鲁教版初一数学上册期末考试试题
【鲁教版】七年级数学上期末试题(含答案)

一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40° 3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-4.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .5.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++ C .2(1)43x x -=-+ D .2(1)4(3)x x -=-+6.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 7.关于x 的方程2x m 3-=1的解为2,则m 的值是( )A .2.5B .1C .-1D .38.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0 10.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c11.13-的倒数的绝对值( ) A .-3 B .13- C .3 D .1312.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0 二、填空题 13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____15.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
鲁教版七年级数学上册期末试题

期末复习综合检测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各三角形中,正确画出AC 边的高的是( ) A. B. C. D.2. 在实数√4,227,−13,0.3⋅ 01⋅ ,π,√93,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为 ( ) A. 3 B. 4 C. 5 D. 23. 下列各式计算正确的是( )A. √(−1)33=−1B. (−√2)2=−2C. √(√9)2=−9D. √25=±54. 如图是作△ABC 的作图痕迹,则此作图的已知条件是 ( )A. 已知两边及夹角B. 已知三边C. 已知两角及夹边D. 已知两边及一边对角5. 如图①是美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a ,较短的直角边为b ,斜边长为c.如图②,现将这四个全等的直角三角形紧密拼接,形成飞镖状,且外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积( )A. 6B. 12C. 16D. 246.如图,已知校门的坐标是(1,1)(图中每个小方格的长度为1cm),那么下列对于实验楼位置的叙述正确的个数为( )比例尺:1:10000 ①实验楼的坐标是3. ②实验楼的坐标是(3,3). ③实验楼的坐标是(4,4). ④实验楼在校门的东北方向上,距校门200√2m.A. 1B. 2C. 3D. 47.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C= 2:3:4,⑤a2=(b+c)(b−c)中,能确定△ABC是直角三角形的有( )A. 2个B. 3个C. 4个D. 5个8.A,B两地相距20km,甲、乙两人沿同一条路线从A地到B地.如图反映的是二人行进路程y(km)与行进时间t(ℎ)之间的关系,有下列说法:①甲始终是匀速行进的,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上.在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个9.两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么方法有( )A. 3种B. 4种C. 5种D. 6种10.如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数.某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为( )A. 47B. 62C. 79D. 98二、填空题(本大题共8小题,共24分)11.若y=(a−3)x+a2−9为正比例函数,则此函数图象经过第象限.12.点A、B是平面直角坐标系中x轴上的两点,且AB=2,有一点P与AB构成三角形,若△PAB的面积为3,则点P的纵坐标为.13.如图,图形的各个顶点都在3×3正方形网格的格点上,则∠1+∠2=.14.如图,在四边形ABCD中,∠BAD=120∘,∠B=∠D=90∘,在BC,CD上分别找点M,N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.15.如图,在△ABE和△ACD中,点D,E分别在线段AB,AC上,AD=AE,CD与BE相交于O点,请添加一个条件,使△ABE≌△ACD,这个添加的条件可以是(只需写一个,不添加辅助线).16.如图,有一艘轮船由东向西航行,在A处测得西偏北15°方向上有一灯塔P,继续航行20海里后到B处,又测得灯塔P在西偏北30°方向上.如果轮船航向不变,则灯塔与轮船之间的最近距离是海里.17.如图,学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为.18.若√a=3,|b|=5,且ab<0,则a+b的算术平方根为.三、计算题(本大题共1小题,共6分)19.计算:√14+√−273−|−12−√2|−(1−√2).四、解答题(本大题共8小题,共60分。
鲁教版七年级上册数学期末试卷

鲁教版七年级上册数学期末试卷一.选择题(共9小题)1.下列各组的两个图形属于全等图形的是()A.B. C.D.2.如图,给出下列四个条件:AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组3.在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.355.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米6.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的()A.2倍B.3倍C.4倍D.5倍7.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>08.在平面直角坐标系中,点A、点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)9.如果一次函数y=kx+b(k,b是常数,k≠0)的图象经过第一、二、四象限,那么k,b 应满足的条件是()A.k>0且b>0 B.k<0且b>0 C.k>0且b<0 D.k<0且b<0二.填空题(共4小题)10.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.11.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中共有个等腰三角形.12.实数a,b在数轴上对应点的位置如图所示,则|a﹣b|= .13.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象交点的横坐标为.三.解答题(共4小题)14.在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长.15.如图,有一个长方体无盖的盒子,长AB=8cm,宽BD=5cm,高BC=1cm,一只蚂蚁经过盒子里面从N爬到M.(1)画出盒子的展开图,并画出蚂蚁的最短爬行路径;(2)求出蚂蚁的最短爬行路径是多少厘米.16.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的关系式;(2)当x=﹣时,求函数y的值;(3)求当﹣3<y≤1时,自变量x的取值范围.17.A,B,C三地在同一条公路上,A地在B,C两地之间,甲、乙两车同时从A地出发匀速行驶,甲车驶向C地,乙车先驶向B地,到达B地后,调头按原速经过A地驶向C地(调头时间忽略不计),到达C地停止行驶,甲车比乙车晚0.4h到达C地,两车距B地的路程y(km)与行驶时间x(h)之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车的行驶速度是km/h,并在图中括号内填入正确的数值;(2)求图象中线段FM所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)在乙车到达C地之前,甲、乙两车出发后几小时与A地路程相等?直接写出答案.。
鲁教版初一数学上册期末考试试卷

鲁教版初一数学上册期末考试试卷此刻打盹,你将做梦;而此刻学习,你将圆梦。
把你的实力全部发挥,祝你七年级数学期末考试成功!下面小编给大家分享一些鲁教版初一数学上册期末考试试卷,大家快来跟小编一起看看吧。
鲁教版初一数学上册期末考试题一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.12.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.43.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.64.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.66.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.59.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:510.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是__________.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为__________.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是__________,它是__________命题(填“真”或“假”).19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于__________.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为__________米.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为__________千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?鲁教版初一数学上册期末考试试卷参考答案一、选择题(共15小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,共45分,错选、不选或选出的答案超过一个,均记0分)1.下列计算正确的是( )A. =±3B. =﹣2C. =9D. =0.1【考点】立方根;算术平方根.【分析】根据平方根、立方根,即可解答.【解答】解:A、 =3,故错误;B、 =2,故错误;C、 =3,故错误;D、,故正确;故选:D.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.2.估算的大小,四舍五入到十分位是( )A.2.1B.2.2C.2.3D.2.4【考点】估算无理数的大小;近似数和有效数字.【分析】由4<5<9可知2< <3,然后由2.22<5<2.32,可知2.2< <2.3,然依据上述方法进行估算即可.【解答】解:∵4<5<9,∴2< <3.∵2.22=4.84,2.32=5.29,∴2.22<5<2.32,∴2.2< <2.3.∵2.232=4.9729,2.242=5.0176,∴2.232<5<2.242.∴2.23< <2.24.∴ ≈2.2.故选:B.【点评】本题主要考查的是估算无理数的大小,明确被开方数越大,对应的算术平方根越大是解题的关键.3.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是( )A.3B.4C.5D.6【考点】点的坐标.【分析】根据勾股定理,可得答案.【解答】解:PO= =5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.4.下列说法中,正确的是( )A. 的立方根是±B.立方根等于它本身的数是1C.负数没有立方根D.互为相反数的两个数的立方根也互为相反数【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:A、的立方根是,故本选项错误;B、立方根等于它本身的数是1、﹣1、0,故本选项错误;C、负数有立方根,故本选项错误;D、互为相反数的两个数的立方根也互为相反数,正确;故选:D.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.5.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE 是AB的垂直平分线,若AD=3,则AC等于( )A.4B.4.5C.5D.6【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠A=∠ABD,然后根据角平分线的定义与直角三角形两锐角互余求出∠CBD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出CD,然后求解即可.【解答】解:∵点D在AB的垂直平分线上,∴AD=BD=4,∴∠A=∠ABD,∵BD是角平分线,∴∠ABD=∠CBD,∵∠C=90°,∴∠A+∠ABD+∠CBD=90°,∴∠CBD=30°,∴CD= BD= ×3=∴AC=AD+CD=3+ = .故选B.【点评】本题考查了角平分线的定义,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,题目难度稍微复杂,熟记性质是解题的关键.6.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数( )A.46°B.44°C.36°D.22°【考点】平行线的性质.【分析】由l1∥l2,可得:∠1=∠3=44°,由l3⊥l4,可得:∠2+∠3=90°,进而可得∠2的度数.【解答】解:如图,∵l1∥l2,∴∠1=∠3=44°,∵l3⊥l4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.7.下列命题中,是真命题的是( )A.角是轴对称图形,角平分线是它的对称轴B.线段是轴对称图形,并且只有一条对称轴C.三角形的一个外角等于它任意两个内角的和D.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半【考点】命题与定理.【分析】利用对称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质分别判断后即可确定正确的选项.【解答】解:A、角是轴对称图形,角平分线所在直线是它的对称轴,故错误,为假命题;B、线段是轴对称图形,它有两条对称轴,故错误,为假命题;C、三角形的一个外角等于与其不相邻的两个内角的和,故错误,为假命题;D、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,正确,为真命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解称轴及轴对称的定义、线段和角的对称性,三角形的外角的性质及直角三角形的性质,属于基础定义,难度较小,但也应重点掌握.8.如图所示,已知在三角形纸片ABC中,BC=3,AC=4,∠BCA=90°,在AC上取一点E,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CD的长度为( )A.1B.2C.3D.5【考点】翻折变换(折叠问题).【分析】先在Rt△ABC中根据勾股定理求得AB=5,然后由翻折的性质可知BD=AB=5,最后根据CD=BD﹣BC求解即可.【解答】解:∵BC=3,AC=4,∠BCA=90°,∴AB= =5.由翻折的性质可知:BD=AB=5.∴CD=BD﹣BC=5﹣3=2.故选:B.【点评】本题主要考查的是翻折变换、勾股定理的应用,由翻折的性质求得BD=AB=5是解题的关键.9.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理及勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选D.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理或三角形的内角和定理来判定.10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.【解答】解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.故选C.【点评】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.11.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是( )A.50°B.57.5°C.60°D.65°【考点】三角形内角和定理.【分析】先根据三角形内角和定理得出∠BCF+∠CBF的度数,再由角平分线的性质得出∠ABC+∠ACB的度数,根据三角形内角和定理即可得出结论.【解答】解:∵∠BFC=115°,∴∠BCF+∠CBF=180°﹣115°=65°.∵BF平分∠ABC,CF平分∠ACB,∴∠ABC+∠ACB=2(∠BCF+∠CBF)=130°,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣130°=50°.故选A.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.12.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点评】能够根据k,b的符号正确判断直线所经过的象限.13.将直线y=﹣2x+1向上平移1个单位,得到一个新的函数是( )A.y=﹣2x+2B.y=2x+1C.y=﹣2x﹣1D.y=﹣2x【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=﹣2x+1向上平移1个单位所得直线的解析式为:y=﹣2x+1+1,即y=﹣2x+2.故选A.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系( )A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设馒头每颗x元,包子每颗y元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,联立方程即可得到所求方程组.【解答】解:设馒头每颗x元,包子每颗y元,伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=50+2,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,故可列方程组为,故选B.【点评】本题主要考查由实际问题抽象出的二元一次方程组的知识点,解答本题的关键是理解题意,找出题干中的等量关系,列出等式,本题难度一般.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B.C. D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是 .故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果)16. 的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.17.已知a、b、c是△ABC的三边长,且满足关系c2﹣a2﹣b2+|a ﹣b|=0,则△ABC的形状为等腰直角三角形.【考点】三角形三边关系.【分析】根据题意得出c2=a2+b2,a=b进而得出△ABC的形状.【解答】解:∵c2﹣a2﹣b2+|a﹣b|=0,∴c2﹣a2﹣b2=0,|a﹣b|=0,∴c2=a2+b2,a=b,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.【点评】直接利用绝对值以及偶次方的性质,得出a,b,c之间的关系是解题关键.18.命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”的题设是两三角形两边分别相等且其中一组等边的对角相等,它是假命题(填“真”或“假”).【考点】命题与定理.【分析】改写成“如果…,那么…”的形式后即可确定其题设和结论,判断正误后即可确定真假.【解答】解:命题“两边分别相等且其中一组等边的对角相等的两个三角形全等”改写成“如果…,那么…”为:如果两三角形两边分别相等且其中一组等边的对角相等,那么这两个三角形全等,所以题设是:两三角形两边分别相等且其中一组等边的对角相等,为假命题,故答案为:两三角形两边分别相等且其中一组等边的对角相等,假.【点评】本题考查了命题与定理的知识,解题的关键是能够将原命题写成“如果…,那么…”的形式,难度不大.19.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于20°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠BCD的度数,再由EF∥CD求出∠ECD的度数,由∠BCE=∠BCD﹣∠ECD即可得出结论.【解答】解:∵AB∥CD,∠ABC=46°,∴∠BCD=∠ABC=46°,∵EF∥CD,∠CEF=154°,∴∠ECD=180°﹣∠CEF=180°﹣154°=26°,∴∠BCE=∠BCD﹣∠ECD=46°﹣26°=20°.故答案为:20°.【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等;同旁内角互补是解答此题的关键.20.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.【考点】一次函数的应用.【专题】数形结合.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.三、解答题(共7小题,满分55分.解答要写出必要的文字说明、证明过程或演算步骤)21.解下列方程组:(1)(2) .【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1) ,①×3+②×2得:13x=﹣11,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为 ;(2)方程组整理得:,①﹣②得:5y=150,即y=30,把y=30代入①得:x=28,则方程组的解为 .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求线段AD的长度;(3)求四边形ABCD的面积.【考点】坐标与图形性质;三角形的面积;勾股定理.【分析】(1)根据图象可以直接写出A、B、C、D的坐标.(2)把AD作为斜边,利用勾股定理解决.(3)把四边形分割成3个直角三角形和一个正方形来求面积.【解答】解:(1)由图象可知A(﹣2,3),B(﹣3,0),C(3,0),D(1,4);(2)AD= = ;(3)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF= ×1×3+ ×1×3+ ×2×4+3×3=13.【点评】本题目考查了已知点写坐标以及勾股定理,三角形的面积有关知识,应该掌握分割法求面积.23.已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.【考点】平行线的判定与性质.【专题】证明题.【分析】根据垂直的定义得到∠ADF=∠EFC=90°,再根据同位角相等,两直线平行得到AD∥EF,利用直线平行的性质有∠2=∠DAC;由∠4=∠C,根据同位角相等,两直线平行得到DG∥AC,再利用直线平行的性质得∠1=∠DAC,最后利用等量代换即可得到结论.【解答】解:∵AD⊥BC,EF⊥BC,∴∠ADF=∠EFC=90°,∴AD∥EF,∴∠2=∠DAC,又∵∠4=∠C,∴DG∥AC,∴∠1=∠DAC,∴∠1=∠2.【点评】本题考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.24.如图,在△ABC中,BD、CD分别平分∠ABC和∠ACB,过点D 作平行于BC的直线EF,分别交AB、AC于E、F,若BE=2,CF=3,若BE=2,CF=3,求EF的长度.【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.【点评】此题考查了等腰三角形的判定,平行线的性质,利用了等量代换的思想,熟练掌握性质与判定是解本题的关键.25.长沙市某公园的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?【考点】二元一次方程组的应用.【专题】图表型.【分析】本题等量关系有:甲班人数×8+乙班人数×10=920;(甲班人数+乙班人数)×5=515,据此可列方程组求解.【解答】解:设甲班有x人,乙班有y人.由题意得:解得: .答:甲班55人,乙班48人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题按购票人数分为三类门票价格.26.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【解答】解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△A BE中,AE=AO=10,AB=8,BE= = =6,∴CE=4,∴E(4,8).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8).【点评】本题主要考查了翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.27.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【考点】一次函数的应用.【专题】应用题.【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s= t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣ t+12= t,解得t=当t= 时,S= × =3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
七年级上册数学期末试题(鲁教版)

七年级数学试题第一学期期末考试题号 一 二 三 总分 16 17 18 19 20 21 22 23 24 25 得分选择题答题栏题 号 1 2345678910 答 案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧-==21y xC .⎩⎨⎧==12y x D .⎩⎨⎧-==10y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .614.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④ 5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 ) 6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( ) A .(1 1)-,B .(2 1)--,C .(1 2)-,D .(3 1)-,(第15题图)(第6题图)Oxy OxyOxy Oxy A . B . C . D .O O O Ox /时y /件 A . B .C .D .y /件x /时x /时y /件y /件x /时7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图像大致是( )8.某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个C .3 个D . 4个二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.已知方程3x +2y =6,用含x 的代数式表示y ,则y = . 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式(第10题图)Oy /件t /时581015200.511.52甲乙是 .15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2,则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分,每小题2分) 计算:(1).4+3125-. 17.(本题满分4分)解方程组: ⎩⎨⎧=+=+.134,1632y x y x(2).21.1+64.0.18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB =AC =5m ,跨度BC 为6m ,现有一根木料打算做中柱AD (AD 是△ABC 的中线), 请你通过计算说明中柱AD 的长度 . (只考虑长度、不计损耗)CB A(第18题)(第15题图)Oxyl 1l 23-122ABDC②①20.(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米?21. (本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据说明你的观点.22 错误!链接无效。
鲁教版初一数学上册期末考试试题

初一数学上册期末试卷一、选择题:1.若a=(-2)*(-3),b=(-2)*3,c=-(-3)*2,则a 、b 、c 的大小关系是()A 、a >b >cB 、c >b >aC 、c >a >bD 、a >c >b 2.当2x =-时,代数式-|-1x +|的值是 ( ) A .1- B .3- C .1 D .3 3.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a += D .2222a b a b a b -+=4. 沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D5.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式 6.数a ,b 在数轴上的位置如图所示,则a b b a -+-是( )A 2b-a B .2b-2a C .2a-2b D .07. 若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->- C .32x y +>+ D .33x y > 8. 一个棱柱有12个顶点,所有侧棱长的和为72cm ,则每条侧棱长为()A 、3cmB 、6cmC 、12cmD 、24cm9.把方程0.10.20.710.30.4x x---=的分母化为整数的方程是( )A.0.10.20.7134x x ---= B .12710134x x---=C .127134x x ---=D .127101034x x ---=10.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是 _________ .A .6B .8C .7D .5 二、填空题1.在32,0,1,-6中,任取两个数相乘,最小的积是__________.2. 小明在超市买一食品,外包装上印有总净含量“(±5)g ”的字样。
【鲁教版】初一数学上期末试卷(附答案)

一、选择题1.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个 C .3个 D .4个 3.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150° 4.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 5.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 6.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- 7.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+2 8.方程的解是( )A .B .C .D .9.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次10.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 11.若,则化简|-2|+|1-|的结果是( ) A .-1 B .1C .+1D .-3 12.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( )A .28B .34C .45D .75 二、填空题13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.14.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.15.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.16.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.17.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 18.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______. 19.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.20.比较大小:364--_____________()6.25--. 三、解答题21.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .22.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.23.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?24.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?25.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 26.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.2.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.4.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A 、射线OA 与OB 不是同一条射线,选项错误;B 、射线OA 与OB 是同一条射线,选项正确;C 、射线OA 与OB 不是同一条射线,选项错误;D 、射线OA 与OB 不是同一条射线,选项错误.故选B .【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.5.B解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x ,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意;C、由2a=3,得a=32,不符合题意;D、由a=b,c≠0,得a bc c,不符合题意;故选:B.【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.6.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.解析:C【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】 方程,移项合并得:-2x =2,解得:x =-1,故选:C .【点睛】此题考查了解一元一次方程,解方程移项注意要变号. 9.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般. 10.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a)=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.12.C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.二、填空题13.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a与4相对应b 与2相对应c与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:3 4【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a,b,c分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC 和AB 再利用线段的和差计算即可【详解】解:(1)当点C 在AB 的延长线上时如图1∵点D解析:4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC 和AB ,再利用线段的和差计算即可.【详解】解:(1)当点C 在AB 的延长线上时,如图1,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =AB +BC =2+6=8;(2)当点C 在BA 的延长线时,如图2,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =BC -AB =6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:13 【点睛】考核知识点:解一元一次方程.理解题意是关键.16.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.17.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 18.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 19.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.三、解答题21.【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 23.(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.24.成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.25.(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.26.(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.。
2022-2023学年鲁教版(五四制)数学七年级上册 期末测试卷(原卷版)

2022-2023学年鲁教版(五四制)数学七年级上册期末测试卷一.选择题(共12小题)1.下列实数为无理数的是()A.B.0.2C.﹣5D.2.等腰三角形的一个角是90°,则它的底角是()A.45°B.90°C.45°或90°D.10°或90°3.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|﹣b|D.|﹣a|>|b|4.点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,则(a+b)2021=______.()A.1B.﹣1C.±1D.05.如图,若△ABC≌△ADE,则下列结论中不一定成立的是()A.∠ABD=∠ADB B.∠BAD=∠CAE C.∠DAC=∠C D.∠B=∠ADE 6.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB,其中符合要求的有()A.③④B.①②C.①②③④D.①②③④⑤7.如图,△ABC中,∠A=105°,AB的垂直平分线EF交BC于点D,BD=AC,则∠B 的度数为()A.15°B.20°C.25°D.30°8.如图所示,一文物被探明位于A点地下48m处,由于A点地面下有障碍物,考古人员不能垂直下挖,他们从距离A点14m的B处斜着挖掘,那么要找到文物至少要挖()米.A.14B.48C.50D.609.函数的自变量x的取值范围是()A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0 10.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为11.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5或D.7或2512.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=10二.填空题(共6小题)13.已知x是16的算术平方根,y是9的平方根,则x2+y2﹣x﹣1的值为.14.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为°.15.如图,在△ABC中,AB=AC=5,BC=6,AD=4,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是.16.海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是.17.已知A,B两地相距120km,甲、乙两人沿同一条公路从A地出发到B地,甲骑摩托车,乙骑自行车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,则乙出发小时被甲追上.18.如图,在平面直角坐标系xOy中,点A的坐标是(﹣7,1),∠AOB=135°,OB=5,则点B的坐标为.三.解答题(共7小题)19.如图,将墙面和地平线的一部分分别标记EF,FG,且EF⊥FG.把长为10m的梯子AB斜靠在墙上,梯子底端离墙角6m.如果梯子的顶端下滑了2m,求梯子底部在水平方向滑动的距离BD.20.已知:点P是线段AC上一点,BP=DP,AB=3,CD=7.(1)如图1,若∠A=∠C=∠BPD=90°,求AC的长;(2)如图2,若∠A=∠C=∠BPD≠90°,能否求出AC的长?若能,求出AC的长;若不能,说明理由.21.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)求出租车和客车的速度分别为多少?(2)经过多少小时,两车相遇?并求出相遇时,出租车离甲地的路程是多少?22.如图,△ACB中,点D是AB边上一点,点E是CD的中点,过点C作CF∥AB交AE 的延长线于点F.(1)求证:△ADE≌△FCE;(2)若CD=CF,∠DCF=120°,求∠ACD的度数.23.计算(1).(2).(3).(4).(5).24.如图,一次函数y=kx+b(k≠0)的图象与x,y轴交于点A,B(0,4),与正比例函数y=﹣2x的图象相交于点C(﹣1,m).(1)求一次函数y=kx+b的表达式;(2)若点P在直线AB上,且S△OAP=3S△OAC,求点P的坐标.25.如图,在平面直角坐标系中,△ABC的顶点A,B,C的坐标分别为(2,2),(1,﹣3),(4,﹣2),△A′B′C′与△ABC关于y轴对称,点A,B,C的对应点分别为A′,B′,C′.(1)请在图中作出△A′B′C′,并写出点A′,B′,C′的坐标;(2)若点M(m+2,n﹣2)是△ABC的边上一点,其关于y轴的对称点为M′(﹣n.2m),求m,n的值.(3)请在y轴上找到一点P,使PC﹣PB的值最大,并在图上标注出来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册期末试卷
一、选择题:
1.若(-2)*(-3),(-2)*3,(-3)*2,则a 、b 、c 的大小关系是()
A 、a >b >c
B 、c >b >a
C 、c >a >b
D 、a >c >b
2.当2x =-时,代数式1x +|的值是 ( )
A .1-
B .3-
C .1
D .3 3.下列计算正确的是 ( ) A .33a b ab += B .32a a -= C .225235a a a += D .2222a b a b a b -+= 4. 沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )
A B C D
5.多项式12++xy xy 是( )
A .二次二项式
B .二次三项式
C .三次二项式
D .三次三项式 6.数a ,b 在数轴上的位置如图所示,则
a b b a
-+-是( )A 2 B .2b-2a
C .2a-2b
D .0
7. 若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-
C .32x y +>+
D .33
x y >
8. 一个棱柱有12个顶点,所有侧棱长的和为72,则每条侧棱长为()
A 、3
B 、6
C 、12
D 、24 9.把方程0.10.20.710.30.4
x x ---=
的分母化为整数的方程是( ) A.
0.10.20.7134x x ---= B .12710134
x x ---= C .127134
x x
---= D .127101034
x x
---= 10.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察
这个立方体木块看到的数字情况,数字1和5对面的数字的和是 .
A .6
B .8
C .7
D .5
二、填空题
1.在3
2
,0,16中,任取两个数相乘,最小的积是.
2. 小明在超市买一食品,外包装上印有总净含量“(±5)g ”的字样。
小明拿去称
了一下,发现总净含量只有297g 。
则食品
生产厂家(填“有”或“没有”) 欺诈行为。
3.甲数x 的23与乙数y 的1
4
差可以表示为
4.定义a ※b =2a b -,则(1※2)※3
5. 5
2
xy -
的系数是 ,次数是 6.近似数54.25万精确到位。
7.若“!”是一种数学运算符号,并且11,22×1=2,33×2×1=6,44×3×2×1=24,……,
则!
98!
100的值为
8.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .
三、简答题 1、计算:
2( 6.5)(2)(5)5⎛⎫
-+-÷-÷- ⎪⎝⎭
②)3
1()2(6)]9
5()3
2
[()3(2-⨯-÷--+-⨯-
2.先化简,再求值: )441()34(22a a a a +---
其中a =-2。
3.解方程:33
5
252--=--x x x
四、画图
如图所示的几何体是由7个相同的正方体搭成的,从正面、左面、上面观察,分别
画出所看到的几何体的形状图。
五、应用题
1.如图是一个长方体墨水瓶纸盒的平面展
开图,已知纸盒中相对两个面上的数互为相反数。
(1)填空:,; (2)求()·c -()·a +c
a b
+的值。
2.已知x 、y 为有理数,现规定一种新运算▽,满足x ▽y =+1 .
(1)求2▽4的值;
(2)任意选择两个有理数(至少有一个是负数),分别代替x 和y ,计算x ▽y 和y ▽x ;并比较它们的运算结果;
(3)探索a ▽(b +c )与a ▽b +a ▽c 的关系,并用等号或不等号把它们表达出来 .
3.如图是一个粮仓,已知粮仓底面直径为8m,粮仓顶部顶点到地面的垂直距离为9m,粮仓下半部分高为6m,观察并回答下列问题:
(1)粮仓是由两个几何体组成的,他们分别是;
(2)用一个平面去截粮仓,截面可能是(写出一个即可)
(3)如图,将下面的图形分别绕虚线旋转一周,哪一个能形成粮仓?用线连一连;(4)求出该粮仓的容积(结果精确到0.1,∏取3.14)
4.你能很快算出20052吗?
(1)探索规律:152=225,可写成100
×1×(1+1)+25
252=625,可写成100×2×
(2+1)+25
352=1225,可写成100×3×
(3+1)+25
…………
852=7225,可写成.
(2)从第(1)题的结果归纳出:
(105)2.
(3)根据上面的归纳,计算20052.
5.一架飞机飞行在两个城市之间,风速为
每小时24千米,顺风飞行需要2小时50
分钟,逆风飞行需要3小时,求两城市间
距离?
6.粗蜡烛和细蜡烛的长短一样,粗蜡烛可
以点5小时,细蜡烛可以点4小时,如果
同时点燃这两支蜡烛,过了一段时间后,
剩余的粗蜡烛长度是细蜡烛长度的2倍,
问这两支蜡烛已点燃了多少时间?
7.已知某水池有进水管与出水管一根,进
水管工作15小时可以将空水池放满,出水
管工作24小时可以将满池的水放完;对于
空的水池,如果进水管先打开2小时,再
同时打开两管,问注满水池还需要多少时
间?。