山东省2019中考数学二轮复习专题训练7一元二次方程无答案鲁教版_3131

合集下载

鲁教版2019初三数学下册一元二次方程专项训练题(一元二次方程的概念及解法)

鲁教版2019初三数学下册一元二次方程专项训练题(一元二次方程的概念及解法)

鲁教版2019初三数学下册一元二次方程专项训练题(一元二次方程的概念及解法) 考点1:下列方程是关于x 的一元二次方程的是( )A .ax ²+bx+c=0 B. k ²x +5k+6=0 C.3x ²+2x+1x=0 D.( k ²+3) x ²+2x+1=0 考点2:解方程:x ²+2x -3=0考点3:已知方程5x2+kx -10=0一个根是-5,求它的另一个根及k 的值.三、针对性训练:1、下列方程中,关于x 的一元二次方程是( )2222211.3(1)2(1) .20.0 .21A x xB y xC ax bx cD x x x +=++-=++=+=-2、若2x ²+3与2x-4互为相反数,则x 的值为__________3、用配方法解下列方程时,配方有错误的是( )A.x2-2x-99=0化为(x-1)2=100B.x2+8x+9=0化为(x+4)2=25C.2t2-7t-4=0化为2781()416t -= D.3y2-4y-2=0化为2210()39y -=4、关于x 的一元二次方程22(1)2m x x m m +++-30-= 的一个根为x=0,则m 的值为() A .m=3或m=-1 B .m=-3或m= 1 C .m=-1 D .m=-35、若x 1 ,x 2 是方程x ²-5x+6=0的两个根,则x 1 +x 2的值是( )A .1 B.5 C. -5 D.66、若x 1 ,x 2 是方程x ²-3x -1=0的两个根,则1211x x +的值为( )A.3B.-3C. 13D.-137、若x 1 ,x 2 是方程x ²-6x+k -1=0的两个根,且221224x x +=,则k 值为( )A.8B. -7C.6D.58、若方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A.k >-1B. k >-1且k ≠0C. k <1D. k <1且k ≠09、已知一元二次方程x 2 +2x -8=0的一根是2,则另一个根是______________.10、若关于x 的方程-x 2 +(2k+1)x+2-k 2=0有实数根,则k 的取值范围是_______11、解方程:(1) 22(23)32x -=; (2)3y (y-1)=2(y-1)(3) 3(4x ² -9)-(2x -3)=0; (4) x ²-6x+8=012、关于x 的方程kx 2+(k+2)x+4k =0有两个不相等的实数根, (1)求k 的取值范围;(2)是否存在实数k 使方程的两个实数根的倒数和等于0?若存在求出k 的值;不存在说明理由。

3.7二次函数与一元二次方程同步训练2024-2025学年鲁教版(五四制)数学九年级上册

3.7二次函数与一元二次方程同步训练2024-2025学年鲁教版(五四制)数学九年级上册

3.7 二次函数与一元二次方程同步训练2024-2025学年鲁教版(五四制)数学九年级上册一、单选题1.抛物线y=(x−1)2+5与y轴的交点坐标为()A.(1,5)B.(−1,5)C.(0,5)D.(0,6)2.已知抛物线y=x2−x−2与x轴的一个交点为(m,0),则代数式m2−m+2018的值()A.2017B.2018C.2019D.20203.根据下表可知,方程x2+3x−5=0的一个解x的取值范围为()x 1.1 1.2 1.3 1.4x2+3x−5−0.490.040.59 1.16A.1<x<1.1B.1.1<x<1.2C.1.2<x<1.3D.1.3<x<1.44.如图,点P从右向左运动的运动路线在抛物线y=a(x+1)2−1上,点P第一次到达x轴时的坐标为A(1,0),则当点P再次到达x轴时的坐标为()A.(−2,0)B.(−2.5,0)C.(−3,0)D.(−3.5,0)5.若抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是()A.(2,4)B.(−2,4)C.(−2,−4)D.(2,−4)6.抛物线y=ax2+bx+c的对称轴是直线x=−1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0,且c<0;①4a−2b+c>0;①8a+c>0;①c=3a−3b;①直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1⋅x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个7.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−1,部分图象如图所示,给出下面4个结论:①b2>4ac;①a−1b2c3>0;①8a+c>2b;①若点(−0.5,y1),(−2,y2)在抛物线y=ax2+bx+c(a≠0)上,则y1<y2.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题8.二次函数y=x2−6x+1与y轴的交点坐标是.9.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,−1),顶点纵坐标为−3,关于x的方程ax2+b|x|+c=k有四个不相等的实数根,则实数k满足.10.二次函数y=ax2−4x−1与x轴有两个交点,且这两个交点的横坐标在−2和0之间(不包括−2和0),则a的取值范围是.11.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…01030…y…2−32…则关于x的方程ax2+bx+5=0的解是.12.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象如图所示,对称轴为直线x=﹣1.有以下结论:①abc>0;①a(k2+2)2+b(k2+2)<a(k2+1)2+b(k2+1)(k为实数);①m(am+b)≤﹣a(m为实数);①c<﹣3a;①ax2+bx+c+1=0有两个不相等的实数根.其中正确的结论有(只填写序号).三、解答题13.在同一平面直角坐标系中,正比例函数y=x与二次函数y=ax2的图像相交于A、B两点,且A点坐标为(1,1),求出a的值和B点坐标.14.二次函数y=ax2+bx+c的图象与x轴交于A(1,0)、B两点,其顶点P的坐标为(−3,2).(1)求这二次函数的关系式;(2)求△PAB的面积.15.已知二次函数y=x2−2mx+1.(1)若该二次函数图象过(m−1,1),且不过第四象限,求y>1所对应的自变量x的取值范围;(2)若点(−1,y1),(m+1,y2),(2m,y3)在抛物线上,且y1<y2<y3,求m的取值范围.16.已知抛物线y=−x2−2x+8.(1)求抛物线的对称轴和顶点坐标;(2)当y>0时,自变量x的取值范围是______;(3)当−3<x<0时,函数值y的取值范围是_____;(4)若A(m,y1),B(m+2,y2)两点都在抛物线上,且y1<y2,直接写出m的取值范围是_____.17.已知抛物线C:y1=a(x−ℎ)2+2,直线l:y2=kx−kℎ+2(k≠0).(1)直接写出抛物线C的顶点,请问直线l是否经过该点?(2)若a=−1,ℎ=1,当t≤x≤t+3时,二次函数y1=a(x−ℎ)2+2的最大值为−6,求t的值;(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤a≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求k的取值范围.。

2019年山东省 中考数学二模试卷解析版

2019年山东省  中考数学二模试卷解析版

2019年山东省中考数学二模试卷含解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.20192.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b23.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.(3分)分解因式:9﹣12t+4t2=.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为米.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(n为正整数,用含n的代数式表示).三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山东省东营市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.2019【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数;负数的绝对值是它的相反数可得答案.【解答】解:2019相反数是﹣2019,﹣2019的绝对值是2019,故选:D.【点评】此题主要考查了绝对值和相反数,关键是掌握相反数定义,绝对值性质.2.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b2【分析】直接利用二次根式加减运算法则以及同底数幂的除法运算法则以及完全平方公式分别化简得出答案.【解答】解:A、a+2b无法计算,故此选项错误;B、+无法计算,故此选项错误;C、x6÷x2=x4,正确;D、(a+b)2=a2++2ab+b2,故此选项错误;故选:C.【点评】此题主要考查了二次根式加减运算以及同底数幂的除法运算以及完全平方公式,正确掌握相关运算法则是解题关键.3.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°【分析】先根据三角形外角性质,求得∠BDE,进而根据平行线的性质,得到∠DBF=∠BDE=65°,最后根据平角求得∠2.【解答】解:如图所示,∵∠BDE是△ADE的外角,∴∠BDE=∠3+∠A=∠1+∠A=65°,∵a∥b,∴∠DBF=∠BDE=65°,又∵∠ABC=90°,∴∠2=180°﹣90°﹣65°=25°.故选:C.【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道【分析】设小明至少答对的题数是x道,答错的为(20﹣2﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥13,故应为14.故选:D.【点评】本题考查理解题意的能力,关键是设出相应的题目数,以得分做为不等量关系列不等式求解.6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个【分析】分别写出四个命题的逆命题,然后分别通过解一元二次方程、平方根的定义、根据线段垂直平分线的性质、圆周角定理进行判断.【解答】解:若x2=x,则x=1或x=0,所以原命题错误;若x=1,则x2=x,所以原命题的逆命题正确;若a2=b2,则a=±b,所以原命题错误;若a=b,则a2=b2,所以原命题的逆命题正确;线段垂直平分线上的点到线段两端的距离相等,所以原命题正确;到线段两端的距离相等的点在线段的垂直平分线上,所以原命题的逆命题正确;相等的弧所对的圆周角相等,所以原命题正确;相等的圆周角所对弧不一定相等,所以原命题的逆命题错误.故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论;命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接P A、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④【分析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【解答】解:设AD=x,AB=2x,∵四边形ABCD是矩形,∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB,∴BC=x,CD=2x,∵CP:BP=1:2,∴CP=x,BP=x.∵E为DC的中点,∴CE=CD=x,∴tan∠CEP===,tan∠EBC==,∴∠CEP=30°,∠EBC=30°,∴∠CEB=60°,∴∠PEB=30°,∴∠CEP=∠PEB,∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴,∴BE.BF=BP.EF.∵∠F=BEF,∴BE=BF,∴②BF2=PB•EF.故②正确;∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x,∴PF•EF=x•2x=8x2,2AD2=2×(x)2=6x2,∵6x2≠8x2,∴PF•EF≠2AD2,故本答案错误;在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x.∵tan∠P AB==,∴∠P AB=30°,∴∠APB=60°,∴∠AOB=90°,在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x,∴EF•EP=2x•x=4x24AO•PO=4×x x=4x2.∴EF•EP=4AO•PO.故④正确.故选:B.【点评】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为5.4×106万元.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.(3分)分解因式:9﹣12t+4t2=(3﹣2t)2.【分析】原式利用完全平方公式分解即可得到结果.【解答】解:原式=(3﹣2t)2.故答案为:(3﹣2t)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=4.【分析】根据中位数的定义,当数据有偶数个时,中位数即是正中间两个数的平均数,继而得出a的值.【解答】解:∵有数据个数是偶数,且中位数是4,∴a=4,故答案为:4.【点评】本题考查了中位数,熟练掌握中位数的定义是解题的关键;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为180米.【分析】过A作BC的垂线,设垂足为D.在Rt△ACD中,利用∠CAD的正切函数求出邻边AD的长,进而可在Rt△ABD中,利用已知角的三角函数求出BD的长;由BC=CD﹣BD即可求出楼的高度.【解答】解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=270米.在Rt△ACD中,tan∠CAD=,∴AD==90.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=90×=90.∴BC=CD﹣BD=270﹣90=180.答:这栋大楼的高为180米.故答案为180.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是1或.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:3﹣2x+mx﹣2=﹣x+3,整理得:(m﹣1)x=2,当m﹣1=0,即m=1时,方程无解;当m﹣1≠0时,x﹣3=0,即x=3时,方程无解,此时=3,即m=,故答案为:1或.【点评】此题考查了分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10cm.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(3n﹣,(﹣1)n+1•)(n为正整数,用含n的代数式表示).【分析】根据图形连续旋转,旋转奇数次时,图象在x轴下方,每两个图象全等且相隔三个单位;旋转偶数次时,图象在x轴上方,每两个图象全等且相隔三个单位.【解答】解:这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,….则Cn的顶点坐标为(3n﹣,(﹣1)n+1•),故答案为:(3n﹣,(﹣1)n+1•).【点评】本题考查了二次函数图象与几何变换,交点间的距离是3,顶点间的横向距离距离是3,纵向距离是.三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.【分析】(1)根据特殊角的三角函数值、绝对值、零指数幂和负整数指数幂可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)4cos30°﹣||+()0+(﹣)﹣2=4×﹣(2﹣)+1﹣3+9=2﹣2++1﹣3+9=8;(2)÷(x+2﹣)====,当x=﹣3时,原式=.【点评】本题考查分式化简求值、特殊角的三角函数值、绝对值、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有50人;(2)表中a=10,b=0.16;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.【分析】(1)由B观点的人数和所占的频率即可求出总人数;(2)由总人数即可求出a、b的值,(3)由(2)中的数据即可将条形统计图补充完整;(4)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50×0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率==.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【分析】(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,从而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比例函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.【解答】解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点P的坐标;(2)由三角形的面积关系找出关于m的方程.本题属于基础题,难度不大,解决该题型题目时,根据给定的数量关系找出点的坐标,再结合待定系数法求出函数解析式即可.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.【分析】(1)根据当点P是的中点时,得出=,得出P A是○O的直径,再利用DP∥BC,得出DP⊥P A,问题得证;(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长.【解答】解:(1)当点P是的中点时,DP是⊙O的切线.理由如下:∵AB=AC,∴=,又∵=,∴=,∴P A是⊙O的直径,∵=,∴∠1=∠2,又AB=AC,∴P A⊥BC,又∵DP∥BC,∴DP⊥P A,∴DP是⊙O的切线.(2)连接OB,设P A交BC于点E.由垂径定理,得BE=BC=6,在Rt△ABE中,由勾股定理,得:AE===8,设⊙O的半径为r,则OE=8﹣r,在Rt△OBE中,由勾股定理,得:r2=62+(8﹣r)2,解得r=,∵DP∥BC,∴∠ABE=∠D,又∵∠1=∠1,∴△ABE∽△ADP,∴=,即=,解得:DP=.【点评】此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出△ABE∽△ADP是解题关键.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜a个,根据题意可得:20a+12×(75﹣a)≤1180,解得:a≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是菱形.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.【分析】(1)先判断出∠ACD=∠BAC,进而判断出∠BAC=∠AC'D,进而判断出∠CAC'=∠AC'D,即可的结论;(2)先判断出∠CAC'=90°,再判断出AG⊥CC',CF=C'F,进而判断出四边形ACGC'是平行四边形,即可得出结论;(3)先判断出∠ACB=30°,进而求出BH,AH,即可求出CH,C'H,即可得出结论.【解答】解:(1)在如图1中,∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,∴∠BAC=∠AC'D,∵∠CAC'=∠BAC,∴∠CAC'=∠AC'D,∴AC∥C'E,∵AC'∥CE,∴四边形ACEC'是平行四边形,∴▱ACEC'是菱形,故答案为:菱形;(2)在图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠CAD=∠ACB,∠B=90°,∴∠BAC+∠ACB=90°在图3中,由旋转知,∠DAC'=∠DAC,∴∠ACB=∠DAC',∴∠BAC+∠DAC'=90°,∵点D,A,B在同一条直线上,∴∠CAC'=90°,由旋转知,AC=AC',∵点F是CC'的中点,∴AG⊥CC',CF=C'F,∵AF=FG,∴四边形ACGC'是平行四边形,∵AG⊥CC',∴▱ACGC'是菱形,∵∠CAC'=90°,∴菱形ACGC'是正方形;(3)在Rt△ABC中,AB=2,AC=4,∴BC'=AC=4,BD=BC=2,sin∠ACB==,∴∠ACB=30°,由(2)结合平移知,∠CHC'=90°,在Rt△BCH中,∠ACB=30°,∴BH=BC•sin30°=,∴C'H=BC'﹣BH=4﹣,在Rt△ABH中,AH=AB=1,∴CH=AC﹣AH=4﹣1=3,在Rt△CHC'中,tan∠C′CH==.【点评】此题是四边形综合题,主要考查了矩形是性质,平行四边形,菱形,矩形,正方形的判定和性质,勾股定理,锐角三角函数,旋转的性质,判断出∠CAC'=90°是解本题的关键.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△P AC=S△P AN+S△PCN就可以表示出△P AC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a (x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,。

山东省中考数学一轮复习专题8——一元二次方程及其应用

山东省中考数学一轮复习专题8——一元二次方程及其应用

山东省中考数学一轮复习专题8——一元二次方程及其应用姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共45分)1. (5分) (2019九上·思明期中) 一元二次方程2x2=2x﹣3的一次项系数是()A . ﹣2B . 2C . ﹣3D . 3【考点】2. (5分) (2019九上·中山期中) 一元二次方程x2﹣25=0的解是()A . x=5B . x=﹣5C . x1=5,x2=﹣5D . x1=0,x2=5【考点】3. (5分) (2018九上·江苏月考) 用配方法解一元二次方程时,下列变形正确的为()A .B .C .D .【考点】4. (5分) (2019九上·川汇期中) 若x=1是方程x2+bx=0的一个根,则它的两根之和是()A . 1B . ﹣1C . 0D . ±1【考点】5. (5分)根据方程x2﹣3x﹣5=0可列表如下()x﹣3﹣2﹣1 (456)x2﹣3x﹣5135﹣1…﹣1513则x的取值范围是()A . ﹣1<x<4B . ﹣2<x<﹣1C . 4<x<5D . ﹣2<x<﹣1或4<x<5【考点】6. (5分)对于任意实数x,多项式x2﹣5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定【考点】7. (5分) (2019八下·宁明期中) 联华超市在销售中发现“卡西龙”牌童装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件童装每降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装能盈利1200元,那么每件童装应降价()A . 10元B . 20元C . 30元D . 10元或20元【考点】8. (5分)如图,已知Rt△ABC中,∠C=90°,AB=10,AC=8,则tanB的值为()A .B .C .D .【考点】9. (5分)已知二次函数y=x2-mx+m-2的图象与x轴有()个交点.A . 1个B . 2 个C . 无交点D . 无法确定【考点】二、填空题 (共6题;共30分)10. (5分) (2020九上·大石桥月考) 已知与的值相等,则的值是________.【考点】11. (5分) (2020九上·滨海月考) 设一元二次方程两个实数根为x1和x2 ,则x1+x2=________ .【考点】12. (5分) (2016八上·吴江期中) 已知关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是________.【考点】13. (5分) (2019八下·长兴期中) 某校去年投资2万元购买实验器材,预计今明两年的投资总额为8万元。

最新鲁教版中考数学考点专项练习(全初中 共76页)

最新鲁教版中考数学考点专项练习(全初中 共76页)

最新鲁教版中考数学考点专项练习(全初中共76页)最新鲁教版中考数学考点专项练习目录 1. 实数部分 2. 代数式部分 3. 整式部分 4. 因式分解部分 5. 分式部分 6. 二次根式部分7. 一次方程部分8. 方式方程部分9. 一元二次方程部分10. 不等式组部分11. 平面直角坐标系部分12. 一次函数部分13. 反比例函数部分14. 二次函数部分15. 相交线与平行线部分16. 三角形部分17. 等腰三角形与直角三角形部分18. 特殊平行四边形部分19. 多边形与平行四边形部分20. 圆的有关概念21. 直线和圆的位置关系1 第1 页共76 页22. 直线和圆的位置关系2 23. 正多边形与圆24. 圆的有关计算A级基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A.-1 B.0C.1 D.2 12.-2的绝对值等于( )A.2B.-2 C. D.±2 2113.-4的倒数的相反数是( )A.-4B.4 C.- D. 44114.-3的倒数是( )A.3B.-3 C. D.-335.无理数-3的相反数是( )A.-3.下列各式,运算结果为负数的是( ) A.-(-2)-(-3) B.(-2)×(-3) C.(-2) D.(-3) 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x-y<0,那么x与y的大小关系是x____y(填“<”或“>”).9.已知一粒米的质量是021千克,这个数字用科学记数法表示为( ) A.21×10千克B.×10千克C.×10千克D.×10千克-4-6-5-4 2-311D.-33?11?0210.计算:|-5|-(2-3)+6×???+(-1). ?32?B级中等题11.实数a,b在数轴上的位置如图所示,下列式子错误的是( ) A.a|b| C.-a0 12.北京时间2011年3月11日,日本近海发生级强烈地震.本次地震导致地球当天自转快了001 6秒.这里的001 6秒请你用科学记数法表示第 2 页共76 页________________________秒.13.将1,2,3,6按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(14,5)表示的两数之积是________.?1?-202?14.计算:|-3 3|-2cos30°-2+(3-π).15.计算:-2+??3?-2cos60°+|-3|. C级拔尖题16.如图X1-1-2,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点-1B所对应的数为__________.图X1-1-2 17.观察下列等式:11?1?11?11?第1个等式:a1==×?1??;第2个等式:a2==×???;1×32?3?3×52?35?11?11?11?11?第3个等式:a3==×???;第4个等式:a4==×???;5×72?57?7×92?79?… 请解答下列问题:(1)按以上规律列出第5个等式:第 3 页共76 页a5=___________=______________;(2)用含有n的代数式表示第n个等式:an=______________=____________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.选做题18.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:74 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-,(-3)⊕5=5⊕(-3)=-,… 615你规定的新运算a⊕b=_______(用a,b的一个代数式表示).A 级基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有( )15A.(15+a)万人B.(15-a)万人C.15a万人 D.万人a2.若x=m-n,y=m+n,则xy的值是( ) A.2 m B。

2019-2021年3年中考真题数学分项汇编-专题07 一元二次方程-(解析版)

2019-2021年3年中考真题数学分项汇编-专题07 一元二次方程-(解析版)

专题07.一元二次方程一、单选题1.(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 【答案】B【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:∵关于x 的方程()()2212110k x k x -+++=有实数根,∴()()22121410k k ∆=+-⨯⨯≥-,且1k ≠,解得,14k ≥且1k ≠,故选:B . 【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.2.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根 B .两根之和是3 C .两根之积是2- D .有两个不相等的实数根【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a ==,故C 错误.123+-2b x x a ==,故B 错误.故选:A . 【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.3.(2021·湖北武汉市·中考真题)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( )A .-25B .-24C .35D .36【答案】D【分析】先根据已知可得2350a a --=,235b b -=,a+b =3,然后再对3222671a a b b -+++变形,最后代入求解即可.【详解】解:∵已知a ,b 是方程2350x x --=的两根 ∴2350a a --=,235b b -=,a +b =3∴()()()3222226712353101a a b b a a a b b a b -+++=--+-+++=0+5+30+1=36.故选D . 【点睛】本题主要考查了一元二次方程的解、根与系数的关系以及整式的变形,根据需要对整式灵活变形成为解答本题的关键.4.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( )A .14a ≤且2a ≠-B .14a ≤C .14a <且2a ≠-D .14a < 【答案】A【分析】根据一元二次方程的定义和判别式的意义得到a +2≠0且△≥0,然后求出两不等式的公共部分即可.【详解】解:∵关于x 的一元二次方程()22310a x x +-+=有实数根, ∴△≥0且a +2≠0,∴(-3)2-4(a +2)×1≥0且a +2≠0,解得:a ≤14且a ≠-2,故选:A . 【点睛】本题考查根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个 【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∴m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且△=2414b ac m -=-,∵m <0,∴-4m >0, ∴1-4m >1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( )A .7-B .3-C .2D .5【答案】A【分析】根据一元二次方程根的定义,得211310x x -+=,结合根与系数的关系,得1x +2x =3,进而即可求解.【详解】解:∵一元二次方程2310x x -+=的两根为1x ,2x ,∴211310x x -+=,即:21131x x -=-,1x +2x =3,∴211252x x x --=2113x x --2(1x +2x )=-1-2×3=-7.故选A .【点睛】本题主要考查一元二次方程根的定义以及根与系数的关系,熟练掌握20ax bx c ++=(a ≠0)的两根为1x ,2x ,则1x +2x =b a -,1x 2x =c a ,是解题的关键. 7.(2021·浙江台州市·中考真题)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4【答案】D【分析】根据方程x 2-4x +m =0有两个不相等的实数根,可得()24410m ∆=--⨯⨯>,进而即可求解.【详解】解:∵关于x 的方程x 2-4x +m =0有两个不相等的实数根,∴()24410m ∆=--⨯⨯>,解得:m <4,故选D .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.8.(2021·山东临沂市·中考真题)方程256x x -=的根是( )A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-, 【答案】C【分析】利用因式分解法解方程即可得到正确选项.【详解】解:∵256x x -=,∴2560x x --=,∴()()780x x +-=,∴x +7=0,x -8=0,∴x 1=-7,x 2=8.故选:C .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.9.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( )A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠【答案】D【分析】根据一元二次方程的定义和判别式的意义得到a ≠0且△=22-4a >0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a ≠0且△=22-4a >0,解得a <1且a ≠0.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 10.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“△>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩,解得:14k >-且0k ≠;故选:C . 【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.11.(2021·四川南充市·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( )A .1B .1-C .2021D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解.【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∴211202110x x -+=,121x x ⋅=,∴21120211x x =-, ∴2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1.故选B . 【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.12.(2021·四川凉山彝族自治州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定【答案】C【分析】根据一次函数图象经过的象限找出k 、b 的正负,再结合根的判别式即可得出△>0,由此即可得出结论.【详解】解:观察函数图象可知:函数y =kx +b 的图象经过第二、三、四象限,∴k <0,b <0.在方程210x bx k ++-=中,△=()2241440b k b k --=-+>,∴一元二次方程210x bx k ++-=有两个不相等的实数根.故选:C .【点睛】本题考查了一次函数图象与系数的关系以及根的判别式,根据一次函数图象经过的象限找出k 、b 的正负是解题的关键.13.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C 【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=,21,2,a b m c m m ===- 2122c m x am x ==-=,220m m --=(2)(1)0m m ∴-+= 2m ∴=或1m =- 当2m =时,原一元二次方程为2420x x ++= 12=24b m a x x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-< 原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.14.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x += 【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++=,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方. 15.(2021·新疆中考真题)关于x 的一元二次方程x 2﹣4x+3=0的解为( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=1,x 2=3D .x 1=﹣1,x 2=﹣3【答案】C【分析】利用因式分解法求出已知方程的解.【详解】x 2-4x+3=0,分解因式得:(x -1)(x -3)=0,解得:x 1=1,x 2=3,故选C .【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).16.(2020·新疆中考真题)下列一元二次方程中,有两个不相等实数根的是( )A .21x x 04-+= B .x 2+2x+4=0 C .x 2-x+2=0 D .x 2-2x=0【答案】D 【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.【详解】A.此方程判别式 ()21Δ14104=--⨯⨯= ,方程有两个相等的实数根,不符合题意; B.此方程判别式 2Δ2414120,=-⨯⨯=-< 方程没有实数根,不符合题意;C.此方程判别式 ()2Δ141270=--⨯⨯=-< ,方程没有实数根,不符合题意;D .此方程判别式 ()2Δ241040=--⨯⨯=> ,方程有两个不相等的实数根,符合题意;故答案为: D.【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.17.(2020·广西中考真题)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( )A .12x (x +1)=110B .12x (x ﹣1)=110 C .x (x +1)=110 D .x (x ﹣1)=110 【答案】D【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛110场,可列出方程.【详解】解:设有x 个队参赛,则x (x ﹣1)=110.故选:D .【点睛】本题考查的是一元二次方程的应用,找准等量关系列一元二次方程是解题的关键.18.(2020·广西河池市·中考真题)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )A .6B .7C .8D .9 【答案】D【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36, 化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题. 19.(2020·四川雅安市·中考真题)如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 【答案】C【分析】根据关于x 的一元二次方程kx 2-3x+1=0有两个实数根,知△=(-3)2-4×k×1≥0且k≠0,解之可得.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有两个实数根,∴△=(-3)2-4×k×1≥0且k≠0,解得k≤94且k≠0,故选:C . 【点睛】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.20.(2020·湖北荆州市·中考真题)定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A .有一个实根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根【答案】B【分析】将x k *按照题中的新运算方法展开,可得()()1x k x k x k *=+--,所以x k x *=可得()()1x k x k x +--=,化简得:2210x x k ---=,()()222141145k k ∆=--⨯⋅--=+,可得0∆>,即可得出答案.【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--, 则x k x *=即为221x k x --=,整理得:2210x x k ---=,则21,1,1a b c k ==-=--,可得:()()222141145k k ∆=--⨯⋅--=+ 20k ≥,2455k ∴+≥;0∴∆>,∴方程有两个不相等的实数根;故答案选:B.【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.21.(2020·黑龙江鹤岗市·中考真题)已知2+x 的一元二次方程240x x m -+=的一个实数根,则实数m 的值是( )A .0B .1C .−3D .−1【答案】B【分析】把x =2+m 的方程,就可以求出m 的值.【详解】解:根据题意得2(24(20m +-⨯+=,解得1m =;故选:B .【点睛】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.22.(2020·广东广州市·中考真题)直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个【答案】D【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程, ∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.23.(2020·湖北省直辖县级行政单位·中考真题)关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( )A .1-B .4-C .4-或1D .1-或4【答案】A 【分析】通过根与系数之间的关系得到22mαβ,2m m αβ,由()2222αβαβαβ+=+-可求出m 的值,通过方程有实数根可得到[]()222(1)40m m m --≥-,从而得到m 的取值范围,确定m 的值.【详解】解:∵方程222(1)0x m x m m +-+-=有两个实数根α,β, ∴21221m m αβ,221m m m m αβ,∵()2222αβαβαβ+=+-,2212αβ+=∴()()2222212m m m -+-=-, 整理得,2340m m --=,解得,11m =-,24m =,若使222(1)0x m x m m +-+-=有实数根,则[]()222(1)40m m m --≥-, 解得,1m ,所以1m =-,故选:A .【点睛】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.24.(2020·上海中考真题)用换元法解方程21x x ++21x x +=2时,若设21x x +=y ,则原方程可化为关于y 的方程是( )A .y 2﹣2y +1=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2+y ﹣2=0【答案】A 【分析】方程的两个分式具备倒数关系,设21x x+=y ,则原方程化为y+1y =2,再转化为整式方程y 2-2y+1=0即可求解. 【详解】把21x x+=y 代入原方程得:y +1y =2,转化为整式方程为y 2﹣2y +1=0.故选:A . 【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.25.(2020·湖北随州市·中考真题)将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则4323x x x -+的值为( )A .1B .3-C .1+D .3【答案】C【分析】先求得2=+1x x ,代入4323x x x -+即可得出答案.【详解】∵210x x --=,∴2=+1x x ,x ==∴4323x x x -+=()()21213x+-x x++x =2221223x +x+-x -x+x =231-x +x+=()131-x++x+=2x ,∵x =,且0x >,∴x =,∴原式=2,故选:C . 【点睛】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次. 26.(2020·湖北鄂州市·中考真题)目前以5G 等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G 用户数累计达到8.72万户.设全市5G 用户数年平均增长率为x ,则x 值为( ) A .20% B .30% C .40% D .50%【答案】C【分析】先用含x 的代数式表示出2020年底、2021年底5G 用户的数量,然后根据2019年底到2021年底这三年的5G 用户数量之和=8.72万户即得关于x 的方程,解方程即得答案.【详解】解:设全市5G 用户数年平均增长率为x ,根据题意,得:()()2221218.72x x ++++=, 解这个方程,得:10.440%x ==,2 3.4x =-(不合题意,舍去).∴x 的值为40%.故选:C . 【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.27.(2020·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4【答案】A【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x 2-6x+8=0 (x -4)(x -2)=0 解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形; 当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形, 所以三角形的底边长为2,故选:A .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.28.(2020·甘肃金昌市·中考真题)已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .-1或2 B .-1C .2D .0【答案】B【分析】首先把x=1代入22(2)40m x x m -+-=,解方程可得m 1=2,m 2=-1,再结合一元二次方程定义可得m 的值【详解】解:把x=1代入22(2)40m x x m -+-=得:2m 2+4m --=0,2m m 20++=-,解得:m 1=2,m 2=﹣1∵22(2)40m x x m -+-=是一元二次方程,∴m 20-≠ ,∴m 2≠,∴1m =-,故选:B . 【点睛】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0.29.(2020·江苏南京市·中考真题)关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根 【答案】C【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ-+=,整理得:2230x x ρ+--=,∴()2221434130ρρ∆=---=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x ,∵121x x +=-,2123x x p =--∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=-,12c x x a= 30.(2020·山东泰安市·中考真题)将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21 B .4-,11C .4,21D .8-,69【答案】A【分析】根据配方法步骤解题即可.【详解】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+, 即()2421x -=,∴a =-4,b =21.故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.31.(2020·贵州铜仁市·中考真题)已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2x ﹣6x +k+2=0的两个根,则k 的值等于( ) A .7 B .7或6 C .6或﹣7 D .6【答案】B【分析】当m =4或n =4时,即x =4,代入方程即可得到结论,当m =n 时,即△=(﹣6)2﹣4×(k +2)=0,解方程即可得到结论.【详解】当m=4或n=4时,即x=4,∴方程为42﹣6×4+k+2=0,解得:k=6; 当m=n 时,2x ﹣6x +k+2=0 ∵1a =,6b =-,2c k =+, ∴()()22464120b ac k =-=--⨯⨯+=⊿,解得:7k =, 综上所述,k 的值等于6或7,故选:B .【点睛】本题主要考查了一元二次方程的根、根的判别式以及等腰三角形的性质,由等腰三角形的性质得出方程有一个实数根为2或方程有两个相等的实数根是解题的关键.32.(2019·河北中考真题)小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是x=-1D .有两个相等的实数根 【答案】A【分析】直接把已知数据代入进而得出c 的值,再解方程求出答案.【详解】解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1, ∴(-1)2-4+c =0,解得:c =3,∵所抄的c 比原方程的c 值小2.故原方程中c =5,即方程为:x 2+4x +5=0 则∆=b 2-4ac =16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选:A .【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c 的值是解题关键. 33.(2019·广西玉林市·中考真题)若一元二次方程220x x --=的两根为1x ,2x ,则()()12111x x x ++-的值是( )A .4B .2C .1D .﹣2【答案】A【分析】根据一元二次方程根与系数的关系即可求解. 【详解】根据题意得121x x =+,122x x =-,所以()()12111x x x ++-=12121x x x x ++-11(2)4=+--=.故选A . 【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.34.(2019·广西贵港市·中考真题)若α,β是关于x 的一元二次方程2x 2x m 0-+=的两实根,且1123αβ+=-,则m 等于( ) A .2- B .3-C .2D .3【答案】B【分析】利用一元二次方程根与系数的关系得到2αβ+=,m ,再化简11αβαβαβ++=,代入即可求解;【详解】解:α,β是关于x 的一元二次方程2x 2x m 0-+=的两实根,∴2αβ+=,m ,∵11223m αβαβαβ++===-,∴3m =-;故选B. 【点睛】本题考查一元二次方程;熟练掌握一元二次方程根与系数的关系是解题的关键.35.(2019·湖北鄂州市·中考真题)关于x 的一元二次方程240x x m -+=的两实数根分别为1x 、2x ,且1235x x +=,则m 的值为( )A .74B .75C .76D .0【答案】A【分析】根据一元二次方程根与系数的关系得到x 1+x 2=4,代入代数式计算即可. 【详解】解:∵x 1+x 2=4,∴x 1+3x 2=x 1+x 2+2x 2=4+2x 2=5,∴x 2=12, 把x 2=12代入x 2-4x+m=0得:(12)2-4×12+m=0,解得:m=74,故选A . 【点睛】本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=ca是解题的关键. 36.(2019·内蒙古巴彦淖尔市·中考真题)已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是( ) A .34 B .30C .30或34D .30或36【答案】A【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b 时;结合韦达定理即可求解; 【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.37.(2019·湖北武汉市·中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( ) A .14B .13C .12D .23【答案】C【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可. 【详解】由题意,△=42-4ac≥0,∴ac≤4, 画树状图如下:a 、c 的积共有12种等可能的结果,其中积不大于4的有6种结果数, 所以a 、c 的积不大于4(也就是一元二次方程有实数根)的概率为61=122,故选C. 【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键.38.(2019·广东中考真题)已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠ B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0, 所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意;21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120cx x a⋅==,故D 选项错误,符合题意,故选D. 【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键. 二、填空题39.(2021·湖北随州市·中考真题)已知关于x 的方程()2440x k x k -++=(0k ≠)的两实数根为1x ,2x ,若12223x x +=,则k =______. 【答案】45【分析】根据一元二次方程根与系数的关系可求出12x x +以及12x x ,然后根据条件变形代入求解即可. 【详解】由题意,124x x k +=+,124x x k =,∵12223x x +=,∴()121223x x x x +=,即:()2434k k +=⨯,解得:45k =,故答案为:45. 【点睛】本题考查一元二次方程根与系数的关系,熟记基本公式,并灵活进行变形是解题关键. 40.(2021·湖北十堰市·中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=, 整理可得220x x --=,解得11x =-,22x =,故答案为:1-或2.【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.41.(2021·湖南中考真题)关于x 的一元二次方程250x x m -+=有两个相等的实数根,则m =________. 【答案】254【分析】根据一元二次方程根与判别式的关系,列出关于m 的方程,即可求解. 【详解】解:∵关于x 的一元二次方程250x x m -+=有两个相等的实数根, ∴()2540m ∆=--=,解得:254m =,故答案是:254. 【点睛】本题主要考查一元二次方程根与判别式的关系,掌握一元二次方程有两个实数根,则0∆=,是解题的关键.42.(2021·湖北黄冈市·中考真题)若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的值可以是____.(写出一个即可) 【答案】0(答案不唯一)【分析】根据一元二次方程根的判别式求出m 的取值范围,由此即可得出答案.【详解】解:由题意得:此一元二次方程根的判别式2(2)40m ∆=-->,解得1m <,则m 的值可以是0,故答案为:0(答案不唯一).【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 43.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______. 【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“△=0”,即2640k -=;∴9k =;故答案为:9.【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:△>0时,该方程有两个不相等的实数根;△=0时,该方程有两个相等的实数根;△<0时,该方程无实数根. 44.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 【答案】98c >【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯<0,然后求出c 的取值范围. 【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∴()2243420b ac c =-=--⨯<,解得98c >, ∴c 的取值范围是98c >.故答案为:98c >. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.45.(2021·湖南长沙市·中考真题)若关于x 的方程2120x kx --=的一个根为3,则k 的值为______. 【答案】1-【分析】将3x =代入方程可得一个关于k 的一元一次方程,解方程即可得.【详解】解:由题意,将3x =代入方程2120x kx --=得:233120k --=,解得1k =-,故答案为:1-. 【点睛】本题考查了一元二次方程的根、解一元一次方程,熟练掌握一元二次方程根的定义是解题关键. 46.(2021·四川成都市·中考真题)若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n ++的值是______. 【答案】-3.【分析】先根据一元二次方程的解的定义得到2210m m +-=,则221m m ,根据根与系数的关系得出2m n +=-,再将其代入整理后的代数式计算即可.【详解】解:∵m ,n 是一元二次方程2210x x +-=的两个实数根, ∴2210m m +-=,2m n +=-∴221m m ,∴242m m n ++=2222m m m n =1+2×(-2)=-3故答案为:-3.【点睛】本题主要考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解. 47.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:。

2018-2019学年鲁教版五四制九年级数学第一学期《二次函数与一元二次方程》同步练习题及答案.doc

2018-2019学年鲁教版五四制九年级数学第一学期《二次函数与一元二次方程》同步练习题及答案.doc

2.7二次函数与一元二次方程1. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的情况为.2. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为()A.0个B.1个C.2个 D.1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a-;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是( )A.1个B.2个C.3个D.4个4. 关于x 的方程25m x m x m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.5. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移个单位.6. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A.116m <-B.116m -≥且0m ≠C.116m =-D.116m >-且0m ≠ 7. 已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是h 和k 的值. 8. 已知函数22y x mx m =-+-.(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点; (2)若函数y 有最小值54-,求函数表达式. 9. 下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y(1)根据图像确定a ,b ,c 的符号,并说明理由;(2)如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=表达式.10. 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-在直角坐标系中的位置如图所示,其中一条与x 轴交于A ,B 两点.(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.11. 已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为二次函数的函数表达式.12. 如图所示,函数2(2)(5)y k x k =--+-的图像与x 轴只有一个交点,则交点的横坐标0x = .13. 已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=.(1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.14. 二次函数269y x x =-+-的图像与x 轴的交点坐标为 . 15. 二次函数25106y x x =-+的图像与x 轴有 个交点. 答案: 1.0 92-<没有实数根.2.C3.C4.一 45.4或96.B7.21()3y x h k =--+,顶点()h k ,在2y x =上,2h k ∴=,22221122()3333y x h h x hx h ∴=--+=-++.又它与x轴两交点的距离为,12x x ∴-==== 求得2h =±,4k =,即2h =,4k =或2h =-,4k =.8.(1)222()4(2)48(2)4m m m m m ∆=---=-+=-+,不论m 为何值时,都有0∆>, 此时二次函数图像与x 轴有两个不同交点. (2)2244(2)5444ac b m m a ---==-,2430m m -+=,1m ∴=或3m =, 所求函数式为21y x x =--或231y x x =-+.9.(1)抛物线开口向上,0a >;图像的对称轴在y 轴左侧,02ba-<,又0a >, 0b ∴>;图像与y 轴交点在x 轴下方,0c ∴<.0a ∴>,0b >,0c <.(2)(03)A -,,3OA =,45ABC ∠=,60ACB ∠=,3tan OAOB ABC==∠,3tan 60OAOC ==(30)B ∴-,,C .设二次函数式为(3)(y a x x =+,把(03)-,代入上式,得3a =,∴所求函数式为2(3)(1)333y x x x x =+=+-. 10.(1)抛物线不过原点,0m ≠,令2202m x m x -+=,2221()402m m m ∆=--⨯=-<,222m y x mx =-+∴与x 轴无交点,∴抛物线2234y x mx m =+-经过A ,B 两点.(2)设1(0)A x ,,2(0)B x ,,1x ,2x 是方程22304x mx m +-=的两根12x x m +=-,21234x x m =-,A 在原点左边,B 在原点右边,则1AO x =-,2OB x =.123OB OA 1-=.211123x x ∴+=,121223x x x x +=,22334m m -=-,得2m =,∴所求函数式为223y x x =+-.11.(1)22222(4)421688m m m m m ∆=--⨯⨯=-=.0m ≠,280m ∴>,∴这个抛物线与x 轴有两个不同交点.(2)设1(0)A x ,,212(0)()B x x x >,,则1x ,2x 是方程22240x mx m -+=两根, 122x x m+=,2122m x x=,21AB x x =-====,C 点纵坐标22224816442c ac b m m y m a --===-⨯, ∴△ABC 中AB 边上的高22h m m =-=.21124222ABCSAB h m m ===,2m =,2m =±, 2284y x x ∴=++或2284y x x =-+.12.13.(1)由122(1)x x m +=-,2127x x m =-,22222121212()24(1)2(7)10x x x x x x m m +=+-=---=,得2m =,11x ∴=-,23x =,(10)A -,,(30)B ,.(2)抛物线过A ,B 两点,其对称轴为1x =,顶点纵坐标为4-,∴抛物线为2(1)4y a x =--.把1x =-,0y =代入得1a =,∴抛物线函数式为223y x x =--,其中(03)C -,.(3)存在着P 点.(10)A -,,(03)C -,,(14)M -,,(30)B ,,∴9ACMB S =四形,18ABPS=,即1182P y AB =.4AB =,9P y ∴=.把9y =代入抛物线方程得11x =,21x =(1P ∴-或(1P +. 14.(3,0) 15.0。

山东省德州市2019年中考数学一轮复习第二章方程与不等式第7讲一元二次方程及其应用过预测练习

山东省德州市2019年中考数学一轮复习第二章方程与不等式第7讲一元二次方程及其应用过预测练习

一元二次方程及其应用考向一元二次方程的解1.[xx·泰安]一元二次方程(x +1)(x -3)=2x -5根的情况是(D )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于32.[xx·安顺]一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是(A )A .12B .9C .13D .12或9 考向一元二次方程根的判别式3.[xx·菏泽]关于x 的一元二次方程(k +1)x 2-2x +1=0有两个实数根,则k 的取值范围是(D )A .k ≥0B .k ≤0C .k <0且k ≠-1D .k ≤0且k ≠-14.[xx·安徽]若关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,则实数a 的值为(A )A .-1B .1C .-2或2D .-3或1 考向一元二次方程根与系数的关系5.[xx·潍坊]已知关于x 的一元二次方程mx 2-(m +2)x +m 4=0有两个不相等的实数根x 1,x 2.若1x1+1x2=4m ,则m 的值是(A )A .2B .-1C .2或-1D .不存在6.[xx·眉山]若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是(C )A.427B.-427C.-5827D.5827考向一元二次方程的应用7.[2019·德州模拟]如图,一块长和宽分别为30cm和20cm的矩形铁皮,要在它的四角截去四个边长相等的小正方形,折成一个无盖的长方体盒子,使它的侧面积为272cm2,则截去的正方形的边长是(C)A.4cm B.8.5cm C.4cm或8.5cm D.5cm或7.5cm8.[2019·沧州模拟]随着经济收入的不断提高以及汽车行业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止xx年底全市汽车拥有量为14.4万辆.已知xx年底全市汽车拥有量为10万辆.(1)从xx年底至xx年底,我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2020年底汽车拥有量不超过15.464万辆,据估计从xx 年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)解:(1)设我市汽车拥有量的年平均增长率为x.由题意,得10(1+x)2=14.4,解得x=0.2=20%或x=-2.2(不合题意,舍去).答:从xx年底至xx年底,我市汽车拥有量的年平均增长率为20%.(2)设每年新增汽车数量为y万辆.由题意,得2019年底汽车数量为(14.4×90%+y)万辆,2020年底汽车数量为[(14.4×90%+y)×90%+y]万辆.∴(14.4×90%+y)×90%+y≤15.464,解得y≤2.答:每年新增汽车数量最多不超过2万辆.欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练7一元二次方程
一、选择题
1.下列方程中是一元二次方程的是( )
A .2x +1=0
B .y 2+x =1
C .x 2+1=0
D .
2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x += D .()229x -=
3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )
A .14
B .12
C .12或14
D .以上都不对 4.方程2x =x 的解是 ( )A .x=1 B .x=0
C . x 1=1 x 2=0
D . x 1=﹣1 x 2=0
5.若关于x 的一元二次方程2
210kx x --=有两个不相等的实数根,则k 的取值范围是( )
A .1k >-
B . 1k >-且0k ≠
C .1k <
D .1k <且0k ≠
6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,
那么x 满足的方程是( )
A .213014000x x +-=
B .2653500x x +-=
C .213014000x x --=
D .2653500x x --= 二、填空题
7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是
______.
8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .
9.两圆的圆心距为3,两圆的半径分别是方程0342
=+-x x 的两个根,则两圆的位置关系是 . 11=+x
x 第6题图
10.若方程022
=+-cx x 有两个相等的实数根,则c= .
11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m .
三、解方程: 12.(1)
(2) (3) 13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m 2?
⑵能否使所围矩形场地的面积为810m 2,为什么?
14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--
根.
15.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
16.某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.
(1) 求A 、B 两种纪念品的进价分别为多少?
(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少? 2410x x +-=第21题图
0132=--x x )1(332+=+x x。

相关文档
最新文档