平行四边形最值问题
专题02 特殊平行四边形中的四种最值问题(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题02特殊平行四边形中的四种最值问题类型一、将军饮马(轴对称)型最值问题A .5B .【答案】B 【分析】作点E 关于BD 的对称点为∵E 关于BD 的对称点为'E ,∴'PE PE =,'BE BE =,∵正方形ABCD 的边长为2,点A.0B.3【答案】C【分析】要使四边形APQE的周长最小,由于在BC边上确定点P、Q的位置,可在与BC交于一点即为Q点,过A点作后过G点作BC的平行线交DC的延长线于长度.∵四边形ABCD 是矩形,∴8BC AD ==,90D Ð=°,∠QCE =90°,∵2PQ =,∴6DF AD AF =-=,∵点F 点关于BC 的对称点G ,∴FG AD⊥∴90DFG ∠=︒∴四边形FGHD 是矩形,∴GH =DF =6,∠H =90°,∵点E 是CD 中点,∴CE =2,∴EH =2+4=6,∴∠GEH =45°,∴∠CEQ =45°,设BP =x ,则CQ =BC ﹣BP ﹣PQ =8﹣x ﹣2=6﹣x ,在△CQE 中,∵∠QCE =90°,∠CEQ =45°,∴CQ =EC ,∴6﹣x =2,解得x =4.故选:C .【点睛】本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.例3.如图,在矩形ABCD 中,26AB AD ==,,O 为对角线AC 的中点,点P 在AD 边上,且2AP =,点Q【答案】210【分析】①连接PO并延长交BC 明四边形APHB是矩形可得AB②过点O作关于BC的对称点PQ OQ+的最小值为PO'的长度,延长∵GO AD'⊥,点O是AC的中点,∴132AG AD==,【点睛】本题考查矩形的性质、全等三角形的判定与性质、勾股定理及轴对称识是解题的关键.【变式训练1】如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE PD+的最小值为()A .35B .32C .6D .5【答案】A 【详解】解:如图,连接BE ,设BE 与AC 交于点P',∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P'D =P'B ,∴P'D +P'E =P'B +P'E =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,即为BE 的长度.∵正方形ABCD 的周长为24,∴直角△CBE 中,∠BCE =90°,BC =6,CE =12CD =3,∴226335BE =+=故选A.【变式训练2】如图,在矩形ABCD 中,AB =2,AD =3,动点P 满足S △PBC =14S 矩形ABCD ,则点P 到B ,C 两点距离之和PB +PC 的最小值为()A 10B 13C 15D .3【答案】B 【详解】解:设△PBC 中BC 边上的高是h .∵S △PBC =14S 矩形ABCD .∴12BC •h =14AB •AD ,∴h =12AB =1,∴动点P 在与BC 平行且与BC 的距离是1的直线l 上,如图,作B 关于直线l 的对称点E ,连接CE ,则CE 的长就是所求的最短距离.在Rt △BCE 中,∵BC =3,BE =BA =2,∴CE 2213+AB BC 即PB +PC 13故选:B .【变式训练3】如图,在正方形ABCD 中,4AB =,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且3BM =,P 为对角线BD 上一点,则PM PN -的最大值为_____________.【答案】1【分析】作N 关于BD 的对称点E ,连接PE ,ME ,过点M 作MQ ⊥AC ,垂足为Q ,可判定当点P ,E ,M 三点共线时,PM -PE 的值最大,为ME 的长,求出CE ,CQ ,得到EQ ,利用垂直平分线的性质得到EM =CM =1即可.【详解】解:如图:作N 关于BD 的对称点E ,连接PE ,ME ,过点M 作MQ ⊥AC ,垂足为Q ,∴PN =PE ,则PM -PN =PM -PE ,【答案】13【分析】连接CF、AF+=+,故当EF MN EF AF类型二、翻折型最值问题例1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A'MN,连接A'C,则A'C长度的最小值是()【变式训练1】如图,在矩形ABCD 中,3AB =,4=AD ,E 在AB 上,1BE =,F 是线段BC 上的动点,将EBF △沿EF 所在的直线折叠得到'EB F △,连接'B D ,则'B D 的最小值是()A .6B .4C .2D .1-【答案】D 【详解】解:如图,'B 的运动轨迹是以E 为圆心,以BE 的长为半径的圆.所以,当'B 点落在DE 上时,'B D 取得最小值.根据折叠的性质,△EBF ≌△EB’F ,∴E 'B ⊥'B F ,∴E 'B =EB ,∵1BE =∴E 'B =1,∵3AB =,4=AD ,∴AE =3-1=2,∴DE =D 'B =.故选:D .【变式训练2】如图,在正方形ABCD 中,AB =6,E 是CD 边上的中点,F 是线段BC 上的动点,将△ECF 沿EF 所在的直线折叠得到EC F '△,连接AC ',则的最小值是AC '_______.【答案】3【详解】解:∵四边形ABCD 是正方形,∴6CD AB AD ===,∵E 是CD 边上的中点,∴132EC CD ==∵△ECF 沿EF 所在的直线折叠得到EC F '△,∴3EC EC '==,∴当点A ,C ',E 三点共线时,AC '最小,如图,在Rt ADE △中,由勾股定理得:AE ==3AE EC '-=-,∴AC '的最小值为3.类型三、旋转型最值问题【答案】353-【分析】过点M 作MP CD ⊥,垂足为P ,连接CM ,根据正方形的性质求出CE ,证明EDC DMP △≌△股定理求出CM ,根据CN MN CM +≥即可求出CN 【详解】解:过点M 作MP CD ⊥,垂足为P ,连接由旋转可得:DE DM =,3EF MN ==,90EDM ∠=例2.如图,长方形ABCD 中,6AB =,8BC =,E 为BC 上一点,且2BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转30°到EG 的位置,连接FG 和CG ,则CG 的最小值为______.【答案】2+【详解】解:如图,将线段BE 绕点E 顺时针旋转30°得到线段ET ,连接GT ,过E 作EJ CG ⊥,垂足为J ,∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =30°,∴∠BEF =∠TEG ,在△EBF 和△TEG 中,EB ET BEF TEG EF EG =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 的在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵∠EJG =∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴∠JET =90°,GJ =TE =BE =2,∵∠BET =30°,∴∠JEC =180°-∠JET -∠BET =60°,∵8BC =,∴226,3,3EC BC BE EJ CJ EC EJ =-===-=,∴CG =CJ +GJ =332+.∴CG 的最小值为332+.故答案为:332.【变式训练1】如图,已知正方形ABCD 的边长为a ,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接DF ,CF ,则当DF CF +之和取最小值时,DCF 的周长为______.(用含a 的代数式表示)【答案】()51a +【分析】连接BF ,过点F 作FG AB ⊥交AB 延长线于点G ,先证明AED GFE △≌△,即可得到点F 在CBG ∠的角平分线上运动,作点C 关于BF 的对称点C ',当点D ,F ,C 三点共线时,DF CF DC +='最小,根据勾股定理求出DC DF CF '=+的最小值为35,即可求出此时DCF 的周长为353+.将ED绕点E顺时针旋转90︒到EF,=,∴⊥,EF DEEF DEDEA FEG DEA ADE∴∠+∠=∠+∠=︒,90∴∠=∠,ADE FEG又90,∠=∠=︒DAE FGE(1)试猜想线段BG 和AE 的数量关系,并证明你得到的结论;(2)将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若2BC DE ==,在(2)的旋转过程中,①当AE 为最大值时,则AF =___________.ABC 是等腰直角三角形,AD BC ∴⊥,BD CD =,90ADB ADC ∴∠=∠=︒.四边形DEFG 是正方形,DE DG ∴=.在BDG 和ADE V 中,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩,(SAS)ADE BDG ∴△≌△,BG AE ∴=;(2)(1)中的结论仍然成立,BG AE =,BG AE ⊥.理由如下:如图②,连接AD ,延长EA 交BG 于K ,交DG 于O .在Rt BAC 中,D 为斜边BC 中点,AD BD ∴=,AD BC ⊥,90ADG GDB ∴∠+∠=︒.四边形EFGD 为正方形,DE DG ∴=,且90GDE ∠=︒,90ADG ADE ∴∠+∠=︒,BDG ADE ∴∠=∠.在BDG 和ADE V 中,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩,(SAS)BDG ADE ∴△≌△,BG AE ∴=,BGD AED ∠=∠,2,==BC DEBG∴=+=.213AE∴=.3在Rt AEF中,由勾股定理,得222=+=+3AF AE EF中,如图②中,在BDGBG∴-≤≤+,2112∴的最小值为1,此时如图④中,AE在Rt AEF中,2=AF EF【点睛】本题属于四边形综合题,考查了旋转的性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,正方形的性质的运用,解答时证明三角形全等是关键.类型四、PA+KPB型最值问题3A.27B.23【答案】C【分析】连接AC与EF相交于∵四边形ABCD是菱形,∠=∠,∴OAE OCFA.3B.22【答案】D【分析】连接AF,利用三角形中位线定理,可知四边形ABCD是菱形,∴==,AB BC23,H分别为AE,EF的中点,GGH∴是AEF△的中位线,【答案】51-【分析】连接BD交EF的中点,求出OB的长,得到AH AM MH>=-–51直线l平分正方形∴O是BD的中点,四边形ABCD是正方形,∴==,BD AB24【答案】26【分析】利用轴对称的性质作出如图的辅助线,在【详解】解:延长DC '''∴E F G H E '''、、、、在同一直线上时,四边形EFCH 作E K AB '⊥交AB 延长于点K ,则23EK BE CD A E AB CD '''=++=+=,E K BC '=+在△ABH中,∠AHB=90°,∠ABH过点D作DE∥AC交BC延长线于点E,作点C【点睛】本题考查了对称的性质,勾股定理,等边三角形的判定和性质,最值问题,直角三角形的性质,多边形的面积,知识点较多,难度较大,解题的关键是作出辅助线,得出当且仅当B,D,F三点共线时,BD+CD取得最小值.。
四边形最值问题解题技巧

四边形最值问题解题技巧介绍四边形是几何图形中最常见的形状之一。
对于给定的四边形,我们常常需要解决最值问题,即找出四边形的最大或最小值。
本文将介绍一些解决四边形最值问题的技巧和方法。
一、四边形的基本概念在开始讨论解题技巧之前,我们首先需要了解一些关于四边形的基本概念。
一个四边形由四条线段组成,相邻的两个线段之间有一个角。
四边形的内角和为360度。
常见的四边形类型包括矩形、正方形、平行四边形、菱形等。
二、解决四边形最值问题的一般步骤解决四边形最值问题的一般步骤可以分为以下几步:1. 确定四边形的类型根据给定的条件,确定四边形的类型。
不同类型的四边形具有不同的属性和特点,需要根据具体的情况选择相应的解题技巧。
2. 利用基本几何性质寻找约束条件根据四边形的性质和已知条件,寻找约束条件。
这些约束条件将帮助我们确定四边形的其他属性,从而解决最值问题。
3. 应用数学方法求解最值根据已知条件,利用数学方法求解四边形的最值。
这些方法可能包括求导、代数运算、三角函数等。
4. 检验结果求解完最值问题后,需要检验结果是否合理。
检验过程包括验证数学计算的正确性和对结果的合理性进行分析。
三、解决不同类型四边形最值问题的技巧下面将介绍一些常见的四边形类型及其对应的最值问题解题技巧。
1. 矩形和正方形矩形和正方形是最常见的四边形类型。
对于矩形和正方形的最值问题,常用的解题技巧包括:(1)对角线长度最值问题对角线长度最值问题是指在给定矩形或正方形的周长不变的情况下,找出对角线长度的最大或最小值。
解决该问题的技巧是使用两个对角线的长度表示矩形或正方形的面积,并应用数学方法求解。
(2)面积最值问题面积最值问题是指在给定矩形或正方形的周长不变的情况下,找出面积的最大或最小值。
解决该问题的技巧是使用两个相等的邻边的长度表示矩形或正方形的面积,并应用数学方法求解。
2. 平行四边形和菱形平行四边形和菱形也是常见的四边形类型。
对于平行四边形和菱形的最值问题,常用的解题技巧包括:(1)对角线长度最值问题对角线长度最值问题是指在给定平行四边形或菱形的周长不变的情况下,找出对角线长度的最大或最小值。
平行四边形的最值问题方法技巧

平行四边形的最值问题方法技巧平行四边形,这个名字听起来是不是有点高大上?但其实它就是我们日常生活中随处可见的形状,比如你窗户的形状、桌子上摆放的书本,甚至是你最爱的披萨切成的片儿,嘿,不小心又饿了!今天我们就来聊聊如何通过平行四边形的最值问题,找到那些“藏在角落里的小秘密”。
我们先来搞清楚几个基本概念,之后再深入挖掘其中的技巧,保证让你一边学一边乐,像是在吃冰淇淋那样爽!1. 平行四边形的基本知识1.1 什么是平行四边形?简单来说,平行四边形就是两组对边平行且相等的四边形。
听起来像是在说数学咒语,其实你看看书本、课桌,都是这些家伙的身影。
它的对角线虽然不一定相等,但相交时却恰好把彼此分成两个相等的部分,真是个小聪明啊。
1.2 平行四边形的面积和周长说到平行四边形,咱们不能不提面积和周长。
这俩小子就像是平行四边形的“身份证”,一个告诉你这个形状有多大,另一个则告诉你它的边界有多长。
面积的计算其实很简单,底边乘以高就能搞定,记住了么?周长嘛,就是把四条边加起来,简简单单,就像数钱一样。
2. 最值问题的引入2.1 什么是最值问题?最值问题,顾名思义,就是找出某个数值的最大或最小值。
就像你想知道,哪种披萨的切片最大,或者今天你吃的那一碗面条,能不能多来几块肉?在平行四边形中,最值问题经常会出现,比如找最大面积、最小周长等等。
这种问题其实蛮有趣的,像是一场智力的较量。
2.2 如何求解最值问题?这儿就需要用到一些小技巧了。
首先,得明确你要找的是什么最值,是面积、周长还是其他?比如,面积最大的时候,底边和高得是完美的搭档,想象一下,正方形就是平行四边形中面积最大的,真是个“勤奋”的小家伙。
而要找最小周长时,注意这家伙的两边得保持比例,得心应手,才能事半功倍。
3. 实际应用与技巧3.1 实际应用平行四边形的最值问题不仅仅是在课本上跳舞,它在生活中也很常见。
例如,在建筑设计中,工程师们常常要计算出某个区域的最大利用面积,来规划更合理的空间布局。
18.2 拓展专题 特殊平行四边形中的最值问题-2022-2023学年八年级下册初二数学(人教版)

18.2 拓展专题特殊平行四边形中的最值问题•作者:初二数学(人教版)编写组•发布日期:2022年引言本文将介绍拓展专题中的一个重要主题:特殊平行四边形中的最值问题。
我们将通过解析具体的例题,帮助读者理解并掌握该问题的解题方法和技巧。
1. 特殊平行四边形简介特殊平行四边形是指具有一些特殊性质的平行四边形,如矩形、正方形和菱形等。
这些特殊平行四边形在几何学中经常出现,具有重要的几何性质。
2. 特殊平行四边形中的最值问题特殊平行四边形中的最值问题是指在特殊平行四边形中寻找某些属性的最大值或最小值。
这种问题通常需要我们利用特殊平行四边形的某些性质来进行求解。
在解决这类问题时,我们通常需要先了解特殊平行四边形的性质,然后确定所要求的属性,并根据特殊平行四边形的性质来推导解决方法。
3. 解题方法和技巧3.1 矩形中的最值问题矩形是一种特殊的平行四边形,具有相等的对边和相等的内角。
因为矩形具有对角线相等、对角线互相平分以及对边相等的性质,所以在矩形中寻找某些属性的最值问题,我们可以运用这些性质来解决。
例如,我们要在一个给定周长的矩形中求解最大的面积。
由于矩形的周长等于两倍的长加两倍的宽,我们可以设矩形的长为x,宽为y,得出周长等式:2x + 2y= 周长。
然后,我们利用矩形的面积公式S = xy,将x用y的表达式代入,从而得到关于y的函数,然后求这个函数的最大值,即可得到最大面积。
3.2 正方形中的最值问题正方形是边长相等的矩形,具有特殊的性质。
在正方形中寻找某些属性的最值问题,常常可以通过利用其对称性来解决。
例如,我们要在一个给定周长的正方形中求解最大的面积。
由于正方形的周长等于四倍的边长,我们可以设正方形的边长为x,得出周长等式:4x = 周长。
然后,我们利用正方形的面积公式S = x²,将x代入,从而得到关于x的函数,然后求这个函数的最大值,即可得到最大面积。
3.3 菱形中的最值问题菱形是具有对边相等、对角线互相垂直的平行四边形。
初二平行四边形最值问题(一)

初二平行四边形最值问题(一)初二平行四边形最值问题有以下相关问题:1.初二平行四边形面积最大值问题–解释:在给定周长的条件下,如何确定平行四边形的面积达到最大值。
–解决方法:使用优化理论中的求极值方法,将平行四边形的面积表示为一个关于某个变量的函数,然后求导找到函数的极值点。
2.初二平行四边形周长最小值问题–解释:在给定面积的条件下,如何确定平行四边形的周长达到最小值。
–解决方法:同样使用优化理论中的求极值方法,将平行四边形的周长表示为一个关于某个变量的函数,然后求导找到函数的极值点。
3.初二平行四边形对角线长度最小值问题–解释:在给定面积或周长的条件下,如何确定平行四边形的对角线长度达到最小值。
–解决方法:可以通过将平行四边形的对角线长度表示为一个关于某个变量的函数,然后利用求导的方法找到函数的极值点。
4.初二平行四边形不等边问题–解释:当平行四边形的两对边不相等时,如何确定平行四边形的面积和周长。
–解决方法:根据已知的条件,可以利用平行四边形的性质和几何关系,建立方程并求解。
5.初二平行四边形不等角问题–解释:当平行四边形的两对角不相等时,如何确定平行四边形的面积和周长。
–解决方法:同样根据已知的条件,利用平行四边形的性质和几何关系,建立方程并求解。
6.初二平行四边形面积、周长同时最大最小值问题–解释:在给定的条件下,如何确定平行四边形的面积和周长同时达到最大或最小值。
–解决方法:通过对面积和周长进行约束条件的建立,并利用优化理论中的求多元函数的极值方法。
以上是初二平行四边形最值问题的一些相关问题及解释说明。
通过研究这些问题,可以帮助学生更好地掌握平行四边形的性质和应用,同时提升解决数学问题的能力。
人教版初二数学8年级下册 第18章(平行四边形)最值问题专项训练(含答案)

人教版数学八年级下期第十八章平行四边形最值问题训练一、选择题1.如图,在菱形ABCD中,∠ABC=60∘,E为BC边的中点,M为对角线BD上的一BM最小值的是()个动点.则下列线段的长等于AM+12A. ADB. AEC. BDD. BES矩形2.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P,满足S△PAB=13,则点P到A、B两点的距离之和PA+PB的最小值( )ABCDA. 4B. 42C. 22D. 23.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.54.如图,正方形ABCD的边长为4,E点是BC上一点,F是AB上一点,P是AC上一动点,且BE=1,AF=2,则PE+PF的最小值是( )A. 4B. 15C. 5D. 175.如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A. 10B. 43C. 20D. 876.如图,矩形ABCD中,∠BOC=120°,BD=12,点P是AD边上一动点,则OP的最小值为()A. 3B. 4C. 5D. 6二、填空题7.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是____.8.如图,在边长为6的菱形ABCD中, ∠ DAB=120°,E,F分别为边CD、CB上的动点,且CE+CF= 6,则线段EF长的最小值是 .9.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为______.10.填空如图,在菱形ABCD中,∠B=45°,BC=23,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为____.11.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′B,则线段A′B 长度的最小值是_____________.12.如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则▵GPQ的周长最小值是_________.三、解答题13.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)四边形EDFG面积的最小值为________.14.如图,点O为▱ABCD的对角线AC,BD的交点,∠BCO=90°,∠BOC=60°,BD=8,点E是OD上的一动点,点F是OB上的一动点(E,F不与端点重合),且DE=OF,连接AE,CF.(1)求线段EF的长;(2)若△OAE的面积为S1,△OCF的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着DE的增大,S1+S2的值是如何发生变化的?(3)求AE+CF的最小值.15.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)是否存在点P,使得GH最短?若存在,请求出最小值,若不存在,请说明理由.16.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.(3)若正方形ABCD的边长为4,取DH的中点M,请直接写出线段BM长的最小值.17.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上的动点(不含B、D).(1)证明无论动点P在何处,四边形PMCN的面积总是固定值,这个固定值是多少?(2)试探究动点P在何处时,四边形PMCN的周长最小,最小值是多少?18.如图,正方形ABCD中,以B为顶点的交AD于E,交CD于F,延长DC使得CG=AE.(1)证明:△ABE≌△CBG;(2)若EF=5,AE=2,求AB的长度.(3)在(2)条件下,若P为线段BF上一动点,求PG+PC最小值.参考答案1.B2.B3.B4.D5.C6.A7.38.339.310.6211.23−212.2+2513.解:(1)连接DC,∵O是EF的中点,GO=OD,∴四边形EDFG是平行四边形,∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD,在△ADE和△CDF中,AE=CF,∠A=∠DCFAD=CD∴△ADE≌△CDF,∴DE=DF,∠ADE=∠CDF,∴四边形EDFG是菱形,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴四边形EDFG是正方形;(2)4.14.解:(1)∵四边形ABCD是平行四边形,∴OD=OB,∵DE=OF,BD=4;∴EF=OD=12(2)S1+S2的值不变,理由如下:如图所示,连结AF,∵四边形ABCD是平行四边形,∴AO=OC,∴S△AOF=S△COF,∵DE=OF,∴S △ADE =S △COF ,∴S 1+S 2=S △AEF =S △AOD ,∵∠BCO =90°,∠BOC =60°,∴∠DAC =90°,∠AOD =60°,∴AO =12OD =2,在Rt △AOD 中,AD =3AO =23,∴S 1+S 2=S △AOD =12AD •OA =12×23×2=23;(3)当DE =OE 时,AE +CF 的值最小,此时E 为OD 的中点,∵∠OAD =90°,∴AE =12OD =2,同理CF =2,∴AE +CF 的最小值=4.15.(1)证明∵AC =9 AB =12 BC =15,∴AC 2=81,AB 2=144,BC 2=225,∴AC 2+AB 2=BC 2,∴∠A =90°.∵PG ⊥AC ,PH ⊥AB ,∴∠AGP =∠AHP =90°,∴四边形AGPH 是矩形;(2)存在.理由如下:连结AP .∵四边形AGPH 是矩形,∴GH =AP .∵当AP ⊥BC 时AP 最短.根据三角形面积有12×9×12=12×15•AP .∴AP =365,.∴GH=36516.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF=DCDG=DG,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=2AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵DM=BE∠1=∠BEH DE=EH,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=2AE,∴BH=2AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵∠A=∠ENH ∠1=∠NEH DE=EH,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=2HN=2AE.(3)22.17.解:(1)如图所示:∵M、N分别是边BC、CD的中点,∴MN∥BD.∴△PMN的面积=△BMN的面积=△CMN的面积,∴四边形PMCN的面积=1菱形ABCD的面积=6;4(2)如图所示:作M关于BD的对称点Q,连接NQ交BD于P,连接MP,此时MP+NP的值最小,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AP=3,BP=PD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,∴四边形PMCN周长最小值是10.18.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠A=∠BCD=90°,∴∠A=∠BCG=90°,∵AE=CG,∴△ABE≌△CBG;(2)设AB=x,∵四边形ABCD是正方形,∴AB=AD=CD=x,∵AE=2,AE=CG,∴DE=x-2,CG=2,由(1)知△ABE≌△CBG,∴BE=BG,∠ABE=∠CBG,∵∠EBF=45°,∴∠ABE+∠CBF=45°,∴∠ABE+∠CBG=45°,即∠GBF=45°,∴∠EBF=∠GBF,∵BF=BF,∴△EBF≌△GBF,∴EF=GF=5,∴FC=GF-CG=5-2=3,∴DF=x-3,在RT△DEF中,由勾股定理得,DE2+DF2=EF2,∴(x-2)2+(x-3)2=52,解得x=6或-1(舍去),即AB的长度是6;(3)连接EG,EC,如图,由(2)知△EBF≌△GBF,∴点E与点G关于BF对称,连接EC,则EC与BF的交点即为点P,此时PG+PC最小,且最小值是PG+PC=PE+PC=EC,在Rt△CDE中,由勾股定理得:CD2+DE2=EC2,由(2)知CD=AB=6,DE=6-2=4,∴EC2=62+42=52,∴EC=213,即PG+PC的最小值是213.。
人教版初中数学讲义八年级下册第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(解析版)

第09讲专题4平行(特殊)四边形中的最值问题1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是()A.2B.C.3D.【解答】解:连接CM,当CM⊥AB时,CM的值最小(垂线段最短),此时DE有最小值,理由是:∵∠C=90°,AC=6,BC=8,∴AB===10,∴AC•BC=,∴=,∴CM=,∵点D、E分别为CN,MN的中点,∴DE=CM==,即DE的最小值是,故选:B.2.如图,在▱ABCD中,∠C=120°,AD=2AB=8,点H,G分别是边CD,BC上的动点,连接AH,HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为.【解答】解:如图:取AD的中点M,连接CM、AG、AC,过点A作AN⊥BC于点N,∴AM=DM=AD=×8=4,∵四边形ABCD是平行四边形,∠BCD=120°,AD=2AB=8,∴∠D=180°﹣∠BCD=60°,AB=CD=AD=×8=4,∴AM=DM=DC=4,∴△CDM是等边三角形,∴∠DMC=∠MCD=60°,AM=MC,∴∠MAC=∠MCA=∠DMC=×60°=30°,∴∠ACD=∠MCA+∠MCD=30°+60°=90°,在Rt△ACD中,由勾股定理得:AC===4,在Rt△ACN中,∠ACN=∠BCD﹣∠ACD=120°﹣90°=30°,∴AN=AC=×4=2,∵AE=EH,GF=FH,∴EF是△AHG的中位线,∴EF=AG,∵AG的最大值为AC的长,最小值为AN的长,∴AG的最大值为4,最小值为2,∴EF的最大值为2,最小值为,∴EF的最大值与最小值的差为2﹣=,故答案为:.3.如图,在▱ABCD中,已知AB=4,BC=6,∠ABC=60°,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点Q,则线段QC的最小值为2﹣4.【解答】解:如图,过点A作AH⊥BC于H,连接AC,∵AB=4,BC=6,∠ABC=60°,则AH=AB•sin∠ABC=4sin60°=2,BH=AB•cos∠ABC=4cos60°=2,∴CH=BC﹣BH=6﹣2=4,在Rt△ACH中,AC===2,∵点B与点Q关于直线AP对称,∴AQ=AB=4,∴点Q在以A为圆心AB为半径的⊙A上,∴当C、Q、A三点共线时QC最小,QC的最小值=AC﹣AQ=2﹣4,故答案为:2﹣4.4.如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为6.【解答】解:如图所示:∵四边形PAQC是平行四边形,∴AO=CO,OP=OQ,∵PQ最短也就是PO最短,过点O作OE⊥AB,当点P与E重合时,OP最短,OE即为所求,∵∠BAC=30°,∴OE=OA,∵AB=AC=12,∵AO=AC=×12=6,∴OE=3,∴PQ的最小值=2OE=6,故答案为:6.5.如图,在△ABC中,AB=BC=10,AC=12,点D,E分别是AB,BC边上的动点,连结DE,F,M分别是AD,DE的中点,则FM的最小值为()A.12B.10C.9.6D.4.8【解答】解:如图,过点B作BH⊥AC于H,∵F,M分别是AD,DE的中点,∴FM=,∴当AE取最小值时,FM的值最小,由垂线段最短可知,当AE⊥BC于点E时,AE的值最小,在△ABC中,AB=BC=10,AC=12,∴CH=,∴BH===8,∴=48,又∵,∴,∴AE=9.6,∴FM=4.8,故选:D.6.如图,在△ABC中,∠BAC=30°,AB=AC=4,P为AB边上一动点,以PA,PC为邻边作平行四边形PAQC,则对角线PQ的最小值为()A.2cm B.2.5cm C.3cm D.4cm【解答】解:如图,过点C作CD⊥AB于点D,∵在Rt△ACD中,∠ADC=90°,∠BAC=30°,AC=4cm,∴,∵四边形PAQC是平行四边形,∴AB∥CQ,∴当PQ⊥AB时,PQ取得最小值,此时PQ=CD=2cm,故选:A.7.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.4B.5C.6D.10【解答】解:∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=DN,当点N与点B重合时,DN最大,此时DN==10,∴EF长度的最大值为5,故选:B.8.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD 的最小值是()A.B.3+3C.6+D.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.9.如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,点M是点A关于直线BE的对称点,连接MD,则MD的最小值是()A.6B.5C.4D.3【解答】解:连接BD,以点B为圆心,BA为半径作圆,交BD于点M,∵四边形ABCD为矩形,∴∠A=90°,∴BD==10,∵点A和点M关于BE对称,∴AB=BM=6,∴DM=BD﹣BM=10﹣6=4.故DM的最小值为4.故选:C.G,H为垂足,连接GH.若AB=8,AD=6,EF=5,则GH的最小值是7.5.【解答】解:连接AC、AP、CP,如图所示:∵四边形ABCD是矩形,∴BC=AD=6,∠BAD=∠B=∠C=90°,∴AC===10,∵P是线段EF的中点,∴AP=EF=2.5,∵PG⊥BC,PH⊥CD,∴∠PGC=∠PHC=90°,∴四边形PGCH是矩形,∴GH=CP,当A、P、C三点共线时,CP最小=AC﹣AP=10﹣2.5=7.5,∴GH的最小值是7.5,故答案为:7.5.11.如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为.【解答】解:如图,连接AC、AE、CF、CG,在正方形ABCD和正方形DEFG中,AD=CD,DE=DG=EF,∠ADC=∠EDG=90°,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,∴∠ADE=∠CDG,∴△ADE≌△CDG,∴AE=CG,∴d1+d2+d3=DE+CF+CG=EF+CF+AE,∴当点A、E、F、C在同一直线上时(此时点F与点C重合),DE+CF+AE最小,最小值为线段AC长,在Rt△ABC中,AC=,∴d1+d2+d3的最小值为.12.如图所示,在边长为2的菱形ABCD中,∠DAB=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为.(提示:根据轴对称的性质)【解答】解:连接DB,DE,设DE交AC于M,连接MB,DF,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,∴AE=AD=1,DE==,∴EF+BF的最小值为.13.如图,P是Rt△ABC的斜边AC(不与点A、C重合)上一动点,分别作PM⊥AB于点M,PN⊥BC于点N,O是MN的中点,若AB=5,BC=12,当点P在AC上运动时,BO的最小值是.【解答】解:连接BP,如图所示:∵∠ABC=90°,PM⊥AB于点M,PN⊥BC于点N,∴∠ABC=∠PMB=∠PNB=90°,∴四边形BMPN是矩形,AC===13,∴BP=MN,BP与MN互相平分,∵点O是MN的中点,∴点O是BP的中点,∴BO=BP=MN,当BP⊥AC时,BP最小===,∴MN=,∴BO的最小值=MN=,故答案为:.14.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是菱形内一动点,且满足MN=1,连接CN,则CN的最小值为﹣1.【解答】解:过点M作MH⊥CD,交CD的延长线于点H,如图所示:在边长为2的菱形ABCD中,∠A=60°,AB∥CD,∴∠HDM=∠A=60°,∴∠HMD=30°,∵点M是AD边的中点,∴DM=1,∴DH=,根据勾股定理,得HM=,∵CD=2,∴CH=,根据勾股定理,得CM=,∵MN=1,当点N运动到线段CM上的点N′时,CN取得最小值,CN′=CM﹣MN=﹣1,∴CN的最小值为﹣1,故答案为:﹣1.15.如图,在菱形ABCD中,AC=24,BD=10.E是CD边上一动点,过点E分别作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为.【解答】解:连接OE,作OH⊥CD于点H,∵四边形ABCD是菱形,AC=24,BD=10,∴AC⊥BD,OC=OA=AC=12,OD=OB=BD=5,∴∠COD=90°,∴CD===13,,∵CD•OH=OC•OD=S△COD∴×13OH=×12×5,解得OH=,∵EF⊥OC于点F,EG⊥OD于点G,∴∠OFE=∠OGE=∠FOG=90°,∴四边形OGEF是矩形,∴OE=FG,∴OE≥OH,∵FG≥,∴FG的最小值为,故答案为:.16.如图,矩形ABCD中,AB=6,AD=4,点E,F分别是AB,DC上的动点,EF∥BC,则BF+DE最小值是()A.13B.10C.12D.5【解答】解:延长AD,取点M,使得AD=DM,连接MP,如图,∵EF∥BC,四边形ABCD是矩形,∴四边形AEFD和四边形EBCF是矩形,∵AD=DM,AE=DF,∠EAD=∠FDM=90°,∴△ADE≌△DMF(SAS),∴DE=MF,∴BF+DE=BF+FM,∵点E,F分别是AB,DC上的动点,故当B,F,M三点共线时,BF+DE的值最小,且BF+DE的值等于BM的值,在Rt△BAM中,,故选:B.17.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A.B.C.D.【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,HA=4+4=8,所以AE+DE=DH.在Rt△ADH中,DH=∴BF+DE最小值为4.故选:C.18.如图,在Rt△ABC中,∠BAC=90°,且AB=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,点O为MN的中点,则线段AO的最小值为()A.4.8B.5C.2.4D.3.6【解答】解:如图,连接AD,∵∠BAC=90°,且AB=6,AC=8,∴,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,,∴当AD⊥BC时,AD的值最小,此时,,∴,∴AO的最小值为2.4,故选:C.19.如图,在△ABC中,∠C=90°,点D在斜边AB上,E、F分别在直角边CA、BC上,且DE⊥AC,DF∥AC.(1)求证:四边形CEDF是矩形;(2)连接EF,若C到AB的距离是5,求EF的最小值.【解答】(1)证明:∵DF∥AC,∠C=90°,∴∠DFB=∠C=90°,∴∠DFC=90°=∠C,∵DE⊥AC,∴∠DEC=90°=∠DFC=∠C,∴四边形CEDF是矩形;(2)解:连接CD,如图所示:由(1)可知,四边形CEDF是矩形,∴CD=EF,∴当CD有最小值时,EF的值最小,∵当CD⊥AB时,CD有最小值,∴CD⊥AB时,EF有最小值,∵C到AB的距离是5,即点C到AB的垂直距离为5,∴CD的最小值为5,∴EF的最小值为5.20.如图所示,在菱形ABCD中,AB=8,∠BAD=120°,△AEF为等边三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF.(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【解答】(1)证明:连接AC,如图所示:∵四边形ABCD为菱形,∠BAD=120°,∴∠BAC=60°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE+∠EAC=60°,∠CAF+∠EAC=60°,∴∠BAE=∠CAF,∵四边形ABCD为菱形,∴AD∥BC,∴∠ABC+∠BAD=180°,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠ACF=60°,AC=AB,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF.(2)解:四边形AECF的面积不变.理由:由(1)得△ABE≌△ACF,=S△ACF,则S△ABE=S△AEC+S△ACF=S△故S四边形AECFAEC+S△ABE=S△ABC,是定值;作AH⊥BC于H点,如图所示:∵∠AHB=90°,∠ABC=60°,∴∠BAH=90°﹣60°=30°,∴,在Rt△ABH中,根据勾股定理得:,=S△ABC=.∴S四边形AECF=S四边形AECF﹣S△AEF=S菱形ABCD﹣S△AEF,∵S△CEF∴△CEF的面积随△AEF面积的变化而变化,∵△AEF为等边三角形,∴当AE最短时,△AEF的面积最小,则△CEF的面积有最大值,∵当AE⊥BC时,AE最小,∴AE的最小值为AH的长,过点A作AM⊥EF,垂足为M,如图所示:∵△AEF为等边三角形,∴,∠AEF=60°,∴,∴,∴,=S四边形AECF﹣S△AEF=16,∴S△CEF即△CEF的面积的最大值为.21.如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.【解答】(1)解:△BMN是等边三角形.理由如下:如图①,∵BM绕点B逆时针旋转60°得到BN,∴BM=BN,∠MBN=60°,∴△BMN是等边三角形;(2)证明:∵△ABE和△BMN都是等边三角形,∴AB=EB,BM=BN,∠ABE=∠MBN=60°,∴∠ABE﹣∠ABN=∠MBN﹣∠ABN,即∠ABM=∠EBN,在△AMB和△ENB中,,∴△AMB≌△ENB(SAS);(3)①由两点之间线段最短可知A、M、C三点共线时,AM+CM的值最小,∵四边形ABCD是正方形,∴点M为BD的中点;②当点M在CE与BD的交点时,AM+BM+CM的值最小,理由如下:如图②,∵△AMB≌△ENB,∴AM=EN,∵△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,由两点之间线段最短可知,点E、N、M、C在同一直线上时,EN+MN+CM,故,点M在CE与BD的交点时,AM+BM+CM的值最小.。
特殊的平行四边形中的最值模型之将军饮马、遛马、造桥模型(解析版)

特殊的平行四边形中的最值模型之将军饮马、遛马、造桥模型“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗,由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
将军饮马问题从本质上来看是由轴对称衍生而来,同时还需掌握平移型将军饮马(即将军遛马、造桥或过桥),主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就特殊的平行四边形背景下的将军饮马问题进行梳理及对应试题分析,方便掌握。
模型1.将军饮马模型(双线段和的最小值)模型2.将军饮马模型(双线段差的最大值)模型3.将军饮马(多线段和的最值模型)模型4.将军遛马、造桥(过桥)模型模型1.将军饮马模型(双线段和的最小值)条件:A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小值。
模型(1)点A、B在直线m两侧:模型(2)点A、B在直线同侧:模型(1)点A、B在直线m两侧:模型(2)点A、B在直线同侧:图(1)图(2)模型(1):如图(1),连结AB ,根据两点之间线段最短,AP +BP 的最小值即为:线段AB 的长度。
模型(2):如图(2),作点A 关于定直线m 的对称点A ',连结A 'B ,根据对称得到:P A =P A ',故AP +BP =A 'P +BP ,再利用“两点之间线段最短”,得到AP +BP 的最小值即为:线段A 'B 的长度。
1.(2024·四川广安·中考真题)如图,在▱ABCD 中,AB =4,AD =5,∠ABC =30°,点M 为直线BC 上一动点,则MA +MD 的最小值为.【答案】41【分析】如图,作A 关于直线BC 的对称点A ,连接A D 交BC 于M ,则AH =A H ,AH ⊥BC ,AM =A M ,当M ,M 重合时,MA +MD 最小,最小值为A D ,再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ,连接A D 交BC 于M ,则AH =A H ,AH ⊥BC ,AM =A M ,∴当M ,M 重合时,MA +MD 最小,最小值为A D ,∵AB =4,∠ABC =30°,在▱ABCD 中,∴AH =12AB =2,AD ∥BC ,∴AA =2AH =4,AA ⊥AD ,∵AD =5,∴A D =42+52=41,故答案为:41【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.2.(23-24八年级下·广东广州·期中)如图,在矩形ABCD 中,AB =5,AD =3,点P 满足S △P AB =13S 矩形ABCD,则点P 到A ,B 两点距离之和P A +PB 的最小值为()A.29B.34C.52D.41【答案】D【分析】首先由S△P AB=13S矩形ABCD,得出动点在与平行且与的距离是2的直线上,作点A关于直线l的对称点E,连结AE,BE,则BE的长就是所求的最短距离,然后勾股定理求得BE的长,即得答案.【详解】设AB边上的高是h,∵S△P AB=13S矩形ABCD,∴12AB⋅h=13AB⋅AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作点A关于直线l的对称点E,连结AE,BE,则BE的长就是所求的最短距离,在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=AB2+AE2=52+42=41,即P A+PB的最小值为41.故选D.【点睛】本题考查了最短路线问题,轴对称的性质,矩形的性质,勾股定理,两点之间线段最短的性质,作点A 关于直线l的对称点E,并得到BE的长就是所求的最短距离是解题的关键.3.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质。