2.2区间
2.2《区间》ppt课件(1)

左开右闭区间 左闭右开区间
(a,b] [a,b)
{x 丨 x>a}
无限区间
(a,+∞)
{x 丨 x≥a}
无限区间
[a,+∞)
{x 丨 x<a}
无限区间(-∞,a){x 丨 x≤a}无限区间
(-∞,a]
R
无限区间
(-∞,+∞)
数轴表示
备注
不包含线段的两个端点 包含线段的两个端点
包含右端点,不包含左端点 包含左端点,不包含右端点
新知应用 巩固知识典型例题
解:两个集合的数轴表示如下图所示,
新知应用
运用知识强化练习
P35 练习部分
新知学习 动脑思考明确新知
新知学习 动脑思考明确新知
思考?
新知学习
理论升华整体建构
定义
名称
符号
{x 丨 a<x<b}
开区间
(a,b)
{x 丨 a≤x≤b}
闭区间
[a,b]
{x 丨 a<x≤b} {x 丨 a≤x<b}
问题解决:
数轴:位于200与300之间的一段不包括端点 的线段;
。。
-200 -100 O 100 200 300 400
思考?
还有其他简便方法吗?
新知学习
动脑思考探索新知
概念:一般地,由数轴上两点间的一切实数 所组成的集合叫做区间.其中,这两个点叫做区 间端点。
新知学习
引入问题中,新时速旅客列车的运行速度值( 单位:公里/小时)区间为(200,350) 因此,比较 两个实数的大小,只需要考察它们的差即可。
不包含左端点的射线 包含左端点的射线 不包含右端点的射线 包含右端点的射线
整个数轴
2.2《区间》ppt课件(3)

2、区间的表示方法
2、区间的表示方法
定义
{x|x>a} {x|x≥a} {x|x<a} {x|x≤a}
R
名称 无限区间 无限区间 无限区间 无限区间 无限区间
符号
(a,+∞) [a,+∞) (-∞,a) (-∞,a] (-∞,+∞)
数轴表示 a
a
a a
说明:“∞”读作“无穷大”,只是一个符号,不 是一个数.
3、区间的分类
• 开区间 • 闭区间 • 有限区间 • 无限区间
例题:
例1、已知集合A=[0,4],集合B=(-2,3), 求A∩B和A∪B.
例2、用区间表示下列不等式(组)的解集 (1)5x+2≤ 3x-8 (2) 4(x+2)≥ 1-x
2.已知M=[-1,2],B=[-1,2),A={(x,y)|x∈Z∩M, y∈N∩B},试写出集合A中的所有点的坐标.
§2.2 区 间
1、理解区间的概念 2、掌握区间的表示方法 3、理解“∞”的概念 4、会进行不等式和区间的转换
【探究活动】:
• 车票与身高的关系问题 • 电价与时间的关系问题 • 农作物的生长温度问题
共同点——“研究的是一定范围内连续的实数”
一、区间
1、定义:一定范围内的所有实数构成的集合 叫区间.这两个实数叫做区间的端点.
(3)xx
2 3
0 0
(4)
x 2 0 x 5 0
例3、用描述法表示下列集合 (1)(3,7) (2)[-2,1) (3)(-∞,3] (4)[-1,5]
问题解决:已知集合M=[0,a],N=[0,15],如 果M N,求实数a所在的区间.
《2.2区间》作业设计方案-中职数学高教版21基础模块上册

《区间》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《区间》第一课时的学习,使学生能够:1. 理解区间的概念,掌握区间的表示方法;2. 能够根据区间的大小关系进行简单计算和比较;3. 培养学生在实际问题中运用区间知识的意识和能力。
二、作业内容本课时的作业内容主要包括以下几个方面:1. 基础知识巩固:要求学生复习区间的定义、表示方法及分类,并完成相关练习题,加深对基础知识的理解。
2. 区间大小比较:设计一系列题目,让学生根据区间的定义比较两个区间的大小关系,掌握基本的比较方法。
3. 实际应用案例:选取生活中的实例,如温度变化、产品价格范围等,引导学生运用区间知识进行描述和分析。
4. 开放性问题探讨:设置与区间相关的开放性问题,鼓励学生进行思考和讨论,培养其创新思维和解决问题的能力。
三、作业要求为确保学生能够高效、准确地完成作业,特提出以下要求:1. 认真审题:仔细阅读题目,明确题目要求,避免因理解错误导致答案偏离方向。
2. 独立思考:在完成作业过程中,应独立思考,尽量自己解决问题,培养自主学习的能力。
3. 规范答题:答案应条理清晰,步骤完整,规范书写,符合数学学科的答题要求。
4. 及时反馈:遇到问题应及时向老师或同学请教,不得拖延,以保证学习效率。
四、作业评价本作业的评价将从以下几个方面进行:1. 准确性:答案的正确性是评价的重要依据,要求学生答案准确无误。
2. 创新性:鼓励学生在解决问题时提出新的思路和方法,展现创新思维。
3. 规范性:答案的书写应规范,符合数学学科的答题要求。
4. 完成度:要求学生按时完成作业,保证学习进度。
五、作业反馈作业完成后,教师将根据学生的作业情况进行反馈:1. 对表现优秀的学生进行表扬和鼓励,激发其学习积极性。
2. 对存在问题的学生进行个别辅导和指导,帮助他们解决学习中的困难。
3. 根据学生的普遍问题,进行针对性的课堂讲解和补充,以提高整体学习效果。
4. 将学生的优秀作业进行展示和分享,促进学生之间的交流和学习。
《数学 基础模块》上册 2.2.区间的概念

2.2区间的概念教学目标知识目标:理解区间的表示法.能力目标:能够应用区间表示数集.情感目标:感受数形结合的巧妙,提升观察能力与数学思维能力. 教学重点区间表示数集.教学难点区间表示数集.教学备品教学课件.课时安排1课时.教学过程由数轴上两点间的一切实数所组成的集合叫做区间.其中,这两个点叫做区间端点.1.开区间:满足不等式a x b <<的所有实数的集合,叫做开区间,记作(a ,b ).在数轴上,可以表示为:开区间也可以表示为{}x a x b <<.2.闭区间:满足不等式a x b ≤≤的所有实数的集合,叫做开区间,记作[]a ,b .在数轴上,可以表示为:闭区间也可以表示为{}x a x b ≤≤.3.半开半闭区间:满足不等式a x b a x b ≤<<≤或的所有实数的集合,叫做半开半闭区间,记作[)(]a ,b 或a ,b .在数轴上,可以分别表示为:半开半闭区间也可以表示为{}{},x a x b x a x b ≤<<≤.4.实数集R :()-+∞∞,,∞读作无穷大.5.半无界区间: 满足不等式,,x a x a x a x a ≥≤><和的所有实数的集合,叫做半无界区间,分别记作[)(],,∞∞,+-,a a()(),∞-∞,+a ,a .在数轴上,可以分别表示为:半无界区间也可以表示为:{}{}{}{},,,.x x a x x a x x a x x a ≥≤><例题讲解{}{}{}{}1.30313131x x x xx x x x-<≤-<<-≤≤-≤<例用区间表示下列集合:(1);(2)(3); (4)(]()[][)-3,0-3,-3,13,1-解(1),是半开半闭区间;(2)1,是开区间;(3),是闭区间;(4),是半开半闭区间.{}{}{}{}0;0;;.x x x xx x x xππ>≤≥<-例2把下列集合用区间表示出来:(1)(2)(3)(4)()(][)()0+-0+-ππ∞∞∞∞解(1),;(2),;(3),;(4),.{}{}=14,=05,.x xx xA B-<<≤≤例3 设R为全集,集合AB用区间表示并在数轴上表示出来解由图可知:{}{}()[][)140514050,4,,=-<<≤≤=-=A B x x x x强化练习教材练习P38 1,2,3及时练习,巩固新知.难点突破本节课重难点:对比各类区间表示之间的区别,掌握区间表示法的应用。
2.2区间

a
b
动手操作 理解概念
动画演示
注意: 括号内的数字总是左小右大。
巩固知识 典型例题
例1.用区间表示下列集合
(1)x 1 x 6
[-1,6]
( 2)x 2 x 1
[-2,1)
( 3)x 1 x 2
( 1, 2)
( 4)x 0 x 8
( 0, 8]
- 1, C、 5
3, D、 - 3
巩固知识 典型例题
例3 :已知集合A=(-1,4),集合B=[0,5],求 A∪B,A∩B
解:
A
A∪ B ∩B
B
-1
0
1
2
3
4
5
x
∴A∪B= (-1,5] A∩B= [0,4)
试一试:教材第27页练习2.2.1
动脑思考 探索新知 在实数集R中,有没有 最大的数和最小的数?
巩固知识 典型例题
例题2:下列各式正确的是
(1) :
(1) {x|2<x<4}=(2,4) (2) {x|2 ≤ x ≤ 4}={2,4}
(3){x | x2 4 0} 2, 2
(4){1,1,2,3} 1,3
C 想一想:下列符号表示区间的是()
1, A、 3
3, B、 1
动画演示
例4. 用区间表示下列集合
(1)x x 6
(−∞, 6]
(2)x x 1
(−∞,1)
(3)x x> - 2
(-2,+∞)
3 (4) x x 4
[3 4
,+∞)
讨论:
{x|x≤-1或x≥2}用区间如何表示?
2.2 区间的概念

2.2.1有限区间ຫໍສະໝຸດ 2.2.2无限区间
;
2.2.1 有限区间
引例
实数与数轴上的点之间是一一对应的关系,如集合x | 3 x 2可以用
数轴上位于 3 与 2 之间的一条线段(不包括端点)来表示,如下图所示.
由数轴上两点之间的全部实数所组成的集合称为区间,其中这两个点称为区间端点. 不含端点的区间称为开区间,如上图中,集合x | 3 x 2表示的就是开区间,记作
实数集R能不能写成 ( ∞,∞)或[ ∞,∞] , 为什么?
注
”∞“与“ ∞”都只是符号,
意 代表了实数在正、负两个方向上的
变化趋势,切不可认为它们代表某个
很大或很小的数.
;
2.2.2 无限区间
例题解析
例8 已知集合 A [ 1,∞) ,B (3,∞) ,
求 A B ,A B .
解
将集合 A,B 在数轴上表示出来,
如下图所示,由图可知
A B (3,∞) B ,
A B [ 1,∞) A.?
例9
设全集为R,集合 A ( ∞,4) ,集合
B ( 2,6],求
(1) A, B ; (? 2)B A .
解 将集合A,B在数轴上表示出来,如下图
所示,由图可知 (1) A [ 4,∞) , B ( ∞,2] (6,∞) ; (2)B A [ 4,6] .
(1) 数集x | x a 区间 ( a,∞) ; (2) 数集x | x b 区间 ( ∞,b) ; (3) 数集x | x ≥ a 区间 [ a,∞) ; (4) 数集x | x b 区间 ( ∞,b] ; (5) 实数集R如果用区间来表示,可以记作( ∞,∞) .
以上介绍的开以上这5种区间统称为无限区间.
2.2 区间的概念

区间
数轴
x
0
归纳小结
学习了哪些内容? 重点和难点各是什么?
采用了怎样的学习方法? 你是如何进行学习的? 你的学习效果如何?
布置作业
作 业
阅读 教材章节2.2 书写 教材习题二 思考 寻找生活中区间的应用
情境引入 新时速旅客列车的运行速度值界定在200公里/小时 与350公里/小时之间。
不等式:200<v<350 集 合:{v |200<v<350}
数 轴:位于200与350之间的一段不包括端点的线段。
还有其他简便方法吗?
新知探究
区间的概念
由数轴上两点间的一切实数所组成的集合可叫做区 间。
其中,这两个点叫做区间端点。
(2) {x |-3<
x<解1}:;(1) (- 是半开半闭区间; 3,0](,(23))(-{3x,1|)-,3≤是开x区≤间1}; ;
3≤x<1(}3.) [-3,1], 是闭区间;
(4) {x |-
(4) [-3,1), 是半开半闭区间。
典型例题
例2 设R为全集,集合 A={x |-1<x<4}, B={x |
新知探究
数轴
区间表示
集合表示
a
x b
a
bx
a
x b
a
x b
(a,b) 开区间 [a,b] 闭区间
(a,b] 半开半 [a,b) 闭区间
{x|a<x<b} {x|a≤x≤b}
{x|a<x≤b} {x|a≤x<b}
其中a,b叫做区间的端点
典型例题
例1 用区间表示下列集合,并指出它们之间是什么区
间:
(1) {x |-3<x ≤0};
《2.2 区间》作业设计方案-中职数学高教版21基础模块上册

《区间》作业设计方案(第一课时)一、作业目标本次作业旨在帮助学生理解和掌握区间的概念,了解区间的表示方法,并能够在实际问题中识别和描述区间。
通过作业,期望学生能够提高数学应用意识和能力。
二、作业内容1. 基础概念题:要求学生描述几个不同的区间,如[3, 7]、(2, 5)、(5, 8)等,并解释它们的特点和意义。
2. 判断题:给出一些涉及区间的数学问题,让学生判断答案是否正确,如“(3, 5)和(5, 7)是否构成区间?”、“[3, 6]和[7, 9]是否重合?”等。
3. 综合应用题:让学生结合实际生活场景,描述一个涉及到区间的具体问题,如“某班在放学时间(17:00)排队放学,要求每个学生必须在17:30前离开学校,求这个时间段是什么区间?”等。
要求学生用数学语言描述问题,并给出解决方案。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭。
2. 准确表述:要求学生在回答问题时,使用准确、规范的数学语言,描述清楚问题的背景和区间范围。
3. 按时提交:请学生在规定时间内提交作业,以便我们及时批改和反馈。
四、作业评价1. 批改:我们将对学生的作业进行批改,重点关注学生对区间概念的理解和表述,以及能否在实际问题中正确识别和描述区间。
2. 反馈:根据批改结果,我们将为学生提供详细的作业反馈,包括问题所在、建议和改进方法等。
对于普遍存在的问题,我们将集中讲解并在课堂上进行解答。
3. 奖励:对于完成作业优秀的学生,我们将给予一定的奖励,以激励他们更加积极参与数学学习,提高数学应用能力。
五、作业反馈请学生在完成作业后,认真阅读反馈意见,并根据建议改进自己的作业。
我们希望通过这种方式,帮助学生更好地理解和掌握区间的概念,提高数学应用能力。
同时,也希望学生能够积极提出自己的问题和疑惑,以便我们更好地提供指导和帮助。
作业设计方案(第二课时)一、作业目标本作业旨在帮助学生进一步理解和掌握区间概念,能够正确判断和描述区间的性质、关系以及运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题讲解
• 例1 已知集合 A 1, 4 ,集合 B [0, 5] , A B . 求: A B , • 解:两个集合的数轴表示如下图所示, A B (1, 5], A B [0, 4) . •
学生练习
• 1.已知集合 A (2,6) ,集合 B 1, 7, 求 A B , A B. • 2.已知集合A [3, 4],集合 B [1, 6] , 求 A B ,A B . • 3.用描述法表示下列集合 2 ,54 ⑷ u, v • ⑴ 2,7 ⑵ a, b ⑶ 3
2.2区间
导入
• 问题:资料显示:随着科学技术的发展,列车运行 速度不断提高.运行时速达200公里以上的旅客列车 称为新时速旅客列车.在北京与天津两个直辖市之 间运行的,设计运行时速达350公里的京津城际列车 呈现出超越世界的“中国速度”,使得新时速旅客 列车的运行速度值界定在200公里/小时与350 公里/ 小时之间.如何表示列车的运行速度的范围? • 解决:不等式:200<v<350; • 集合: v | 200 v 350 • 数轴:位于2与4之间的一段不包括端点的线段;
小结
区间
集合
( a, b)
[ a, b]
(, b)
( a, b]
{x | a x ≤ b}
{x | a x b} {x | a ≤ x ≤ b}
区间
集合 区间 集合
[ a, b)
{x | a ≤ x b}(, b]{x | x b} {x | x ≤ b}
[a, )
新授
• 问题:集合 {x | x 2} 可以用数轴上位于2右边 的一段不包括端点的射线表示,如何用区 间表示? • 解决:集合 {x | x 2} 表示的区间的左端点为2, 不存在右端点,为开区间,用记号 表) (2, 示.其中符号“+ ”(读作“正无穷 大”),表示右端点可以任意大,但是写 不出具体的数.
还有其他简便方法吗?
引入问题中,新时速旅客列车的运行速度值(单位:公里/小时) 区间为(200,350).
新授
• 概念 • 一般地,由数轴上两点间的一切实数所组成的集合叫做区 间.其中,这两个点叫做区间端点. • 不含端点的区间叫做开区间.如集合 x | 2 x 4 表示的区 间是开区间,用记号 (2, 4) 表示.其中2叫做区间的左端点, 4叫做区间的右端点. • 含有两个端点的区间叫做闭区间.如集合 x 2 x 4 表示 的区间是闭区间,用记号 [2, 4] 表示. • 只含左端点的区间叫做左闭右开区间,如集合 x 2 x 4 表示的区间是左闭右开区间,用记号 [2, 4) 表示 • 只含右端点的区间叫做右闭左开区间,如集合 x 2 x 4 表示的区间是右闭左开区间,用记号 (2, 4] 表示.
新授
• 类似地,集合 {x | x 2} 表示的区间为开区间, ( , 2) 用符号 表示(“ ”读作“负无穷 大”). • 集合 x x 2 表示的区间为右半开区间,用 记号 [2, ) 表示;集合 x x 2表示的区间为 左半开区间,用记号(, 2] 表示;实数集R 可以表示为开区间,用记号 (, ) 表示. ”与“ • 注意“ ”都是符号,而不是一 个确切的数.
作业布置
• (1)读书部分: 教材章节2.2, 学习与训练2.2; • (2)书面作业: P36 习题 1、 2
例题讲解
• 例2 已知集合 A (, 2),集合 B (, 4] , 求 A B ,A B . • 解 观察如下图所示的集合A、B的数轴表示, A B (, 4] B 得 (1) ; (2) A B (, 2) A
例题讲解
• 例3 设全集为R,集合 A (0,3] ,集合 B (2, ) • (1)求 CR A,CR B ;(2)求 A CR B . • 解:观察如下图所示的集合A、B的数轴表 示,得 • (1) CR A ,0 3, , CR B ,2 ; • (2) A CR B 0,2 .
(a, )
{x | x a}
ab
(, )
R
{x | x ≥ a}
表中a、b为任意实数,且
学生练习
• 1.在数轴上表示下列数集,并写出各数集的 区间表示 • ⑴ x x 2 ;⑵ x x 2;⑶ x x 0;⑷ x x 2 • 2.已知集合A= (,2),集合B= (,4 , 求 A B ,A B