五年级奥数解析7.数字谜综合一
小学五年级数学培优(7) :数字谜问题

小学五年级培优数学7-1“数字谜问题”之数字谜综合一涉及小数、分数、循环小数的数字谜问题;需要利用数论知识解决的数字谜问题.1、有一个整数,在它的个位与十位之间加上一个小数点后,得到一个小数.这个小数与原来的整数之差是264.6,求原来的整数.2、试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次:(这是一个三位数),(这是一个三位数),(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.3、用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4、如图,四个小三角形的顶点处有6个圆圈.在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上的数之和相等.请问:这6个质数的乘积是多少?5、在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023.请问:此算式中的4个数之和最大可能是多少?6、在乘法算式“迎杯×春杯=好好好”中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.请问:“迎+春+杯+好”等于多少?7、将1至9这9个数填入下面的9个方框内(每个数字只能用一次),使等式成立.×= ×=5568.8、小数0.AB 化成最简分数后,分子与分母的和为63,那么这个小数是多少?9、在算式“7金杯竞赛华罗庚数学=+”中,华、罗、庚、金、杯、数、学、竞、赛九个字 分别代表数字1、2、3、4、5、6、7、8、9.已知“竞=8,赛=6”,请把这个算式写 出来。
10、已知“BAD+BAD=GOOD ”是一个正确的加法算式,其中相同的字母代表相同的 数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数.请问:ABGD 代表的 四位数是什么?8、改动算式[4.25-(1÷2.5+9.1÷0.7)]÷0.04=100中一个数的小数点的位置,使其成 为一个正确的等式,那么被改动的数变为多少?小学五年级培优数学7-2“数字谜问题”之数字问题各种与数字相关的数字谜问题.学会位值原理的分析方法;综合应用已学的数字谜技巧和数论知识.1、一个四位数,在它的个位后面再添上数字“0”就可以得到一个五位数,这个五位数与四位数的和等于24684,这个四位数是多少?2、一个两位数等于它的数字和的6倍,求这个两位数.3、用3个不同的数字能组成6个不同的三位数,这6个三位数的和是2886,求6个三位数中最小的一个.4、有一个两位数,在它前面加上数字“3”可以得到一个三位数;在它后面加上数字“3”也得到一个三位数;在它前、后各加一个数字“3”得到一个四位数.已知得到的三个数总和为3600,求原来的两位数.5、有A、B两个整数,A的各位数字之和为35,B的各位数字之和为26,且两数相加时进位三次,求A+B的各位数字之和.6、一张卡片上写了一个五位数,刘老师给学生看时拿倒了,这时卡片上还是一个五位数.这个五位数比原来的五位数小71355.问:原来卡片上写的五位数是多少?7、有一个四位数2M9N,它是由M个2的积与N个9的积相乘得到的,求这个数.8、如果488...84是9的倍数,那么n最小是多少?n个89、如果1233...3是27的倍数,那么n最小是多少?n个310、从1至9这9个数中选出8个不同的数字,组成能被24整除的八位数.试问:在这样的八位数中,最大的和最小的分别是多少?。
高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。
五年级奥数专题-数字谜

五年级奥数专题-数字谜(一)数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。
谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。
这个地名第1个字可能是天。
“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。
这样谜底就出来了:天津。
算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。
“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。
文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。
文字算式谜也是最难的一种算式谜。
在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。
①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?思路导航:150*3-8-97-=345所以3个数之和为3+4+5=12。
例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。
分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。
求其中的除数。
分析:40796/102=399...98。
例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。
高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。
五年级奥数教师解析版含答案 7.数字谜综合1

涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0.01A=2000.81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12.5(不能取12.5)之间,那么这13个数的和在161.2~162.5(不能取162.5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12.46.3.两个带小数相乘,乘积四舍五人以后是22.5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?【分析与解】因为这两个带小数均只有一位小数,那么给它们均乘以10,则这两个数均是整数.开始它们的乘积在22.45~22.55(不能取22.55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22.54.即两个数的乘积四舍五人前是22.54.4.[4.2×5-(1÷2.5+9.1÷0.7)]÷O.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?【分析与解】我们先把题中左边算式计算一遍,在计算过程中发现问题.[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=[21-(0.4+13) ]÷0.04=[21-13.4]÷0.04=7.6÷0.04=190注意到在“[21-(0.4+13)]÷O.04”这一步中如果(0.4+13)是(4+13),那么最终的结果为100.所以只需将1÷2.5改为1÷0.25,即将2.5改为O.25即可.5.在算式2÷3÷4÷5÷6中添上若干个括号,使算式的结果是整数,并且尽可能小.试写出添加完括号后的算式.【分析与解】注意到将除号前加一个括号,可以使括号内的除号在脱括号之后变为乘号.又注意到2、3、4、5、6只有5含有质因数5,就是说其他的质因数可能经过变换运算法则除去,而质因数只能保留,且只能作为乘数,也就是说题中算式变化后是最终的结果最小为5.有2÷3÷4÷5÷6=EFCD,现在要得到5,扩大了5÷1180=900,所以必须将原来作为除数的30变为乘数30,有5×6=30,所以将5、6由除数变为乘数.有2÷3÷(4÷5÷6)=5,此式即为所求.6.用1,4,5,6四个数,并适当选择加号、减号、乘号、除号以及括号,组成一个结果等于24的正确算式.【分析与解】有24=2×2×2×3,常规的方法,无法使1,4,5,6通过运算得到24,但是注意到可利用分数:有4÷16=24,6÷14=24等.于是有下面两个算式满足:4÷(1-5÷6)=24,6÷(5÷4-1)=24.评注:此类题是常说的“24点”游戏:从一副扑克牌中除去大王、小王,A表示1,J表示11,Q表示12,K表示13,其他的牌表示的数等于牌面数字.从剩下的52张牌中任意抽取4张,通过选择运算使它们最终的计算结果为24.7.1+1+1≈0.658上式是经过四舍五入得到的等式,其中每个△代表一个一位数.那么这3个△所代表的3个数分别是多少?【分析与解】设△代表的三个数从小到大为a、b、c.当a取最小值2时,1+1+1最小为12+18+19≈0.736,所以a最小取3.当a=3,b最小取 4时, 1+1+1最小为13+14+19≈0.694,所以b最小取5.当a=3,b=5时,1+1+1最小为13+15+19≈0.644,有可能.验证当,a=3,b=5,c=8时有13+15+18≈0.658.满足.所以这三个数分别为3、5、8.评注:此题从极端情况开始一一枚举而得.8.用0,1,2,…,9这10个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大.那么这5个两位数的和是多少?【分析与解】要求5个数的和是奇数,所以这5个数中有奇数个奇数,如果用9、8、7、6、5作十位数字,那么个位数字为0、1、2、3、4,这样组成的5个数中有2个数是奇数.所以调整,将9、8、7、6、4作为十位数字,0、1、2、3、5作为个位数字,那么组成的5个两位数的和是(9+8+7+6+4)×10+(0+1+2+3+5)=351.因为已经使十位数字尽可能的大,所以所得的和为最大值.即在满足题意下,得到的5个两位数的和为351.9.将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【分析与解】设分成的3组数的和从大到小依次为a、b、c,a=2c,并且有a+b+c=b+3c=1+2+3+…+8=36.3c为3的倍数,36为3的倍数.所以b为3的倍数.解得b3c11a2c22=⎧⎪=⎨⎪==⎩,b6c10a2c20=⎧⎪=⎨⎪==⎩,b9c9a2c18=⎧⎪=⎨⎪==⎩,b12c8a2c16=⎧⎪=⎨⎪==⎩,b15c7a2c14=⎧⎪=⎨⎪==⎩,不难看出随着b的增大,a在减小,所以其他情况不用再讨论.满足条件的解只有b=12,c=8,a=16.1,2,3,4,5,6,7,8可以分成{1,2,3,4,6}、{5,7}、{8}这三组.所以满足题意的最小一组数的和为8.10.用1,2,3,4,5,6,7,8,9这9个数字组成3个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且尽可能的小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是多少?【分析与解】被3除余2、1、0的数,其数字和除以3也分别余2、1、0.为了使最大的三位数尽可能的小,所以其百位最小取3,因为如果取1或2,那么剩下两个三位中的某一个其百位数字大于3,显然不满足.当最大三位数的百位取3时,1,2,3,4,5,6,7,8,9组成的三个三位数只能是3口口、2口口、l口口,而3口口的十位最小取4,百位与十位的数字和为7,则个位只能取7.所以满足条件的最大三位数是347.11.红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄白蓝图7—1【分析与解】设这个四位数为abcd,其中a、b、c、d依次代表红、黄、白、蓝.有abcd=1000a+lOOb+10c+d,而abcd的数字和为a+b+c+d,所求的差为:(1000a+100b+10c+d)-10(a+b+c+d)=1998,即990a+90b-9d=1998.因为a、b、d均为小于10的自然数,所以a=2,b=l,d=8.即红、黄、蓝3张卡片上的数字分别为2、1、8.评注:对于用字母表示的数,注意到其在10进制中与其各个位数数字的关系.如:abcde中的a在万位表示10000a,b在千位表示1000b,….12.一个四位数的数码都是由非零的偶数码组成,它又恰是某两个偶数码组成的数的平方.问这个四位数是多少?【分析与解】设这个四位数为A=abcd,其为B=ef的平方,因为f只能取0、2、4、6、8,所以B平方后的个位为0、4、6.即d为4或6.而B中的十位数字e只能取4、6、8这三个数,不然平方后得到的不是4位数.验证有68×68=4624满足.13.一个整数乘以13后,乘积的最后三位数是123.这样的整数中最小的是多少?【分析与解】设A=cba×13=123.,有cba,B=123方法一:123一定是13的倍数,而13的倍数满足其后三位与前面隔开,差是13的倍数.123÷13=9……6,那么6123一定是13的倍数,且为满足条件的最小自然数.那么题中所求的最小整数为6123÷13=471.方法二:有A的个位a只能是1,不然其与13的乘积的个位不是3.显然有A的个位1与13相乘过程中进有1,则A的十位b乘以13得到的数的个位为2-1=1,显然只有当b=7时才能满足.此时A的十位7与13相乘过程中进有9,则A的百位c乘以13得到的数的个位为(1+10)-9=2,显然只有c=4.而乘以13后得到的积其最后三位数是123.于是417而这样的数中最小的是471.14.将1,2,3,4,5,6,7,8,9分别填入图7-2中的9个圆圈内,使其中一条边上的4个数之和与另一条边的4个数之和的比值最大.那么这个比值是多少?【分析与解】为了使比值尽可能的大,那么一边应尽可能的小,另一边尽可能的大.有两种情况:第一种情况,两边上各自4个数字和的比值为47894321++++++=2810=2.8, 第二种情况,两边上各自4个数字和的比值为6+7+8+96+1+2+3=3012=2.5. 显然有第一种情况的比值最大,为2.8.15.在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少?【分析与解】 为了方便说明,标出字母.O.A3B =A3B 999=A3B ÷999=EF ÷CD ,被除数与除数均为两位数. 所以A3B 999可以约分后为EF CD,999为除数CD 的倍数, 999=3×3×3×37,999的约数中只有27、37为两位数,所以除数CD 只能是27或37. 第四行对应为CD ×3,且为三位数,所以CD =37.那么第四行为37×3=111.则第五行首位为0减1,借位后为9.当B=1时,37×B+EF小于37×(1+1)=54,不满足;当B=2时,37×B+EF=37×2+EF=90,解得被除数EF=16.。
五年级奥数数字谜综合一——分数小数数字迷

答案
【例1】 1981 【例2】最后只有1.5×2.4=3.6和1.5.×4.2=6.3两个答案。 【例3】 5 【例4】 83 【例5】6.8
2
A 7
是最简分数且
A 7
7 10
,A最小是____。
【例4】(★★★) 已知a是一个自然数,A、B是1至9中的数字, 最简分数 a 0.3A3B 。请问:a是多少? 222
1
【例5】(★★★) 在下图的竖式中,填上数字,使竖式成立,那么 商最大是多少?
本讲总结:
基础:整数数字谜 新增:小数四则运算
小数数字谜
有一个四位整数,在它的某位数字前面加上一个
小数点,再与这个四位数相加,得数是 2000.81,
求这个四位数是多少?
【例2】(★★★) 把1至6填入下面的方框中,每个数字恰好使用一 次,使得等式成立。请写出乘积的所有答案。
【例3】(★★★)2012走美杯五年级
小学五年级逻辑思维学习—数字谜综合

小学五年级逻辑思维学习—数字谜知识定位什么是数字迷?数字谜,一般是指那些含有未知数字或未知运算符号的算式。
这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则、数的性质(和差积商的位数,数的整除性、奇偶性、尾数规律等)来进行正确的推理、判断。
重难点:1.横式迷问题2.竖式迷题中的除法式迷3.试验法在解决数字迷问题的应用考点: 1.复杂的横式迷题2.复杂的竖式谜题3.枚举和筛选相结合的方法(试验法)解决数字谜题知识梳理如何解决数字谜题?解数字谜,一般是从某个数的首位或末位数字上寻找突破口。
推理时应注意:(1)数字谜中的文字、字母或其它符号,只取0~9中的某个数字;(2)要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;(3)必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;(4)数字谜解出之后,最好验算一遍。
横式的补填空格和破译字母问题中,解题的基本方法有尾数分析,分情况试算,数值估算,以及因数分解等。
同学们在解题时要灵活应用。
例题精讲【题目】在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?□,□8,□97【题目】在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:(1)12×23□=□32×21,(2)12×46□=□64×21,(3)□8×891=198×8□,(4)24×2□1=1□2×42,(5)□3×6528=8256×3□。
【题目】在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。
【题目】把1至9这9个数字分别填入下面两个算式的各个方框中,使等式成立,这里有3个数字已经填好。
精选五年级奥数题含名师精讲

五年级奥数精选1.逻辑推理李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.逻辑"迎春杯"数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:"如果我能获奖,那么乙也能获奖."乙说:"如果我能获奖,那么丙也能获奖."丙说:"如果丁没获奖,那么我也不能获奖."实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。
解答:首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与"他们之中只有一个人没有获奖"矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。
1.公倍数恰被6,7,8,9整除的五位数有多少个?答案:[6,7,8,9]=7×8×9=504。
所以恰被6,7,8,9整除的数都是504的倍数,都可以写成504k的形式(k为整数)。
10000《504k《99999,得19.84《k《198.41所以504的20,21,22,…,198倍都是五位数,这样的五位数共有198-20+1=179(个)2.平方数自然数的平方按从小到大排成14916253649……,问:第612个位置的数字是几?解答:一位的平方数有3个,占去3位;两位的平方数有6个,占12位;三位的平方数(102至312)22个,占去66位;四位的平方数(322至992)共68个,占去272位;五位的平方数(从1002至3162)共217个,占去位数已超过612位,由1至4位的平方数占去3+12+66+272=353位,612-353=259,259÷5=51…4 即五位平方数的第52个数的第四位数字,即1512的第四个数字,1512=22801,故所求数字为0.3.逆推问题小强买了些饼干,第一天吃了总数的一半多2块,第二天吃了剩下的一半多2块,第三天吃了剩下的一半多2块,这时候还剩2块,求小强原来买了多少块饼干?解答:由第三天的情况可知,这时候的一半是2+2=4块饼干,所以第三天没吃饼干时有4×2=8块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B 的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0.01A=2000.81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12.5(不能取12.5)之间,那么这13个数的和在161.2~162.5(不能取162.5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12.46.3.两个带小数相乘,乘积四舍五人以后是22.5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?【分析与解】因为这两个带小数均只有一位小数,那么给它们均乘以10,则这两个数均是整数.开始它们的乘积在22.45~22.55(不能取22.55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22.54.即两个数的乘积四舍五人前是22.54.4.[4.2×5-(1÷2.5+9.1÷0.7)]÷O.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?【分析与解】我们先把题中左边算式计算一遍,在计算过程中发现问题.[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=[21-(0.4+13) ]÷0.04=[21-13.4]÷0.04=7.6÷0.04=190注意到在“[21-(0.4+13)]÷O.04”这一步中如果(0.4+13)是(4+13),那么最终的结果为100.所以只需将1÷2.5改为1÷0.25,即将2.5改为O.25即可.5.在算式2÷3÷4÷5÷6中添上若干个括号,使算式的结果是整数,并且尽可能小.试写出添加完括号后的算式.【分析与解】注意到将除号前加一个括号,可以使括号内的除号在脱括号之后变为乘号.又注意到2、3、4、5、6只有5含有质因数5,就是说其他的质因数可能经过变换运算法则除去,而质因数只能保留,且只能作为乘数,也就是说题中算式变化后是最终的结果最小为5.有2÷3÷4÷5÷6=EFCD,现在要得到5,扩大了5÷1180=900,所以必须将原来作为除数的30变为乘数30,有5×6=30,所以将5、6由除数变为乘数.有2÷3÷(4÷5÷6)=5,此式即为所求.6.用1,4,5,6四个数,并适当选择加号、减号、乘号、除号以及括号,组成一个结果等于24的正确算式.【分析与解】有24=2×2×2×3,常规的方法,无法使1,4,5,6通过运算得到24,但是注意到可利用分数:有4÷16=24,6÷14=24等.于是有下面两个算式满足:4÷(1-5÷6)=24,6÷(5÷4-1)=24.评注:此类题是常说的“24点”游戏:从一副扑克牌中除去大王、小王,A表示1,J 表示11,Q表示12,K表示13,其他的牌表示的数等于牌面数字.从剩下的52张牌中任意抽取4张,通过选择运算使它们最终的计算结果为24.7.1+1+1≈0.658上式是经过四舍五入得到的等式,其中每个△代表一个一位数.那么这3个△所代表的3个数分别是多少?【分析与解】设△代表的三个数从小到大为a、b、c.当a取最小值2时,1+1+1最小为12+18+19≈0.736,所以a最小取3.当a=3,b最小取 4时, 1+1+1最小为13+14+19≈0.694,所以b最小取5.当a=3,b=5时,1+1+1最小为13+15+19≈0.644,有可能.验证当,a=3,b=5,c=8时有1 3 +15+18≈0.658.满足.所以这三个数分别为3、5、8.评注:此题从极端情况开始一一枚举而得.8.用0,1,2,…,9这10个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大.那么这5个两位数的和是多少?【分析与解】要求5个数的和是奇数,所以这5个数中有奇数个奇数,如果用9、8、7、6、5作十位数字,那么个位数字为0、1、2、3、4,这样组成的5个数中有2个数是奇数.所以调整,将9、8、7、6、4作为十位数字,0、1、2、3、5作为个位数字,那么组成的5个两位数的和是(9+8+7+6+4)×10+(0+1+2+3+5)=351.因为已经使十位数字尽可能的大,所以所得的和为最大值.即在满足题意下,得到的5个两位数的和为351.9.将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【分析与解】设分成的3组数的和从大到小依次为a、b、c,a=2c,并且有a+b+c=b+3c=1+2+3+…+8=36.3c为3的倍数,36为3的倍数.所以b为3的倍数.解得b3c11a2c22=⎧⎪=⎨⎪==⎩,b6c10a2c20=⎧⎪=⎨⎪==⎩,b9c9a2c18=⎧⎪=⎨⎪==⎩,b12c8a2c16=⎧⎪=⎨⎪==⎩,b15c7a2c14=⎧⎪=⎨⎪==⎩,不难看出随着b的增大,a在减小,所以其他情况不用再讨论.满足条件的解只有b=12,c=8,a=16.1,2,3,4,5,6,7,8可以分成{1,2,3,4,6}、{5,7}、{8}这三组.所以满足题意的最小一组数的和为8.10.用1,2,3,4,5,6,7,8,9这9个数字组成3个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且尽可能的小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是多少?【分析与解】被3除余2、1、0的数,其数字和除以3也分别余2、1、0.为了使最大的三位数尽可能的小,所以其百位最小取3,因为如果取1或2,那么剩下两个三位中的某一个其百位数字大于3,显然不满足.当最大三位数的百位取3时,1,2,3,4,5,6,7,8,9组成的三个三位数只能是3口口、2口口、l口口,而3口口的十位最小取4,百位与十位的数字和为7,则个位只能取7.所以满足条件的最大三位数是347.11.红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l 放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄白蓝图7—1【分析与解】设这个四位数为abcd,其中a、b、c、d依次代表红、黄、白、蓝.有abcd=1000a+lOOb+10c+d,而abcd的数字和为a+b+c+d,所求的差为:(1000a+100b+10c+d)-10(a+b+c+d)=1998,即990a+90b-9d=1998.因为a、b、d均为小于10的自然数,所以a=2,b=l,d=8.即红、黄、蓝3张卡片上的数字分别为2、1、8.评注:对于用字母表示的数,注意到其在10进制中与其各个位数数字的关系.如:abcde 中的a 在万位表示10000a ,b 在千位表示1000b ,….12.一个四位数的数码都是由非零的偶数码组成,它又恰是某两个偶数码组成的数的平方.问这个四位数是多少?【分析与解】 设这个四位数为A=abcd ,其为B=ef 的平方,因为f 只能取0、2、4、6、8,所以B 平方后的个位为0、4、6.即d 为4或6.而B 中的十位数字e 只能取4、6、8这三个数,不然平方后得到的不是4位数.验证有68×68=4624满足.13.一个整数乘以13后,乘积的最后三位数是123.这样的整数中最小的是多少?【分析与解】 设A=cba ,B=123 ,有cba ×13=123 .方法一: 123 一定是13的倍数,而13的倍数满足其后三位与前面隔开,差是13的倍数.123÷13=9……6,那么6123一定是13的倍数,且为满足条件的最小自然数.那么题中所求的最小整数为6123÷13=471.方法二:有A 的个位a 只能是1,不然其与13的乘积的个位不是3.显然有A 的个位1与13相乘过程中进有1,则A 的十位b 乘以13得到的数的个位为2-1=1,显然只有当b=7时才能满足.此时A 的十位7与13相乘过程中进有9,则A 的百位c 乘以13得到的数的个位为(1+10)-9=2,显然只有c=4.于是417 而乘以13后得到的积其最后三位数是123.而这样的数中最小的是471.14.将1,2,3,4,5,6,7,8,9分别填入图7-2中的9个圆圈内,使其中一条边上的4个数之和与另一条边的4个数之和的比值最大.那么这个比值是多少?【分析与解】 为了使比值尽可能的大,那么一边应尽可能的小,另一边尽可能的大. 有两种情况:第一种情况,两边上各自4个数字和的比值为47894321++++++=2810=2.8, 第二种情况,两边上各自4个数字和的比值为6+7+8+96+1+2+3=3012=2.5. 显然有第一种情况的比值最大,为2.8.15.在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少?【分析与解】 为了方便说明,标出字母.O.A3B =A3B 999=A3B ÷999=EF ÷CD ,被除数与除数均为两位数. 所以A3B 999可以约分后为EF CD,999为除数CD 的倍数, 999=3×3×3×37,999的约数中只有27、37为两位数,所以除数CD 只能是27或37.第四行对应为CD ×3,且为三位数,所以CD =37.那么第四行为37×3=111.则第五行首位为0减1,借位后为9.所以第五行为90,对应为CD ×B+EF =37×B+EF (EF <CD ).当B=1时,37×B+EF 小于37×(1+1)=54,不满足;当B=2时,37×B+EF =37×2+EF =90,解得被除数EF=16.。