顺义区2012届初三第一次统一练习答案
顺义区2012—2013学年度第一学期期末九年级教学检测

顺义区2012—2013学年度第一学期期末九年级教学检测九年级化学答案25分)二、填空题(共5道题,共30分)26.(5分)每空1分,其他合理答案得分(1) ①D ②+5。
(2)取适量的水样于试管中,向其中加入肥皂水,若有悬浮物出现,说明是硬水 BD(3)C27.(6分)每空1分(1)水分子 (2)①40.08 ② 失 ③BCD(3)①CD ②C 2H 4 + 3O 2 ===== 2CO 2 + 2H 2O28.(6分)(3)2分,部分答对得1分,全对得2分,有错不得分。
其他每空1分。
其他合理答案得分(1)天然气 酸雨(2)可燃物的温度达到或超过着火点才能燃烧。
①④(3)①②④29.(6分)最后一空2分,部分答对得1分,其他每空1分。
(1)水 (2)C (3)①B 17.3% ②有大量水蒸气冒出,①中固体减少,②中有固体析出30.(7分)最后1空2分,部分答对得1分,全对得2分。
其他每空1分。
(1)做电极 (2)氧气是否充足 (3)CaO + H 2O ==== Ca (OH )2(4)CO 2+Ca (OH )2=CaCO 3↓+H 2O ;(5)⑥⑦⑧ 紫色石蕊溶液沿导管上升;导管口有气泡冒出,紫色石蕊溶液变红;导管口有气泡冒出,紫色石蕊溶液无变化;三、实验题(共3道小题,共19分)31.(6分)每空1分(1)试管 (2)A 2KMnO 4 ===== K 2MnO 4 + MnO 2 + O 2↑ 排水法和向上排空气法(3)烧杯②中溶液变红而烧杯①中溶液不变红 (4)3Fe + 2O 2 ==== Fe 3O 4点燃 点燃32.(5分)其他合理答案得分。
(3)2分(1)澄清石灰水变浑浊(2)CO 2 + H 2O === H 2CO 3 将1处的滤纸条润湿,2、3分别用干燥的滤纸条。
关闭b 、c ,打开a 、d ,观察到2、3不变色,而1变成红色,证明二氧化碳与水发生反应生成碳酸。
(3)将B 、D 内蜡烛点燃,关闭d ,打开b 、c,观察到B 中蜡烛熄灭,而D 中蜡烛不熄灭,证明二氧化碳的密度比空气大33.(8分)最后1空2分,其他每空1分【查阅资料】Cu 2O【设计实验】①检验是否有二氧化碳生成 ②2NaOH + CO 2 = Na 2CO 3 + H 2O③D 中出现黑色沉淀④检验碳与氧化铜反应生成的红色物质是不是铜;碳与氧化铜反应生成的红色物质不全是铜【反思与评价】生成的一氧化碳有毒,该装置没有尾气处理装置,会污染环境。
顺义区初三一模物理试卷答案

顺义区初三第一次统一练习化学试卷考生须知1.本试卷共8页;共四道大题;35道小题;满分80分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上;在试卷上作答无效。
4.在答题卡上;选择题用2B铅笔作答;其他试题用黑色字迹签字笔作答。
5.本试卷化学方程式中的“=”和“→”含义相同可能用到的相对原子质量K:39 O:16 C:12 N:14 H:1 Na:23 I:127 Al:27 Cl:35.5 Ca:40一、选择题(每小题只有一个选项符合题意。
共25道小题;每小题1分;共25分)1.日常生活中发生的下列变化;属于化学变化的是A. 蜡烛燃烧B. 纸张粉碎C. 冰雪融化D. 酒精挥发2.生活中常见的下列物质中;属于纯净物的是A.清澈的矿泉水B.医用生理盐水C.澄清的石灰水D.透明的冰水3.生活中的下列物质放入水中;能形成溶液的是A.食盐B.面粉C.植物油D.冰块4.下列各种食物中;富含蛋白质的是A.香蕉 B. 平鱼 C.白菜 D.玉米5.能保持氧气化学性质的粒子是A.H2O2B.O C.O2D.O2-6.下列灭火方法中;不正确...的是A.A.炒菜时油锅着火;立即盖上锅盖 B. 酒精灯不慎打翻起火;用湿抹布扑灭C.图书档案着火;用液态二氧化碳扑灭 D. 电器因短路起火时;用水浇灭7.“21金维他”中含有铁、钾、钙等多种成分;这里的铁、钾、钙是指A. 单质B. 元素C. 分子D. 原子8.空气是一种重要的自然资源。
下列气体不能..从空气中得到的是A.氧气B.氮气C.氢气D.稀有气体9.摄影店废弃的定影液含有大量的银。
一种回收方法的反应原理是:Fe+2AgNO3== 2Ag+Fe(NO3)2。
该反应属于A.化合反应来源学B.分解反应C.置换反应D.复分解反应科网10.压瘪的乒乓球放入热水中重新鼓起;是因为球内的气体分子A.体积增大B.间隔增大C.质量增大D.个数增多11.下列物质在氧气中燃烧;火星四射;生成黑色固体的是A.铁丝 B.红磷 C.镁条 D.木炭12.克山病是一种原发性心肌病。
顺义区2012届初三第一次统一练习答案往年数学知识点

顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x-+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AMCM ==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE =.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.步行 骑自行车 坐公共汽车 其他20 45 30 5∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
顺义区级第一次综合练习语文考试卷及答案.doc

顺义区级第一次综合练习语文考试卷及答案姓名:_____________ 年级:____________ 学号:______________一、选择题(共6题) 1.下列词语中加点字的读音完全正确的一项是A .联袂(mèi) 试验(shí) 提防(dī) 称心如意(chèn)B .活泼(bō) 狭隘(ài) 参差(cī) 茅塞顿开(sè)C .游弋(yì) 惬意(qiè) 静谧(mì) 鲜为人知(xiǎn)D .鸟瞰(kàn) 修葺(qì) 模样(mó) 自给自足(jǐ)【答案】C难度:容易 知识点:字音2.对下列各组词语中两个加点的字解释有误的一项是A .负载载歌载舞解说:两个“载”字意思不同,负载的“载”是 “装载”的意思。
载歌载舞的“载”是“又;且”的意思。
B .期盼不期而遇解说:两个“期”字意思相同,都是“ 期望”的意思。
C .布置星罗棋布解说:两个“布”字意思不同,布置的“布”是“安排;陈列 ”的意思,星罗棋布的“布”是“分布”的意思。
D .日益相得益彰解说:两个“ 益”字意思相同,都是“更加”的意思。
【答案】B难度:中等 知识点:字义3.下列句中横线处填写词语恰当的一项是① 1月18日下午,中国国家男子足球队结束亚洲杯征程抵达北京首都机场T3航站楼。
连续多日高强度比赛及并不尽如人意的战绩让他们略显疲惫。
“看成败人生豪迈,大不了从头再来”,愿国足队员掸去身上的尘土,卸去心中的包袱, ,在未来的赛场上踢出中国的风采。
②俗语说“ ”。
个人的力量是单薄的,需要别人的帮助,来成就大事。
对同学们而言,无论是在竞技场上还是日常生活中,个人能力的发挥空间是有限的,只有学会合作,体验合作,善于在团队中发挥集体智慧的巨大作用,才是通往成功的最佳捷径。
渴望成功的你,请谨记这个道理。
A .①句填“百尺竿头更进一步” ②句填“独木不成林”B .①句填“百尺竿头更进一步” ②句填“众人拾柴火焰高”C.①句填“再接再厉”②句填“众人拾柴火焰高”D.①句填“再接再厉”②句填“独木不成林”【答案】D难度:中等知识点:成语(熟语)4.结合语境,将下列句子填入横线处,顺序最恰当的一项是我十分钦佩杨绛先生关于读书的观点:读书好比串门儿——隐身的串门儿。
2012北京各区县初三数学一模共10套

GEB A顺义区2012届初三第一次统一练习数学试卷考生须知 1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元B .11410⨯元C .114010⨯元D . 12410⨯元 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a +=B .2242a a a-=C .22422a a a=D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是 A .520,2 000,2 000 B .2 600, 800,800 C .1 240,2 000,800 D .1 240,800,800职务 经理 副经理 职员 人数 1 2 12 月工资(元)5 0002 000800EDBCA 6.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90F E G ∠=︒,55E F D ∠=︒,则A E G ∠的度数是A .25°B .35°C .45°D .55 °7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12C .34D .18.如图,在Rt △ABC 中,90A C B ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30C D E ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.若2(2)0m n m ++-=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4C D =米,测角仪底部中心位置D 到旗杆根部B 的距离10B D =米,则旗杆AB 的高是 米.12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心OOA B ClD αDCBA所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分) 13.计算:()1272cos 30(3)3--︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩15.已知:如图,在A B C △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m . (1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若O B P △的面积为5,求点P的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?ED CBAF EDA四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O上,且∠A=30°,∠BDC =12A B D ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题: (1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图到校方式扇形统计图22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F .请按图示数据填空:四边形DFCE 的面积S = ,步行 骑自行车 坐公共汽车 其他20FE DCO BA△DBF 的面积1S = , △ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S = (用含S 、1S 的代数式表示).拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG 的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A(-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式; (3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'O A P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在AC B ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进图1D EBCA行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DBCAABC (D )图3图2顺义区2012届初三第一次统一练习数学试卷考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元 B .11410⨯元 C .114010⨯元 D . 12410⨯元GEFDCB AEDBCA 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a +=B .2242a a a -=C .22422a a a =D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是 A .520,2 000,2 000 B .2 600, 800,800 C .1 240,2 000,800 D .1 240,800,8006.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90F E G ∠=︒,55E F D ∠=︒,则A E G ∠的度数是A .25°B .35°C .45°D .55 °7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12C . 34D .18.如图,在Rt △ABC 中,90A C B ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30C D E ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是职务 经理 副经理 职员 人数 1 2 12 月工资(元)5 0002 000800二、填空题(本题共16分,每小题4分)9.若2(2)0m n m ++-=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4C D =米,测角仪底部中心位置D 到旗杆根部B 的距离10B D =米,则旗杆AB 的高是 米.12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心O 所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分) 13.计算:()1272cos 30(3)3--︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩15.已知:如图,在A B C △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=O A B ClDED CBAαDC BA(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m . (1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若O B P △的面积为5,求点P 的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,E 是对角线AC 的中点,EF⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O上,且∠A=30°,∠BDC =12A B D ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题: (1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图 到校方式扇形统计图步行 骑自行车 坐公共汽车 其他20F EDCBAFE DCO BA22.问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积S=,△DBF的面积S=,1△ADE的面积S=.2探究发现(2)在(1)中,若BF a=,DG与BC间的=,FC b距离为h.直接写出S=(用含S、1S的代数式表2示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利.用.(2.)中的结论....求□DEFG的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程0+-kkxxk.++23)1(2=(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10y a k y a+-++=的整数根(a为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A(-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'O A P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在AC B ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DBCAABC (D )图3图2顺义区2012届初三第一次统一练习图1D EBCA数学学科参考答案及评分细则一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案ABDCDBCC二、填空题(本题共16分,每小题4分,)9.4; 10.25()x x y -; 11.11.4; 12.33π, (432)π+,2313n π+.三、解答题(本题共30分,每小题5分) 13.解:()1272cos 30(3)3--︒+--31332123⎛⎫=-⨯+-- ⎪⎝⎭ ……………………………………………… 4分 133313=-++4233=+ …………………………………………………………………… 5分14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD C E =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分∴AD=AE.………………………………………………………………4分∴∠ADE =∠AED.………………………………………………………5分16.解:6931xxx x-⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭2693x x xx x-+-=÷……………………………………………………2分2(3)3x xx x-=-3x=-………………………………………………………………………4分当2012x=时,原式=201232009-=.……………………………………5分17.解:(1)∵点(4,)A m在反比例函数4yx=(0x>)的图象上,∴414m==.……………………………………………………………1分∴(4,1)A.将(4,1)A代入一次函数y x b=-+中,得5b=.∴一次函数的解析式为5y x=-+.……………………………………2分(2)由题意,得(0,5)B,∴5O B=.设P点的横坐标为Px.∵O B P△的面积为5,∴1552px⨯=.……………………………………………………………3分∴2Px=±.∴点P的坐标为(2,3)或(-2,7).…………………………………5分18.解:设A户型的每户窗户改造费用为x元,MF EDCBAFE DCO BA则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得 5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023C M C D D ==︒= ,cos 4cos 602D M C D D ==︒= .………………………………… 2分在Rt △ACM 中,∵∠MAC=45°, ∴23AM C M ==.∴232AD AM D M =+=+.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM . ∴132E F C M ==.在Rt △AEF 中,3AF EF ==.…………………………………… 4分 ∴232332D F AD AF =-=+-=+.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°. ∴∠BDC =1302A B D ∠=︒.∵OD=OB ,∴△ODB 是等边三角形.∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分 ∴112D E B E B D ===.在Rt △OEB 中,OB=2BE=2,223OE OB BE=-=.………… 4分∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴23C D =,2tan 3033D F O D =︒= .∴24233333C F C D D F =-=-=. ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,步行骑自行车坐公共汽车其他2045 30 5△ADE 的面积2S = 32 . …………………………………… 3分(2)2S =214SS (用含S 、1S 的代数式表示). ………… 4分(3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根,∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分(2)当方程有两个相等的实数根时,△=812k -+=0. ∴32k =. ………………………………………………………………… 4分∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q = (p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=. 不妨设8,8.a m p a m q -+=⎧⎨--=⎩ 两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为:233384y x x =--+.………………………… 2分(2)令3y =,得2333384x x --+=,得10x =,22x =-,∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分 ∵233384y x x =--+233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236A A O B ==⨯= . 设P 点的纵坐标为P y ,由'O A P △的面积=6, ∴1'62P O A y = ,即1262P y ⨯=∴6P y =, 6P y =±.………………………………………………… 6分 当6P y =时,方程2327(1)688x --+=无实根,当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE D E =.证明:取AB 的中点F ,连结EF .∵90AC B ∠=︒,30ABC ∠=︒, ∴160∠=︒,12C F A F A B ==.∴△ACF 是等边三角形.∴AC AF =. ① …… 4分 ∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ② ∴12∠=∠.∴12BAD BAD ∠+∠=∠+∠.即C A D F A E ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90A C D A F E ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE D E =. …………………………………………………… 8分2012年延庆县初中毕业试卷 数 学一、选择题:(共8道小题,每小题4分,共32分)1. -3的绝对值是A .-3B .3C .13-D .132. 截至2011年底,我国铁路营业里程达到86 000公里,跃居世界第二位.将86 000用科学记数法表示为 A .50.8610⨯B .38610⨯C .48.610⨯D .58.610⨯EAB C (D )图221FEDB C A图33.下列运算中正确的是A .a 3a 2=a 6B .(a 3)4= a 7C .a 6 ÷ a 3 = a 2D .a 5 + a 5 =2 a 54. 一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是 A .43 B .41 C .32 D .315. 若右图是某几何体的三视图,则这个几何体是A .直棱柱B .球C .圆柱D .圆锥 6.0312=++-y x ,则2()xy -的值为A .-6B . 9C .6D .-97. 如右图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为A .20°B .40°C .50°D .60°8. 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG二、填空题(共4道小题,每小题4分,共16分) 9. 若代数式3x -有意义,则实数x 的取值范围为.1 2G B DCAF E10. 分解因式:24ax a -=11.用配方法把422++=x x y 化为k h x a y ++=2)(的形式为12.将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是三、解答题(共5道小题,每小题5分,共25分) 13.(本题满分5分)计算: 01)3()21(60sin 227-++︒--π.14.(本题满分5分)化简求值:当22310x x ++=时 ,求2(2)(5)28x x x x -+++-的值.15.(本题满分5分)求不等式组⎩⎨⎧---≤-xx x x 15234)2(2<的整数解.16.(本题满分5分) 已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB=AF .17.(本题满分5分)已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm <0的解集(直接写出答案).111122663263323第1排第2排第3排第4排第5排EBCDAFAFD OEBG C四、 解答题(共2道小题,共10分)18.(本题满分5分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.19. (本题满分5分)已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切; (2)当BD=6,sinC=53时,求⊙O 的半径.五、解答题(本题满分6分)20.2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.图1ACDB图2FOAECD B图3ACDB⑴ A 组的户数是多少?本次调查样本的容量是多少? ⑵ 求出C 组的户数并补全直方图.⑶ 若该社区有500户住户,请估计捐款不少于300元的户数是多少?六、解答题(共2道小题,共9分)21. (本题满分5分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:22. (本题满分4分)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,A D ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。
2012北京所有区县初三数学一模题及答案-17区县

14.解:
= ……………………………………2分
= ……………………………………3分
∵ =0
∴ ……………………………………4分
∴原式= = ……………………………………5分
15.解:由①得 ;……………………………………………2分
由②得x< 2.………………………………………………3分
当2<t<4时,S=4t-8………………………………7分(各1分)
八、解答题(本题满分7分)
24.(1)证明:把 绕点A瞬时针旋转 得到 ,连接ED,------1分
则有 ,DC=EB
∵AD=AE, ∴ 是等腰直角三角形
∴DE= AD ------------------2分
在 中,BD+EB>DE
请你回答图2中线段AD的长.
参考小红思考问题的方法,解决下列问题:
如图3:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=30°,
则线段AD的长.
七、解答题(本题满分7分)
23.在平面直角坐标系xOy中,二次函数y1=mx2-(2m+3)x+m+3与x轴交于点A、点
B(点A在点B的左侧),与y轴交于点C(其中m>0)。
⑴A组的户数是多少?本次调查样本的容量是多少?
⑵求出C组的户数并补全直方图.
⑶若该社区有500户住户,请估计捐款不少于300元的户数是多少?
六、解答题(共2道小题,共9分)
21.(本题满分5分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与小红遇到这样一个问题,如图1:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=45°,求线段AD的长.
2012北京顺义初三一模语文(word解析)

顺义区2012届初三年级第一次统一练习第Ⅰ卷(共70分)一、选择。
下面各题均有四个选项,其中只有一个..符合题意,选出答案后在答题卡上用铅笔把对应题目的选项字母涂黑涂满。
(共12分。
每小题2分)1.下列词语中加点字的读音完全正确的一项是A.应和.(hè)绮.丽(qǐ)称.职(chènɡ)刚正不阿.(ē)B.活泼.(bō)广袤.(mào)惬.意(qiè)扣人心弦.(xuán)C.联袂.(mèi)踱.步(duó)恣.意(zì)茅塞.顿开(sè)D.机械.(jiè)巢穴.(xuè)蓓蕾.(léi)载.歌载舞(zài) 2.对下列各组词语中两个加点字的解说有误的一项是A.求索.——萧索.解说:两个“索”字意思不同,“求索”的“索”是“寻找“的意思;“萧索”的“索”是“寂寞、冷落”的意思。
B.观.望——奇观.解说:两个“观”字意思相同,都是“看”的意思。
C.依然如故.——温故.知新解说:两个“故”字意思相同,都是“旧的、从前的”意思。
D.息息..相关——自强不息.解说:两个“息”字意思不同,“息息相关”的“息”是“呼吸时进出的气,“自强不息”的“息”是“停止”的意思。
3.下列句中加点的词语使用有误的一项是A.大运会开幕式的设计都很完美,尤其是“春天的故事”和最后的点火环节,更是美轮美奂,令人叹为观止....。
B.上一次的金融风暴席卷全球,各行业经济损失严重,这其中以银行业首当其冲....。
C.殊不知,磨刀不误砍柴工.......,写作前先行设计好写作提纲,可以使写作事半功倍。
D.俗话说“吃一堑长一智......”,只有铭记历史,中华民族才能自我认知,自我奋斗,自我保护。
4.结合语境,填入横线处最恰当的一项是()夏天,雷雨到来之前,在天空先会看到积云。
积云如果迅速地向上凸起,形成高大的云山,群峰争奇,耸入天顶,就变成了积雨云。
北京市顺义区初三第一次统一练习 化学试卷答案

北京市顺义区2012年初三第一次统一练习化学试卷答案一、选择题(每小题只有一个选项符合题意。
共25道小题,每小题1分,共25分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 B A C B D B C B C A D B C 题号 14 15 16 17 18 19 20 21 22 23 24 25 答案ADCABCCDBCDD二、填空题(共5道题,共30分) 26.(6分)每空1分(1)吸附性 (2)火碱(烧碱、苛性钠)(3)+6 (4)CaO + H 2O → Ca(OH)2 ,化合反应 (5)2CaO 2 + 2H 2O → 2Ca(OH)2 + O 2↑ 题号 (1) (2) (3) (4) (5) 计分方式 0,10,10,10,1,20,127.(6分)每空1分(1)CH 4 +2O 2−−→−点燃CO 2 +2H 2O ;石油 (2)C(3)①7:16 ;②ABC ;③44:7 题号 27(1) 27(2) 27(3) 计分方式 0,1,20,10,1,2,328.(7分)(3)②2分,对1个得1分,全对得2分,有错不得分。
其他每空1分 (1)糖、无机盐(2)2H 2O −−−→−通直流电2H 2↑+O 2↑;Cl 2 ;紫色石蕊变成蓝色 题号 28(1) 28(2) 28(3)① 28(3)② 计分方式 0,10,1,2,30,10,1,229.(7分)(4)②2分,答对2项得1分,全对得2分,有错不得分。
其他每空1分。
(1)BC(2)与氧气、水同时接触;(铝表面能形成致密的氧化膜)抗腐蚀(3)Cu 2(OH )2CO 3−→−∆2CuO+H 2O+CO 2↑题号 29(1) 29(2) 29(3) 29(4) 计分方式 0,10,1,20,10,1,2,330.(4分)每空1分(其他合理答案得分) (1)灭火(2)固体逐渐减少,溶液由无色变为黄色 (3)Na 2CO 3+Ca(OH)2=CaCO 3↓+2NaOH 题号 30(1) 30(2) 30(3) 30(4) 计分方式 0,10,10,10,1三、实验题(共3道小题,共19分) 31.(7分)每空1分 (1)试管(2)2KMnO 4−→−∆K 2MnO 4+MnO 2+O 2↑;催化作用 (3)蜡烛自下至上依次熄灭;二氧化碳密度比空气大,不燃烧,一般不支持燃烧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 123, 2)π,3π.三、解答题(本题共30分,每小题5分) 13()12cos 303-︒+-- 12123⎛⎫=⨯+-- ⎪⎝⎭……………………………………………… 4分 113=+43= …………………………………………………………………… 5分14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD C E =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931xxx x-⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭2693x x xx x-+-=÷……………………………………………………2分2(3)3x xx x-=-3x=-………………………………………………………………………4分当2012x=时,原式=201232009-=.……………………………………5分17.解:(1)∵点(4,)A m在反比例函数4yx=(0x>)的图象上,∴414m==.……………………………………………………………1分∴(4,1)A.将(4,1)A代入一次函数y x b=-+中,得5b=.∴一次函数的解析式为5y x=-+.……………………………………2分(2)由题意,得(0,5)B,∴5OB=.设P点的横坐标为Px.∵OBP△的面积为5,∴1552px⨯=.……………………………………………………………3分∴2Px=±.∴点P的坐标为(2,3)或(-2,7).…………………………………5分18.解:设A户型的每户窗户改造费用为x元,则B户型的每户窗户改造费用为(500)x-元.………………………………1分根据题意,列方程得5400004800005x x=-.解得4500x=.经检验,4500x=是原方程的解,且符合题意.……………………………4分∴5004000x-=.答:A户型的每户窗户改造费用为4500元,B户型的每户窗户改造费用为4000元.……………………………………5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 60CM CD D ==︒= ,cos 4cos 602DM CD D ==︒= .………………………………… 2分在Rt △ACM 中,∵∠MAC=45°,∴AM CM ==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12E F C M ==在Rt △AEF中,AF EF == 4分∴22DF AD AF =-=+-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302A B D ∠=︒.∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112D E BE BD ===.在Rt △OEB 中,OB=2BE=2,OE ==.………… 4分∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°,∴CD =,tan 30D F O D =︒=∴C F C D D F =-==……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S =214SS (用含S 、1S 的代数式表示). ………… 4分(3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分(2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q = (p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2. 当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分(2)令3y =,得2333384x x --+=,得10x =,22x =-,∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分 ∵233384y x x =--+233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯= .设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P O A y = ,即1262P y ⨯=∴6P y =, 6P y =±.………………………………………………… 6分 当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:B E D E =.证明:取AB 的中点F ,连结EF .∵90AC B ∠=︒,30A B C ∠=︒,∴160∠=︒,12C F AF AB ==.∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, A D A E =. ②∴12∠=∠.∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴B E D E =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。