全国初中数学联合竞赛-2004年试题及参考答案
2004年全国初中数学联赛 试题

2004年全国初中数学联赛试题2004年全国初中数学联赛CASIO杯武汉选拔赛试题一选择题(本大题共10个小题,每小题5分,共50分)1.若|1-x| = 1 + |x| ,则等于()(A)x-1 (B)1-x (C)1 (D)-12.若ΔABC中,∠A=50°,AB>BC, 则∠B的取值范围是( )(A)0°<∠B<80°(B)50°<∠B<80°(C)50°<∠B<130°(D)80°<∠B<130°3.如图,在ΔABC中,D是AC的中点,E,F是BC的三等分点,AE,AF分别交BD于M,N两点,则BM:MN:ND = ( )(A)3:2:1 (B)4:2:1 (C)5:2:1 (D)5:3:24.化简,所得的结果为( ) (A)(B)(C)(D)5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分ΔAFC的面积为( ) (A)12 (B)10 (C)8 (D)66.若2x+5y+4z=6,3x+y-7=-4,则x+y-z的值为( )(A)-1 (B)0 (C)1 (D)47.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD中点,若∠AEF=54°,则∠B=()(A)54°(B)60°(C)66°(D)72°8.在直角梯形ABCD中,AD‖BC,∠A=90°,AB=7,AD=2,BC=3。
E在线段AB上,且ΔEAD 与ΔEBC相似,这样的点E(...2004年全国初中数学联赛CASIO杯武汉选拔赛试题一选择题(本大题共10个小题,每小题5分,共50分)1.若|1-x| = 1 + |x| ,则等于()(A)x-1 (B)1-x (C)1 (D)-12.若ΔABC中,∠A=50°,AB>BC, 则∠B的取值范围是( )(A)0°<∠B<80°(B)50°<∠B<80°(C)50°<∠B<130°(D)80°<∠B<130°3.如图,在ΔABC中,D是AC的中点,E,F是BC的三等分点,AE,AF分别交BD于M,N两点,则BM:MN:ND = ( )(A)3:2:1 (B)4:2:1 (C)5:2:1 (D)5:3:24.化简,所得的结果为( )(A)(B)(C)(D)5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分ΔAFC的面积为( )(A)12 (B)10 (C)8 (D)66.若2x+5y+4z=6,3x+y-7=-4,则x+y-z的值为( )(A)-1 (B)0 (C)1 (D)47.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD中点,若∠AEF=54°,则∠B=()(A)54°(B)60°(C)66°(D)72°8.在直角梯形ABCD中,AD‖BC,∠A=90°,AB=7,AD=2,BC=3。
全国初中数学竞赛历年竞赛试题及参考答案

初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是准确的. 请将准确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a =,则代数式32312612a a a +--的值为( ).(A )24 (B )25 (C )10 (D )12 2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92(D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于( ).(A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙(第8题)(第10题)1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x=于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.(第13题)(第12题)(第14题)初中数学竞赛试题参考答案一、选择题 1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 因为实数u v ,的任意性,得(x y ,)=(1,0).3.C解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEFS S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. (第4题)于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=. 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,. 因为AC a b =-,BD c d =-, 又因为2BD AC =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 因为13124<<,所以当34x =时,2y 取到最大值1,故1a =. (第8题)当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC=,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49(另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,(第10题)故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ ,(第12题)(第13题)故∠ABP =∠ABQ .(2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由(1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b ,所以a b +=.由(1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=,于是可求得2a b ==将2b =代入223y x =,得到点Q ,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解析式为1y =+.根据对称性知,所求直线PQ 的函数解析式为1y =+,或1y +. 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =.将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1)得3322P Q x x t =-=-,32P Q x x k +=. 若3Q x =,代入上式得 3P x =-, 从而 23()3P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()3P Q k x x =+=.所以,直线PQ 的函数解析式为31y x =-+,或31y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 因为2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==.(第14题)。
全国初中数学联合竞赛试题分类汇编及详细解析 专题07 实数

实数一、选择题1、(2000一试1)设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。
(A)M=P;(B)M>P;(C)M<P;(D)不确定。
2.(2000一试3)甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。
(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。
3.(2000一试7)已知:,那么=________。
【答案】 14.(2002一试1)已知,,,那么a,b,c的大小关系是()A .a<b<c B.b<a<c C.c<b<a D.c<a<b5.(2002一试6)如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k 的最小值为()A.1 B.2 C.3D.46.(2003一试1)计算:232217122--( )(A)5-42 (B)42-1 (C)5 (D)17.(2005一试1)化简:11459+302366402++--的结果是__。
A 、无理数B 、真分数C 、奇数D 、偶数8.(2006一试4)设.,02,0222a bc c ab a b >=+->则实数c b a 、、的大小关系是【 】(A)a c b >> (B)b a c >>(C)c b a >>(D)c a b >>9.(2012一试1)已知21a =-,32b =-,62c =-,那么,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<二、填空题1.(2003一试10)已知正整数a、b之差为120,它们的最小公倍数是其最大公约数的105倍,那么a、b中较大的数是__ __.2.(2004一试10)设m是不能表示为三个合数之和的最大整数,则m= .3.(2005一试7)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为__。
初中数学常见8种最值问题

的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。
2004年全国初中数学联赛试题及答案(修正版)

NABCDP2004年全国初中数学联合数学竞赛试题第一试一.选择题1.已知abc ≠0,且a +b +c =0, 则代数式 a 2bc +b 2ca +c 2ab的值是( )(A) 3 (B) 2 (C) 1 (D) 02.已知p ,q 均为质数,且满足5p 2+3q =59,则以p +3,1-p +q ,2p +q -4为边长的三角形是( )(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 等腰三角形3. 一个三角形的边长分别为a ,a ,b ,另一个三角形的边长分别为b ,b ,a ,其中a >b ,若两个三角形的最小内角相等,则 a b的值等于( )(A)3+1 2 (B) 5+1 2 (C) 3+2 2 (D) 5+224.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A) 4条 (B) 3条 (C) 2条 (D) 1条5.已知b 2-4ac 是一元二次方程ax 2+bx +c =0(a ≠0)的一个实数根,则ab 的取值范围为( ) (A) ab ≥1 8(B) ab ≤1 8(C) ab ≥1 4(D) ab ≤1 46.如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为( )(A) 24 (B) 38 (C) 46 (D) 50二.填空题1.计算1 1+2+1 2+3+1 3+4+……+12003+2004= .2.如图ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,则BNNC = .3.实数a ,b 满足a 3+b 3+3ab =1,则a +b = .4.设m 是不能表示为三个合数之和的最大整数,则m = .l G B C H F A E P QMD 第二试一、 已知方程x 2-6x -4n 2-32n =0的根都是整数,求整数n 的值。
最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113m ax =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得 (a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥C O 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt△OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c 能否构成三角形的三边长?证明你的结论. 【分析】281102222a z a z z y z a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+=a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。
2004年全国初中数学联合竞赛试题及解答

3 ,则 a
1 1 3 3 1 3 3 a 1 1 3= (a ) 3 2 3 6 2 2 a 2 a 2
S△ AOB S△ APC S△PDB S矩形PCOD
因此,二象限中不存在这样的三角形.故选 C. 5.已知 b2 4ac 是一元二次方程 ax2 bx c 0 (a 0) 的一个实数根,则 ab 的取值范围为 ( ) A. ab ≥ 【答】B.
a . 2
D C
因为 BC 为直径,所以∠BPC=90° . 易证△MBC≌△FAB≌△MAF, 所以 AF= MA=MB= 由 DE∥BC 可得: ∴BN= ∴
a ,AE=BC=a. 2
A F N P M B
BN BP BC 2 AF PF EF 3
a 2a ,NC= 3 3
BN 1 NC 2
第一试
一、选择题(本题满分 42 分,每小题 7 分) 1. 已知 abc 0 ,且 a b c 0 ,则代数式 A.3 【答】A. 原代数式
a 2 b 2 c 2 a 3 b3 c 3 . bc ca ab abc
a 2 b2 c 2 的值是( bc ca ab
l E P M Q K H A O D N R H B C F
G
6
三. (本题满分 25 分)已知点 A(0 , 3) , B(2 , 1) ,C (2 , 1) , P(t , t 2 ) 为抛物线 y x 2 上 位于三角形 ABC 内(包括边界)的一动点,BP 所在的直线交 AC 于 E,CP 所在的直线交 AB 于 F.将
a 2 b 2 c 2 a 3 b3 c 3 3 bc ca ab abc
全国初中数学竞赛历年竞赛试题以及参考答案 (1).pptx

7.据有关资料统计,两个城市之间每天的电话通话次数 T 与这两个城市的人口
数
m、n(单位:万人)以及两城市间的距离
d(单位:km)有 T
kmn d2
的关系
(k 为常数) . 现测得 A、B、C 三个城市的人口及它们之间的距离如图所示,且
已知 A、B 两个城市间每天的电话通话次数为 t,那么 B、C 两个城市间每天的电
时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的
兴趣保持平稳的状态,随后开始分散. 学生注意力指标数 y 随时间 x(分钟)变
化的函数图象如图所示(y 越大表示学生注意力越集中). 当 0 x 10 时,图
象 是抛物线的一部分,当10 x 20 和 20 x 40 时,图象是线段.
的两个根,整理此方程,得
x2 5x 1 0,
∵ 25 4 0 , ∴ a b 5, ab 1. 故 a、b 均为负数. 因此
b b a a b ab a ab a2 b2 ab a b2 2ab 23.
a ba
b
ab
ab
2. 若直角三角形的两条直角边长为a 、 b ,斜边长为c ,斜边上的高为h ,则有
9. 如图所示,在梯形 ABCD 中,AD∥BC (BC>AD),
D 90 ,BC=CD=12, ABE 45 ,若 AE=10,
则 CE 的长为
.
答:4 或 6 解:延长 DA 至 M,使 BM⊥BE. 过 B 作 BG⊥AM, G 为垂足.易知四边形 BCDG 为正方形, 所以 BC=BG. 又 CBE GBM , ∴ Rt△BEC≌Rt△BMG. ∴ BM=BE, ABE ABM 45, ∴△ABE≌△ABM,AM=AE=10.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年全国初中数学联赛试题及参考答案
(江西赛区加试题2004年4月24日上午8:30-11:00)
一. 选择题(本题满分42分,每小题7分)
1.直角三角形斜边长为整数,两条直角边长是方程9x 2-3(k+1)x+k=0的两个根,则k 2的
值是…………………………( )
(A)2 (B)4 (C)8 (D)9 2.(8+37)9 +)738(91
+值是……………………………………………( )
(A)奇数 (B)偶数 (C)有理数而不是整数 (D)无理数
3.边长分别是2、5、7的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立方体中,表面积最小的那个立方体的表面积是…………………………….( )
(A)410 (B)416 (C)394 (D)402
x+yz=1
4.设有三个实数x 、y 、z 满足: y+zz=1 则适合条件的解组(x 、y 、z )有( )
z+xy=1
(A)3组 (B) 5组 (C)7组 (D)9组
**≥1, 则的值是( )
(A)1 (B) 2
3a (C)8a (D)不能确定 6.方程z y x y x ++=++2222的整数解有( )
(A)1组 (B)3组 (C)6组 (D)无穷多组
二.填空题(本题满分28分,每小题7分)
1.函数y=x 2-2(2k -1)x +3k 2-2k +6的最小值为m 。
则当m 达到最大时x =
2.对于1,2,3,。
,9作每二个不同的数的乘积,所有这些乘积的和是
3.如图,AB ,CD 是圆O 的直径,且AB ⊥CD ,P 为CD 延长线上一点,PE 切圆O 为E ,BE 交CD 于F ,AB=6cm,PE=4cm,则EF 的长=
O D P E
A C
4.用6张1x2矩形纸片将3x4的方格表完全盖住,则不同的盖法有 种。
三。
综合题
1。
有二组数:A 组1,2,。
,100 B 组12, 22 ,32 ,。
,1002若对于A 组中的X ,在B 组中存在一个数Y ,使得X+Y 也是B 组中的数,则称X 为关联数,求A 中关联数的个数
2.已知二次函数y=ax 2+bx+c(a>0)的图象和x 轴,y 轴都只有一个交点,分别为A ,B 。
AB=32,b+2ac=0,一次函数y=x+m 的图象过A 点,并和二次函数的图象交于另一点D 。
求△DAB 的面积
3.等边三角形ABC 中,D 是BC 边上的一点,且BD=2CD ,P 是AD 上的一点。
∠CPD=∠ABC ,求证:BP ⊥AD
A
B
O D
答案:一CBDBAB
二 1。
1 2。
870 3。
5
104 4。
11 三 1。
73 2。
9 3。
(略)。