热力学统计物理第八章玻色统计和费米统计

合集下载

热力学统计物理 第八章 课件剖析

热力学统计物理 第八章 课件剖析

e
kTC趋于1。
临界温度TC由下式定出
2
h3
2m 3/2
1/2d
0
n
ekTC 1
令x=ε/kTC,上式可表为
由积分
2
h3
2mkTC 3/2
x1/2dx n
0 ex 1
x1/2dx
0 ex 1 2 2.612
可得对于给定的粒子数密度n,临界温度TC为
TC
2
2.612 2/3
➢ 玻色系统
将α、β和y看作已知参量,系统的平均总粒子数
N
l
al
l
l
e l 1
引入一个函数,名为巨配分函数,定义为
l
1 e l l
取对数得
l
l
ln l ln 1 e l
l
由此系统的平均总粒子数可通过lnΞ表示为
N ln
内能是系统中粒子无规则运动总能量的统计平均值,
有能级εl均有
l
e kT 1
以ε0表示粒子的最低能级,这个要求也可以表达为
ε0 > μ
即是说,理想玻色气体的化学势必须低于粒子最低能级的 能量。如果取最低能级为能量的零点,即ε0 =0,则有
μ< 0
化学势μ由公式
1
V
l
l
l
N n V
e kT 1
确定,为温度T和粒子数密度n=N/V的函数。
由此可知,在TC以下n0与n具有相同的量级,n0随温度的变
化如图。
这一现象称为玻色-爱因斯坦凝聚,简称玻色凝聚。TC 称为凝聚温度。凝聚在ε0的粒子集合称为玻色凝聚体。
凝聚体不但能量、动量为零(对压强无贡献),由于 凝聚体的微观状态完全确定,熵也为零。

第8章 玻色统计和费米统计 《热力学统计物理》

第8章 玻色统计和费米统计 《热力学统计物理》
第八章 玻色统计与费米统计 8
利用
1 U ln Y ln N ln y
ln ln ln (dU Ydy dN ) d ( ) dy d ( ) y
ln ln ln ln d ( ) d ln d d d ( )
12

2 mkT 3 2 1 g( ) Ve [1 3 2 e ] (8.2. 6) 2 h 2
2V x 32 U g 3 (2mkT) x dx h 1 0 e
32
3 2 mkT 3 2 1 g ( ) VkTe [1 5 2 e ] (8.2. 7) 2 2 h 2
第八章 玻色统计与费米统计 14
(2) 费米系统
引入费米系统的配分函数
l [1 e
l l
l l
]
ln l ln(1 e l )
l
通过和玻色系统相似的运算,得到的热力学量的 统计表达式与玻色系统热力学量的统计表达式完全相 同。
第八章 玻色统计与费米统计 15
第八章 玻色统计与费米统计 23
将玻耳兹曼分布所得的结果
e

N h 32 1 ( ) V 2m kT g
2
2
作为零级近似代入上式,表示为经典极限条件的形式
3 1 1N h 32 U NkT [1 ( ) ] 2 4 2 g V 2m kT
3 1 3 U NkT[1 n ] 2 4 2g
1 (dU Ydy dN ) ds T
ln ln (dU Ydy dN ) d (ln ) ln ln dS kd (ln )

热力学统计物理 第八章 玻色统计和费米统计

热力学统计物理 第八章 玻色统计和费米统计
l
l
l
e l ( l )
1 e l
l
l l
e l 1
U
对比玻耳兹曼分布
U ln
U N ln Z1
热统
5
3 广义力
Y
l
al
l
y
ln l ln(1 e l )
l
1 ln 1
y
y
l
l ln(1 e l )
l
l
e l (1) 1 e l
热统
1
§8.1 热力学量的统计表达
一、从非简并到简并
玻耳兹曼系统(玻耳兹曼分布) 孤立系统
定域粒子组成的系统,满足经典极限条件(非简并条件)的近
独立粒子系统
经典极限条件 al
(非简并条件)
l
e l
1
e 1
al le l
玻色分布和费米分布 趋向于玻耳兹曼分布。
Z1
l 0
e l
l
al ea
l
l
l
e l 1
U lal
l
l
ll
e l 1
l (1 e l )l
l
l
对比玻耳兹曼分布
热统
ln l ln(1 e l )
l
Z1
e l l
l 0
3
三、用巨配分函数表示热力学量
1 平均粒子数 N
N al
l
l
l
e l 1
ln l ln(1 e l )
al
ln(l
al
al
))
热统
k ln B.E 10
对于费米分布
F.D
l
l ! al !(l al )!

第八章 玻色统计与费米统计

第八章  玻色统计与费米统计
讨论:
3 ε 2 dε 2πV 2 ( 2m ) ε l n 0 h3 e kTc- 1 1
ε 2π 令:x , 可得: 3 ( 2mkTC ) kTc h
3
2


0
x 2 dx n x e- 1
2π h2 2 3 n mk
1
x 2 dx π 积分: = 2.612 0 e x- 1 2
8.2 弱简并理想玻色气体和费米气体
1、弱简并气体: 但不可忽略的玻色气体和费米气体。 e α 或nλ3虽小,
1 2 2 2 ε = ( p p p x y z) 以玻色气体为例,假设分子只有平动自由度: 2m
在体积V内,在ε到ε+dε范围内可能的微观状态数:
3 1 2πV 2 D(ε )dε g 3 ( 2m ) ε 2 dε h
l
l
前面得到的热力学量的表达式完全适用:
N ln α
U ln β
Y
1 ln β y
S k ln
上一页
下一页
目 录
退 出
8.1
五、巨热力学势
热力学量的统计表达式
ln 是α、β、y的函数,即T、V、μ的函数
J U TS N ln ln ln ln kT (ln ) kT ln
2πV 系统的总分子数:N g 3 ( 2m ) h
3
2


0
ε 2 dε e α βε 1
3
1
3 ε 2 dε 2πV 2 U g 3 ( 2m ) α βε 0 e h 1
上一页
下一页
目 录
退 出

第八章 玻色统计与费米统计

第八章  玻色统计与费米统计

b)、若n很小时,T0较低 n小,r大(粒子间距离)与粒子相联系的德布罗意波
并不重叠,粒子可以分辨,这时相当于定域系,可过渡到玻耳兹曼统计。
c)、若m大,则T0较低,量子效应不显著 。
N h , m大时,小, 2m kT V
1 3

V h 1 2mkT N
V
2mkT
2mkT
或满足 T T0 的条件时,气体称为非简并气体。 实质;温度远高于简并温度时,系统的量子效应不显著。非定域的量子分布 可以过度到玻耳兹曼分布。这时气体性质和经典气体相差不大,称为非简并 气体。 a)、T T0 KT 能级可视为连续,量子效应不显著。可过渡到经典
1 2 2 ε= ( p x p2 y pz ) 2m
在体积V内,在ε到ε+dε范围内可能的微观状态数:
3 1 2πV D(ε )dε g 3 ( 2m ) 2 ε 2 dε h 1 3 2 d 2V 系统的总分子数: N f s D d g 3 (2m) 2
设: al 1, ωl 1
则ln m! mln m 1
由al
ωl e
α βεl
1
可得:
1 1 - e α βεl
1
al ; ωl
ωl α βε l ln 1 al

代入S k (ln αN βU )可得:
3、完全简并性气体:T=0K时的气体称为完全简并气体或完全退化气体。 4、弱简并气体:
al
满足 e 1 ,但处理问题的过程中,分布 e 1 中分母的1不忽略,做 近似展开时,一共保留两项,即考虑量子效应的微弱影响,这就是弱简并的本质。

玻色统计和费米统计

玻色统计和费米统计

x
dx
=
1
3
22

x
1 2
e−
x
dx
=
0
1
3
22
Γ
⎛ ⎜⎝
3 2
⎞ ⎟⎠
=
π
5
22
,
∴N
=
g
2πV h3
( 2mkT
)3 2
⎛ ⎜⎜⎝
π 2
e−α

π
5
22
e−2α
⎞ ⎟⎟⎠
=
g
⎛ ⎜⎝
2π mkT h2
3
⎞2 ⎟⎠
Ve−α
⎛ ⎜1


1
3
22
e−α
⎞ ⎟ ⎠
(*)
∫ ( ) ( ) U
=
g
2πV h3
1 ∓ e−α −βεl ∓ωl = ∓ ωl ln 1 ∓ e−α −βεl = ∓ ln 1 ∓ e−α −βεs
F.
l
l
s
−玻色 +费米
然后由上面的公式求出热力学量。
N B.
=

∂ ∂α
ln Ξ B.
,U B.
=

∂ ∂β
ln Ξ B.

F.
F.
F.
F.
YiB.
F.
=

1 β

∂ ∂yi
ln ΞB. ,
4
1 2
e−α
⎞ ⎟⎠
⎜⎝⎛1 ±
2
1 2
e−α
⎞ ⎟⎠
22
≈ 1± 1 e−α ∓ 1 e−α = 1± 1 e−α
22

热力学统计物理-统计热力学课件第八章 共28页

热力学统计物理-统计热力学课件第八章 共28页

0K时电子气体的平均内能:
费米气体在绝对零度下: 具有很高的平均能量、动量,
0K时电子气体的压强为:并且产生很大的压强。
微观状态数确定,熵为0。
18.07.2019
20
T〉0K时的电子分布:
f
1

e kT 1
18.07.2019
21
T〉0K时,只在μ附近量级为kT 的范围内,电子的分布与0K时 的分布有差异。
18.07.2019
13
§8.5 金属中的自由电子气体
在金属中,价电子脱离原子在整个金属中运动,称为公有 电子。公有电子在离子产生的势场中运动,电子之间存在库 仑相互作用。在初步的近似下,可以把公有电子看作封闭在 金属体积中的自由粒子,称为自由电子。
经典统计的困难: 根据能量均分定理,一个自由电子对金属的热容量将有
( 0是) T=0K时电子的最大能量。
18.07.2019
17
令:
(0)pF2 /2m
18.07.2019
vF

pF m
(0) TF k
——费米能量。
——费米动量。
——费米速率。
——费米温度。
18
( 0大) 小的数值估计,以Cu为例: 费米温度:
18.07.2019
19
0K时电子气体的总能量为:
则在体积V内,在 到 d的能量范围内,分子可能的
微观状态数为:
g——粒子可能的自旋而引入的简并度。 考虑平动自由度的能级是连续的,系统总分子数满足:
18.07.2019
10
系统的内能为:
令:
x
18.07.2019

展开式保留第一项相当于近似为玻尔兹曼分布,弱简 并情形下,保留两项。积分可得:

热力学与统计物理学第八章__玻色统计和费米统计

热力学与统计物理学第八章__玻色统计和费米统计
第八章 玻色统计和费米统计
§8.1 热力学的统计表达式 §8.2 弱简并玻色气体和费米气体 §8.3 玻色—爱因斯坦凝聚 §8.4 光子气体 §8.5 金属中的自由电子气体
1
§8.1 热力学的统计表达式
经典极限条件
e 1
e
Z1 N
V N
2m h2
3
2
1
V
1 3
h
1
1 2
N
2mkT
n3 1
又 d ln ln d ln d ln dy
y
dU
Ydy
dN
d
ln
ln y
dy
d
ln
d
ln
d
ln
ln
d
d
ln
ln
d
d
ln
ln
ln
6
dS
kd
ln
ln
ln
积分
S
k
ln
ln
ln
S kln N U k ln
S k ln
ln
ln
如果求得巨配分 函数,据此可以 求得系统内能、 物态方程和熵。 从而确定系统的 全部平衡性质。
巨配分函数是以 , , y 为自然变量的特性函数。
对简单系统就是 T ,V ,
热力学中巨热力学势是以 T ,V , 为自然变量的
特性函数:
J U TS N kT ln 9
§8.2 弱简并理想玻色气体和费米气体
存在 n 个能量为 的光子
31
玻色分布给出在温度为 T 的平衡状态下 n
的平均值: n 1 e kT 1
从粒子观点看, n 是平均光子数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


N g(2m h 2 )k 3/2V T e (12 1 3/2e )
两式相除得到
U3NkT(1 1 e)
l
l
e l 1
N
对比玻耳兹曼分布
N ln
NZ1e
热统
4
2 内能
U lal
l
l
ll
el1
ln lln 1 (el)
l
ln l le l
l
ll
e l 1
U
对比玻耳兹曼分布
U ln
U N ln Z1
热统
5
3 广义力
1 1ex
1exe2x
热统
13
考虑平动
p
2
2m
粒子微观状态数 D ()dg2h V 3 (2m )3/21/2d 6.2.17式
总粒子数
N
0
D()a()d
g2h V 3 (2m )3/2
0
1/2d
el1
g 2 h 3 V (2 m )3 /20 1 /2 e l(1e l)d
B.E
热统
10
对于费米分布
F.D
l
l ! al!(l al)!
l n F .D ll n la ll n a l (l a l) l n (l a l)
l
l
l
S k l n F . D k (ll n l a ll n a l ( l a l ) l n ( l a l ) )
g 2 h V 3( 2 m ) 3 /2 e (0 1 /2 e ld 0 1 /2 e 2 ld )
N g(2m h 2 )k 3/2V T e (12 1 3/2e )
热统
14
内能
U D()a()d 0
2 3g (2h m 2 )3 k /2 V T e k(1 T 2 1 5 /2e )
l
l
ll
el1
l (1e l) l ln lln 1 (el)
l
l
l
对比玻耳兹曼分布
热统
Z1
e l l
l0
3
三、用巨配分函数表示热力学量
1 平均粒子数 N
N al
l
l
l
el 1
ln lln 1 (el)
l
ln l lln 1 (e l)
l
l
e l(1) 1e l
l
l
l
热统
9
al
l
e l
1
el l al
al
l lnlal al
1e l l l al
ln l
lln(1el)
l
ln l l al
U lal
N al
U N la la a la l( a l) a ll n (la la l)
kln S k ( l n U N ) k ( ll nl la la ll n (la la l) )
Z1 V(2h2m )3/2
eV N(2m h2 k)3T /2 1 eV N(2h m 2kT)3/2n31
热统
2
不满足非简并条件
开放系统,与源达到动态平衡,粒子数在能级上的平均分布。
采用玻色分布或费米分布
al
l
e l
1
二、巨配分函数
费米统计 玻色统计
N al
l
l
l
el 1
U lal
由开系的热力学公式 dU Yd ydN TdS
( d U Y d y d N ) d ( l n ) l n d y d ( l n )
y
*
*
*
d ( l n ) l n d l n d d y ( l n ) l n d
y
d( ln )d( ln )d(*l n )
Y
l
al
l y
ln lln 1 (el)
l
1ln 1
y
yl
lln 1e ( l)
l
l 1e e l(l1)yl
l
l l
e l 1 y
l
al
l
y
Y
Y 1 ln
y
对比玻耳兹曼分布 Y N 1 lnZ1
y
压强
p 1 ln
V
p N lnZ1
V
热统
6
4 其它热力学函数
玻色统计与费米统计描述不可区分的粒子系统。主要是空间中不可 区分。但当粒子在空间可以区分时(稀薄气体),应该由描述可区分 粒子系统的理论-玻耳兹曼统计-描述。
al
l
e l
1
一、 弱简并气体
e 1
al
e l
l
e 虽小但不可忽略
1
1
el1el(1el)
1 1el
1
el
al
l
e l
1
lel(1el)
l n B .E (l a l) l( n l a l) lln la lla l n
l
l
l
S k l n B . E k ((l a l ) l n (l a l ) ll n l a ll n a l )
l
l
l
Sk (l n U N )
? k l n B . E k ((l a l ) l n (l a l ) ll n l a ll n a l)
l l
al
U lal N al
U N la la a la l( a l) a ll n (la la l) S k ( l n U N ) k ( ll nl la la ll n (la la l) )klnF.D
热统
12
§8.2 弱简并玻色气体和费米气体
热统
1
§8.1 热力学量的统计表达
一、从非简并到简并
玻耳兹曼系统(玻耳兹曼分布) 孤立系统
定域粒子组成的系统,满足经典极限条件(非简并条件)的近
独立粒子系统
经典极限条件 al
(非简并条件)
l
e l
1
e 1
al
e l
l
玻色分布和费米分布 趋向于玻耳兹曼分布。
Z1
l0
el
l
l0
al ea
e N Z1
l
l
l
Sk (l n U N )
? k l n F . D k ( ll n l a ll n a l (l a l ) l n (l a l ) )
l
l
l
热统
11
al
l
e l
1
el l al
al
l
lnl al
al
1el l l al
ln l
lln(1el)
l
ln
d(l n ln ln )
TdS
热统
7
(dUYdydN)
d(l n ln ln ) TdS
1 kT
kT
熵 dSkd(ln ln ln )
Sk(l n ln ln )
Sk(lnUN)
U ln
N ln
与玻耳兹曼关系比较 Skln
热统
8
对于玻色分布
B.E
l
(l al 1)! al!(l 1)!
相关文档
最新文档