路进行补偿,提高系统的稳定性和精度。
3. 温度保护:在一些电子设备中,NTC热敏电阻可用于温度保护。
当设备运行过程中温度超过设定的阈值时,NTC热敏电阻的电阻值会发生明显变化,从而触发保护电路,切断电源或采取其他措施,以防止设备过热损坏。
4. 环境监测:由于NTC热敏电阻对温度变化非常敏感,因此可用于环境温度的监测。
在气象、农业、仓储等领域,可以利用NTC热敏电阻构建温度监测系统,实时监测环境的温度变化,为决策提供参考依据。
加热热敏电阻的原理及应用

加热热敏电阻的原理及应用热敏电阻(Thermistor)是一种能够根据温度变化来改变其电阻值的电阻器件。
其原理是基于材料在温度变化时电阻发生变化的特性。
热敏电阻通常由金属氧化物(如钴铝酸锂)或半导体材料(如硅或碲化物)制成。
热敏电阻的工作原理可以通过三种不同的效应进行解释:正常温度系数(NTC),负温度系数(PTC)和线性温度系数(LTC)。
1. 正常温度系数(NTC):NTC热敏电阻在温度升高时其电阻值降低,即随温度升高而增加电流通过。
这是由于在PN结之间发生载流子的能级变化所引起的。
当温度升高时,载流子能级变高,电阻降低,电流增加。
2. 负温度系数(PTC):PTC热敏电阻在温度升高时其电阻值增加,反向于NTC。
这是由于在温度升高时材料中的晶格结构发生变化,压缩材料的电流路径,导致电阻增加。
3. 线性温度系数(LTC):LTC热敏电阻的电阻值的变化与其它两种类型的热敏电阻相对较小,基本上是线性关系。
它们是根据热阻特性设计的,常用于测量和控制温度的应用。
热敏电阻广泛应用在许多领域中,包括工业、医疗、汽车、电子和生活用品等。
以下是几个常见的应用:1. 温度传感器:热敏电阻可以用作温度传感器,在炉温控制、电子设备温度监测等应用中起到关键作用。
通过测量电阻值的变化,可以准确地得到环境中的温度信息。
2. 温度补偿:在一些电子设备中,随着温度的升高,电路的性能会发生变化,导致电路的精度下降。
热敏电阻可用于温度补偿,通过调整电路的参数来维持其性能稳定。
3. 过热保护:在一些电路或设备中,过热可能会导致故障或损坏。
热敏电阻可以作为过热保护装置的一部分,当温度超过设定值时,电阻值急剧增加,从而切断电流,保护设备的安全运行。
4. 温度补偿:热敏电阻还可用于温度补偿,用于校准其他传感器的输出,以消除因环境温度变化而引起的误差。
5. 温度控制:热敏电阻可以与其他电路元件(如电容、电感等)组合使用,形成温度控制反馈回路,用于自动调节系统的工作温度。
NTC热敏电阻工作原理

NTC热敏电阻工作原理、参数解释作者:时间:2010-3-14 5:09:12ntc负温度系数热敏电阻工作原理ntc是negative temperature coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓ntc热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
ntc热敏电阻器在室温下的变化范围在10o~1000000欧姆,温度系数-2%~-6.5%。
ntc热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
ntc负温度系数热敏电阻专业术语零功率电阻值 rt(ω)rt指在规定温度 t 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为:rt = rn expb(1/t – 1/tn)rt :在温度 t ( k )时的 ntc 热敏电阻阻值。
rn :在额定温度 tn ( k )时的 ntc 热敏电阻阻值。
t :规定温度( k )。
b : ntc 热敏电阻的材料常数,又叫热敏指数。
exp:以自然数 e 为底的指数( e = 2.71828 …)。
该关系式是经验公式,只在额定温度 tn 或额定电阻阻值 rn 的有限范围内才具有一定的精确度,因为材料常数b 本身也是温度 t 的函数。
额定零功率电阻值 r25 (ω)根据国标规定,额定零功率电阻值是 ntc 热敏电阻在基准温度25 ℃ 时测得的电阻值 r25,这个电阻值就是ntc 热敏电阻的标称电阻值。
通常所说ntc 热敏电阻多少阻值,亦指该值。
材料常数(热敏指数) b 值( k )b 值被定义为:rt1 :温度 t1 ( k )时的零功率电阻值。
ntc负温度系数热敏电阻 3450

ntc负温度系数热敏电阻3450「NTC负温度系数热敏电阻3450」是一种特殊的电子元件,在电路中起着温度感应和温度补偿的重要作用。
本文将从基本原理、工作特性、使用场景以及相关应用等方面进行详细介绍。
第一章:基本原理NTC热敏电阻是指电阻值随温度变化而变化的一种电阻器。
负温度系数(NTC)热敏电阻的特点是,随着温度的升高,电阻值呈线性下降趋势。
这种特性使其能够广泛应用于温度感应和补偿电路中。
NTC热敏电阻一般由金属氧化物制成,例如镍氧化锡(NOS)或锡酸锌(ZnS)等。
这些金属氧化物材料具有较高的电阻率和较好的温度敏感性,能够有效地感知温度变化。
第二章:工作特性NTC热敏电阻的工作特性主要包括温度系数、额定电阻值和温度响应时间。
1. 温度系数温度系数是指NTC热敏电阻在一定温度范围内,电阻值与温度之间的关系。
一般情况下,NTC热敏电阻的温度系数为负值,即随着温度的升高,电阻值逐渐下降。
该温度系数的大小决定了NTC热敏电阻的灵敏度和稳定性。
2. 额定电阻值额定电阻值是指NTC热敏电阻在标准工作温度下的电阻值。
一般来说,NTC热敏电阻的额定电阻值会根据具体应用的需要而进行选择。
3. 温度响应时间温度响应时间是指NTC热敏电阻从环境温度发生变化到电阻值改变所需要的时间。
一般来说,NTC热敏电阻的温度响应时间越短,其温度感应效果就越好。
第三章:使用场景NTC热敏电阻在多个领域中都有广泛的应用,例如温度控制、温度补偿、温度保护等方面。
1. 温度控制在温度控制方面,NTC热敏电阻可以作为一个敏感元件,对温度进行实时感应,并通过反馈控制系统进行温度调节。
例如,在空调系统中,NTC热敏电阻可以感应到环境温度的变化,并根据设定的温度范围来控制制冷或制热装置的工作。
2. 温度补偿在一些电子设备中,温度变化可能会对电路的工作稳定性产生影响。
此时,可以使用NTC热敏电阻对电路进行温度补偿。
例如,在放大器电路中,NTC热敏电阻可以用来校正电路中的偏移电压,提高电路的稳定性和精确度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NTC
NTC负温度系数热敏电阻工作原理
NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。
NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
NTC负温度系数热敏电阻专业术语
零功率电阻值 RT(Ω)
RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为:
RT = RN expB(1/T – 1/TN)
RT :在温度 T ( K )时的 NTC 热敏电阻阻值。
RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。
T :规定温度( K )。
B : NT
C 热敏电阻的材料常数,又叫热敏指数。
exp:以自然数 e 为底的指数(e = 2.71828 …)。
该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。
额定零功率电阻值 R25 (Ω)
根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值R25,这个电阻值就是NTC 热敏电阻的标称电阻值。
通常所说 NTC 热敏电阻多少阻值,亦指该值。
材料常数(热敏指数) B 值( K )
B 值被定义为:
RT1 :温度 T1 ( K )时的零功率电阻值。
RT2 :温度 T2 ( K )时的零功率电阻值。
T1、T2 :两个被指定的温度( K )。
对于常用的 NTC 热敏电阻, B 值范围一般在 2000K ~ 6000K 之间。
零功率电阻温度系数(αT )
在规定温度下, NTC 热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。
αT :温度 T ( K )时的零功率电阻温度系数。
RT :温度 T ( K )时的零功率电阻值。
T :温度( T )。
B :材料常数。
耗散系数(δ)
在规定环境温度下, NTC 热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。
δ: NTC 热敏电阻耗散系数,( mW/ K )。
△ P : NTC 热敏电阻消耗的功率( mW )。
△ T : NTC 热敏电阻消耗功率△ P 时,电阻体相应的温度变化( K )。
热时间常数(τ)
在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的 63.2% 时所需的时间,热时间常数与 NTC 热敏电阻的热容量成正比,与其耗散系数成反比。
τ:热时间常数( S )。
C: NTC 热敏电阻的热容量。
δ: NTC 热敏电阻的耗散系数。
额定功率Pn
在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。
在此功率下,电阻体自身温度不超过其最高工作温度。
最高工作温度Tmax
在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。
即:
T0-环境温度。
测量功率Pm
热敏电阻在规定的环境温度下,阻体受测量电流加热引起的阻值变化相对于总的测量误差来说可以忽略不计时所消耗的功率。
一般要求阻值变化大于0.1%,则这时的测量功率Pm为:
电阻温度特性
NTC热敏电阻的温度特性可用下式近似表示:
式中:
RT:温度T时零功率电阻值。
A:与热敏电阻器材料物理特性及几何尺寸有关的系数。
B:B值。
T:温度(k)。
更精确的表达式为:
式中:
RT:热敏电阻器在温度T时的零功率电阻值。
T:为绝对温度值,K;
A、B、C、D:为特定的常数。
NTC负温度系数热敏电阻R-T特性
B 值相同,阻值不同的 R-T 特性曲线示意图
相同阻值,不同B值的NTC热敏电阻R-T特性曲线示意图
温度测量、控制用NTC热敏电阻器
外形结构
环氧封装系列NTC热敏电阻
玻璃封装系列NTC热敏电阻应用电路原理图
温度测量(惠斯登电桥电路)
温度控制
应用设计
∙电子温度计、电子万年历、电子钟温度显示、电子礼品;∙冷暖设备、加热恒温电器;
∙汽车电子温度测控电路;
∙温度传感器、温度仪表;
∙医疗电子设备、电子盥洗设备;
∙手机电池及充电电器。
型号参数
环氧封装系列NTC热敏电阻
注: 1.第一方框填标称阻值,第二方框填精度代号.( F:±1% G:±2% H:±3%
J:±5% )
2:B值(25/50℃)误差:对于标称阻值精度±1%的产品其B值对应误差是±1%,其余B值误差均为±2%
玻璃封装系列NTC热敏电阻
注: 1.第一方框填标称阻值,第二方框填精度代号.( F:±1% G:±2% H:±3%
J:±5% )
2:B值(25/50℃)误差:对于标称阻值精度±1%的产品其B值对应误差是±1%,其余B值误差均为±2%。