数字信号处理 语音信号分析与处理及其MATLAB实现..

合集下载

如何在MATLAB中进行语音信号处理

如何在MATLAB中进行语音信号处理

如何在MATLAB中进行语音信号处理一、引言语音信号处理是一门充满挑战的学科,它涉及到声音的产生、捕捉、转换和处理等一系列过程。

在现代科技的支持下,MATLAB作为一种强大的工具,被广泛应用于语音信号处理领域。

本文将介绍如何使用MATLAB进行语音信号处理,包括信号预处理、语音分析和语音合成等方面。

二、信号预处理在进行语音信号处理之前,我们通常需要对信号进行预处理。

信号预处理的目标是将原始信号进行降噪、滤波和归一化等处理,以便后续的分析和处理。

在MATLAB中,我们可以使用一系列函数来实现信号预处理的过程。

首先,我们可以使用MATLAB提供的降噪算法对信号进行降噪处理。

常用的降噪算法有加性白噪声降噪算法、小波降噪算法等。

通过对原始信号进行降噪处理,可以有效提取出语音信号的有效信息。

其次,我们可以使用滤波技术对信号进行滤波处理。

滤波的目的是去除信号中的不必要成分,保留感兴趣的频率成分。

在MATLAB中,我们可以使用卷积和滤波函数来实现滤波过程。

最后,我们还可以对信号进行归一化处理。

归一化可以使信号的幅值范围在一个确定的范围内,方便后续的处理和比较。

在MATLAB中,我们可以使用归一化函数对信号进行归一化处理。

三、语音分析语音信号的分析是语音信号处理的关键步骤,它可以帮助我们了解信号的基本特征和结构。

在MATLAB中,我们可以使用一系列函数来实现语音信号的分析。

首先,我们可以使用MATLAB提供的时域分析函数对语音信号进行时域分析。

时域分析可以帮助我们了解信号的振幅、频率和相位等特征。

通过时域分析,我们可以得到语音信号的波形图、能谱图和自相关函数等。

其次,我们还可以使用频域分析函数对语音信号进行频域分析。

频域分析可以帮助我们了解信号的频率成分和频率分布等特征。

通过频域分析,我们可以得到语音信号的频谱图、功率谱密度图和谱线图等。

最后,我们还可以使用梅尔频率倒谱系数( MFCC)来提取语音信号的特征。

MFCC是一种广泛应用于语音识别领域的特征提取方法。

数字信号处理及其MATLAB实现

数字信号处理及其MATLAB实现

音频处理
音频压缩
通过降低音频数据的冗余信息,实现音频文件 的压缩,便于存储和传输。
音频增强
去除噪声、提高音质,使音频更加清晰、悦耳 。
语音识别
将语音信号转换为文字,实现人机交互。
图像处理
图像压缩
降低图像数据的冗余信息,实现图像的压缩,便于存储和 传输。
图像增强
改善图像的视觉效果,如锐化、去噪等。
未来发展中,深度学习将在数字 信号处理中发挥越来越重要的作 用,尤其是在人工智能和物联网 等领域的信号处理任务中。
THANKS FOR WATCHING
感谢您的观看
图像识别
对图像进行特征提取和分类,实现目标检测、人脸识别等 功能。
通信系统
调制解调
将数字信号转换为适合 传输的调制信号,以及 将接收到的调制信号还 原为原始数字信号。
信道编码
提高数字信号的抗干扰 能力,降低误码率。
多路复用
提高通信系统的传输效 率,实现多个信号在同 一信道上的传输。
05
数字信号处理的未来发 展
改进的自适应滤波算法将在各种复杂环境中表现出更好的性能,为信号处理领域的发展提供有力支持。
深度学习在信号处理中的应用
深度学习是机器学习领域的一种 新兴技术,通过构建深度神经网 络模型进行学习。在信号处理中 ,深度学习可以用于语音识别、 图像处理、自然语言处理等领域 。
与传统的信号处理方法相比,深 度学习能够自动提取信号中的复 杂特征,并基于这些特征进行分 类或识别。深度学习具有更高的 准确性和鲁棒性,能够处理更加 复杂的信号。
信号以一定的时间间隔 重复。
信号不重复,没有固定 的周期。
信号的频域表示
01
02

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。

本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。

在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。

通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。

三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。

通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。

2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。

预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。

3. 特征提取在语音信号处理中,特征提取是一个关键步骤。

通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。

4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。

通过模型训练,可以实现对不同语音信号的自动识别和分类。

四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。

这些模块相互配合,构成一个完整的系统架构。

2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。

良好的界面设计可以提升系统的易用性和用户体验。

五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结
语音信号处理是利用数字信号处理技术对语音信号进行分析、处
理和改进的过程。

语音信号是不规则的波形,其包含了很多信息,如
语音的音高、音调、音色、语速、语气等,因此语音信号处理是一项
非常重要的技术。

语音信号处理的一般流程包括语音信号采集、预处理、特征提取、模型建立和应用,其中预处理包括信号增强、降噪、去混响等,特征
提取包括时域特征、频域特征和时频域特征,模型建立包括声学模型
和语言模型等。

为了更加深入地掌握语音信号处理技术,我们进行了一些matlab
仿真实验。

我们首先学习了语音信号的采样和量化过程,并使用
matlab软件对语音信号进行了仿真采样和量化,了解了采样率和分辨
率等概念,还了解了量化噪声的影响。

其次,我们学习了语音信号的基本特征提取技术,并用matlab仿
真实现了时域特征、频域特征和时频域特征的提取,如时域的短时能
量和短时过零率、频域的傅里叶变换和倒谱系数、时频域的小波变换等。

最后,我们学习了基于模型的语音信号处理技术,如基于隐马尔
可夫模型、高斯混合模型、人工神经网络等模型的语音识别、语音合
成等应用,并用matlab进行了相关的仿真实验。

总之,语音信号处理是一项非常重要的技术,它可以在语音识别、语音合成、语音压缩、语音增强等领域得到广泛应用。

通过学习语音
信号处理及matlab仿真实验,我们了解到了它的基本理论和应用方法,并得到了一些实践经验,这对我们今后的学习和工作将具有很大的指
导意义。

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析

利用Matlab进行数字信号处理与分析数字信号处理是现代通信、控制系统、生物医学工程等领域中不可或缺的重要技术之一。

Matlab作为一种功能强大的科学计算软件,被广泛应用于数字信号处理与分析领域。

本文将介绍如何利用Matlab进行数字信号处理与分析,包括基本概念、常用工具和实际案例分析。

1. 数字信号处理基础在开始介绍如何利用Matlab进行数字信号处理与分析之前,我们首先需要了解一些基础概念。

数字信号是一种离散的信号,可以通过采样和量化得到。

常见的数字信号包括音频信号、图像信号等。

数字信号处理就是对这些数字信号进行处理和分析的过程,包括滤波、频谱分析、时域分析等内容。

2. Matlab在数字信号处理中的应用Matlab提供了丰富的工具箱和函数,可以方便地进行数字信号处理与分析。

其中,Signal Processing Toolbox是Matlab中专门用于信号处理的工具箱,提供了各种滤波器设计、频谱分析、时域分析等功能。

除此之外,Matlab还提供了FFT函数用于快速傅里叶变换,可以高效地计算信号的频谱信息。

3. 数字信号处理实例分析接下来,我们通过一个实际案例来演示如何利用Matlab进行数字信号处理与分析。

假设我们有一个包含噪声的音频文件,我们希望去除噪声并提取出其中的有效信息。

首先,我们可以使用Matlab读取音频文件,并对其进行可视化:示例代码star:编程语言:matlab[y, Fs] = audioread('noisy_audio.wav');t = (0:length(y)-1)/Fs;plot(t, y);xlabel('Time (s)');ylabel('Amplitude');title('Noisy Audio Signal');示例代码end接下来,我们可以利用滤波器对音频信号进行去噪处理:示例代码star:编程语言:matlabDesign a lowpass filterorder = 8;fc = 4000;[b, a] = butter(order, fc/(Fs/2), 'low');Apply the filter to the noisy audio signaly_filtered = filtfilt(b, a, y);Plot the filtered audio signalplot(t, y_filtered);xlabel('Time (s)');ylabel('Amplitude');title('Filtered Audio Signal');示例代码end通过以上代码,我们成功对音频信号进行了去噪处理,并得到了滤波后的音频信号。

语音信号处理与分析及其MATLAB实现

语音信号处理与分析及其MATLAB实现

目录
摘要 (2)
第一章绪论 (3)
1.1 语音课设的意义 (3)
1.2 语音课设的目的与要求 (3)
1.3 语音课设的基本步骤 (3)
第二章设计方案论证 (5)
2.1 设计理论依据 (5)
2.1.1 采样定理 (5)
2.1.2 采样频率 (5)
2.1.3 采样位数与采样频率 (5)
2.2 语音信号的分析及处理方法 (6)
2.2.1 语音的录入与打开 (6)
2.2.2 时域信号的FFT分析 (6)
2.2.3 数字滤波器设计原理 (7)
2.2.4 数字滤波器的设计步骤 (7)
2.2.5 IIR滤波器与FIR滤波器的性能比较 (7)
第三章图形用户界面设计 (9)
3.1 图形用户界面概念 (9)
3.2 图形用户界面设计 (9)
3.3 图形用户界面模块调试 (10)
3.3.1 语音信号的读入与打开 (10)
3.3.2 语音信号的定点分析 (10)
3.3.3 N阶高通滤波器 (12)
3.3.4 N阶低通滤波器 (13)
3.3.5 2N阶带通滤波器 (14)
3.3.6 2N阶带阻滤波器 (15)
3.4 图形用户界面制作 (16)
第四章总结 (19)
附录 (20)
参考文献 (25)。

(完整word版)基于MATLAB对语音信号进行分析和处理

(完整word版)基于MATLAB对语音信号进行分析和处理

基于MATLAB对语音信号进行分析和处理一、设计目的1.学会MATLAB的使用,掌握MA TLAB的程序设计方法;2.掌握在Windows环境下语音信号采集的方法;3.掌握数字信号处理的基本概念、基本理论和基本方法;4.掌握MATLAB设计FIR和IIR数字滤波器的方法;5.学会用MA TLAB对信号进行分析和处理。

二、设计过程1、语音信号采集与分析运用windows下的录音机,录制一段自己的话音,时间为两秒。

然后在MATLAB 软件平台下,利用函数wavread对语音信号进行采样,再运用plot函数画出语音信号的时域波形,最后在语音信号频谱分析时运用fft对信号进行快速傅里叶变换,得到频谱特性图形。

人为设计一个固定频率5500Hz的噪声干扰信号。

噪声信号通常为随机序列,在本设计中用正弦序列代替,干扰信号构建命令函数为d=[Au*sin(2*pi*5500*t)]',给出的干扰信号为一个正弦信号,针对上面的语音信号 ,采集了其中一段。

再对噪音信号进行频谱变换得到其频谱图。

2、滤波器设计和运用滤波器进行滤波1 )窗函数和等波纹逼近法设计FIR滤波器及滤波首先根据阻带最小衰减选定窗口类型,然后调用fir1函数设计线性相位FIR数字滤波器,再用freqz函数画出其频谱图形,最后运用fftfilt函数对信号进行滤波。

而等波纹逼近法中则运用remez和remezord直接设计FIR滤波器,然后运用fftfilt函数对信号进行滤波。

2 )双线性变换法社设计IIR数字滤波器及滤波首先将数字滤波器的技术指标运用预畸校正法转换成模拟滤波器的设计指标:Ωph=2/T*tan(wp/2),然后用butter、cheby1设计各种模拟滤波器,再用bilinear函数进行模拟滤波器和数字滤波器之间的转换,最后用filter函数对语音信号进行滤波,并运用函数sound播放滤波后语音。

三、结果及分析1、用MATLAB对原始语音信号进行分析,画出它的时域波形和频谱时域波形和频谱:图1 原始语音信号图2 语音信号频率响应图图3 原始语音信号FFT与信号频谱2、给原始的语音信号加上一个高频余弦噪声,频率为5500hz。

基于MATLAB的语音信号分析与处理研究

基于MATLAB的语音信号分析与处理研究

基于MATLAB的语音信号分析与处理研究一、引言语音是人类最基本的沟通方式,随着科技的进步,语音信号分析与处理也变得越来越重要。

MATLAB作为一种常用的科学计算软件,具有强大的信号处理功能,在语音信号分析与处理领域有着广泛的应用。

本文将对基于MATLAB的语音信号分析与处理进行研究。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,拥有丰富的信号处理函数和工具箱,可以方便地进行语音信号分析与处理。

例如,MATLAB中的wavread函数可以读取.wav格式的语音文件,audioplayer函数可以播放语音信号,fft函数可以进行快速傅里叶变换,spectrogram函数可以绘制语音信号的谱图等等。

基于MATLAB的语音信号处理可以包括语音信号的去噪、分析、特征提取、分类等多个方面。

其中,语音信号的去噪是一项重要的任务。

在语音信号采集过程中,由于外部环境噪声的干扰,语音信号的质量会受到影响。

MATLAB可以利用卷积和滤波等技术进行去噪,提高语音信号的质量。

语音信号的分析是指对语音信号的基本参数进行测量,例如语音信号的时域、频域、能量、频谱等。

MATLAB中可以通过波形图、频谱图、谱密度图等方式对语音信号进行分析。

特征提取是语音信号处理中的重要环节,通过对语音信号的特征提取,可以为后续的分类工作奠定基础。

MATLAB中常用的语音信号特征包括倒谱系数、线性预测系数、功率谱密度等。

三、基于MATLAB的语音信号处理的应用案例1.基于MATLAB的语音识别系统语音识别技术是近年来发展迅速的一项技术。

可以通过语音识别技术实现语音指令控制、语音输入等功能。

基于MATLAB的语音识别系统可以通过对语音信号的分析、特征提取、分类等工作实现。

在语音识别系统中,广泛应用了HMM(隐马尔可夫模型)和GMM(高斯混合模型)等模型。

2.基于MATLAB的语音合成系统语音合成技术是将文本转换为语音的一种技术,可以实现语音合成、语音替换等功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要 (2)1 设计目的与要求 (3)2 设计步骤 (4)3 设计原理及内容 (5)3.1 理论依据 (5)3.2 信号采集 (6)3.3 构造受干扰信号并对其FFT频谱分析 (8)3.4 数字滤波器设计 (9)3.5 信号处理 (10)总结 (12)致谢 (13)参考文献 (14)用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。

IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。

信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。

离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。

关键词:MATLAB;语音信号;加入噪声;滤波器;滤波1. 设计目的与要求(1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号(2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

2. 设计步骤(1)选择一个语音信号或者自己录制一段语音文件作为分析对象;(2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图;(3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析;(4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化;(5)对语音信号进行回放,感觉声音变化。

3. 设计原理及内容3.1 理论依据(1)采样频率:采样频率(也称采样速度或者采样率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率只能用于周期性采样的采样器,对于非周期采样的采样器没有规则限制。

通俗的讲,采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位之间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

(2)采样位数:即采样值或取样值,用来衡量声音波动变化的参数。

(3)采样定理:在进行模拟/数字信号的的转换过程中,当采样频率f s.max大于信号中,最高频率f max的2倍时,即:f s.max>=2f max,则采样之后的数字信号完整的保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样频率又称乃奎斯特定理。

(4)时域信号的FFT分析:信号的频谱分析就是计算信号的傅立叶变换。

连续信号与系统的傅立叶分析显然不便于直接用计算机进行计算,使其应用受到限制。

而FFT是一种时域和频域均离散化的变换,适合数值计算,成为用计算机分析离散信号和系统的的有力工具。

对连续信号和系统,可以通过时域采样,应用DFT 进行近似谱分析。

(5)数字信号滤波器原理和方法:IIR数字滤波器系统函数:其中H(z)成为N阶IIR数字滤波器系统函数。

IIR滤波器设计方法有间接和直接法,间接法是借助于模拟滤波器的设计方法进行的。

其步骤是:先设计过度模拟滤波器得到系统函数H a(s),然后将H a(s)按某种方法转换成数字滤波器的系统函数H(z)。

利用有限脉冲响应(FIR)滤波器设计滤波器。

有限脉冲响应滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。

用N表示FIR滤波器单位脉冲响应h(n)的长度,其系统函数H(z)为H(z)是z-1的N-1次多项式,它在z平面上有N-1个零点,在原点z=0处有一个N-1重极点。

因此,H(z)永远稳点。

稳定和线性相位是FIR滤波器最突出的优点。

(6)各种不同类型滤波器的性能比较:巴特沃斯滤波器具有单调下降的幅频特性;切比罗夫滤波器的幅频特性在通带或阻带有等波纹特性,可以提高选择性;贝塞尔滤波器通带内有有较好的线性相位特性;椭圆滤波器的选择性相对前三种是最好的,但通带和阻带内均呈现等波纹幅频特性,相对特性的非线性稍重。

IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR 滤波器的低的多。

IIR数字滤波器的设计方法是利用模拟滤波器成熟的理论及设计图进行设计的,因而保留了一些典型模拟滤波器的优良的幅度特性。

(7)离散傅立叶变换其中W N= ,N为DFT变换空间长度。

3.2 信号采集从网上下载一段wav格式的文件,把文件“marble”保存在MATLAB文件夹下的work文件夹中,以.wav格式保存,这是windows操作系统规定的声音文件保存的标准。

[x1,fs,bits]=wavread('marble.wav');%把语音信号进行加载入MATLAB仿真软件平台中,采样值放在向量x1中,fs表示采样频率(Hz),bits表示采样位数。

x=x1(1:5000,1);%对双声道信号取单声道并取其5000点X=fft(x,4096);%对信号做4096点FFT变换调用参数x为被变换的时域序列向量,变换区间长度为4096,当x小于4096时,fft函数自动在x后面补零。

函数返回x的4096点DFT变换结果X。

当x大于4096时,fft函数计算x前面4096个元素构成的长序列的4096点DFT,忽略x后面的元素。

进行图形分区,首先画出语音信号的时域波形,然后对其进行频谱分析。

在MATLAB中利用fft对信号进行快速傅立叶变换,得到信号的频谱特性。

magX=abs(X);%把傅里叶变换后的复数值取模subplot(2,1,1);%图形分区plot(x);title('原始信号波形');%绘制波形f=(0:2047)*fs/2/2048;%单位转换subplot(2,1,2);plot(f,magX(1:2048));title('原始信号频谱');其程序如下:[x1,fs,bits]=wavread('marble.wav'); %读取语音信号x=x1(1:5000,1);%对双声道信号取单声道并取其5000点X=fft(x,4096);%对信号做4096点FFT变换magX=abs(X);%把傅里叶变换后的复数值取模subplot(2,1,1);%图形分区plot(x);title('原始信号波形');%绘制波形f=(0:2047)*fs/2/2048;%单位转换subplot(2,1,2);plot(f,magX(1:2048));title('原始信号频谱');程序结果如下图:图3.1 原始信号3.3构造受干扰信号并对其FFT频谱分析其程序如下:t=[0:0.0001:10];f1=3800;%噪声信号频率y1=0.5*sin(2*pi*f1*t);%噪声信号y2=y1(1,1:5000);%取噪声信号的5000点长度(1,1:5000)因为y1为列向量y=x+y2';%先对噪声信号转置再把噪声信号加入原始信号Y=fft(y2,4096);%求噪声信号频谱magY=abs(Y);%把傅里叶变换后的复数值取模subplot(2,2,1);plot(y2);title('噪声信号波形');%绘制波形subplot(2,2,2);plot(f,magY(1:2048));title('噪声信号频谱');%绘制波形subplot(2,2,3);plot(y);title('加噪后信号波形');%绘制波形Y1=fft(y,4096);%对加噪后的信号做4096点FFT变换magY1=abs(Y1);%把傅里叶变换后的复数值取模subplot(2,2,4);plot(f,magY1(1:2048));title('加噪后信号频谱');%绘制波形程序结果如下图:图3.2 噪声及加噪后图形由图3.1和图3.2可以看出,在5000~10000之间噪声明显,加入噪声后得到的信号和原始的语音信号有明显的不同。

3.4 数字滤波器设计设计数字滤波器的任务就是寻找一个因果稳定的线性时不变系统,并使系统函数H(z)具有指定的频率特性。

本实验采用MATLAB工具箱函数buttord设计数字低通IIR滤波器。

低通滤波器的性能指标为:f_p=5000;f_s=6500; Rp=3;Rs=25;用伯特沃斯型设计滤波器程序如下:f_p=5000;f_s=6500; Rp=3;Rs=25;%设置滤波器参数Ws=f_s/(fs/2);Wp=f_p/(fs/2);[N,wc]=buttord(Wp,Ws,Rp,Rs);%计算滤波器阶数N和3dB截止频率wc[b,a]=butter(N,wc);%计算滤波器系统函数分子分母多项式系数freqz(b,a,1000,fs);%绘制滤波器特性曲线W 就是j后面的s或z,其实着看频谱图就行,H和W没什么用n是至你的数据点数后面还应该有个Fs,即采样率这样可以讲频谱图横轴变成Hz,不然就是个0~1的*pi/FS比例系数axis([0 8000 -30 3]);程序结果如下图:图3.3 数字低通滤波器图3.5 信号处理巴特沃斯滤波器利用函数filter进行滤波。

用设计的滤波器对含噪声的语音信号进行滤波,对滤波后的信号进行FFT进行频谱分析。

函数fft的调用格式是y=fft(b,x),低通滤波器:Z=fft(z,4096);其程序如下:z=filter(b,a,y);%把加噪后的信号滤波subplot(2,1,1);plot(z);title('滤波后的波形');%绘制波形Z=fft(z,4096);%对信号做4096点FFT变换magZ1=abs(Z);%把傅里叶变换后的复数值取模magZ=magZ1(1:2048);%取点subplot(2,1,2);plot(magZ);title('滤波后的信号频谱');%绘制波形程序结果如下图:图3.4 滤波后的图形将原始信号波形和滤波后的图形相比较,大致相同,说明滤波器有效果,滤波成功。

总结本设计采用MATLAB实现了语音信号的采集,对语音信号的加噪及设计滤波器滤除噪声等一系列工作,从频率图可以看出,巴特沃斯滤波器具有单调下降的幅频特性,通带内是光滑的。

我已基本完成设计任务,里面也有很多不足。

通过本次教学实践,使我加深了对课堂知识的巩固和理解,并能掌握语音信号处理中的基本方法、理论应用和基于软硬件平台的算法实现技术。

相关文档
最新文档