一次函数图像
《一次函数的图象和性质》PPT课件

(2)指出以下四个一次函数的共同之处.
①y=1 2 Nhomakorabeax+1;
②y =x+1;
③y =2x+1; ④y =-x+1.
tips:由组长指定除自己外的三名成员回答,每小
下列函数中:题2分
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
说出下列函数的增减性及经过的象限
(1) y =-3X+7 (2) y = πx
(3) y =3-X
(5) y = x 8
(4) y =5x+6 (6)y = -0.5x-1
tips:由老师指定该组某个组员回答,答错可由组员补 答,但得分减半,第一题6分,第二题3分。
(1)直线y =2x-3 与x 轴交点的坐标为(_1_._5_,__0_)_;
不同点.(4分钟)
③y=x-2 的图象。
相同点:函数的图象形状都是 直线 ,并
且倾斜程度_相__同___
y 4 3 2 1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5
不同点:
y=x+2 y=yx=x-2函点与数,y轴y函=交数x于的y=点图x_(+象_20_经的,__过图2_),原象
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
一次函数的图像及性质

3 x 1 上, 4
2.若 a 是非零实数 , 则直线 y=ax-a 一 定经过( A.第一、二象限 C.第三、四象限 B. 第二、三象限 D. 第一、四象限
)
拓展与应用
1、一次函数y=kx+b中,kb>0,且y随x的增大而 减小,则它的图象大致为( )
一次函数y=kx+b(k≠0,k、b为常数)有下列性质:
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升; (2)当k<0时,y随x的增大而减小, 这时函数的图象从左到右下降。
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、三象限
y随x增大 而增大 y随x增大 而增大 y随x增大 而增大
K>0
b=0
y
o
x
第一、三象限
b<0
(o, b)
y
o
x
第一、三、四象限
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、四象限
y随x增大 而减小 y随x增大 而减小 y随x增大 而减小
k>0, b<0
上,试比较a和b的大小。你能想出几种判断的方法?
试一试
1、下列一次函数中,y的值随x的增大而减小 的有________ )
2、函数 y 1 x, y 5 x 4, y 3 x
(1) y 10 x 9 (3) y 5 x 4
一次函数图像课件(共14张PPT)

(增的大图2)而象当从_减_k左_<小_到_0,时右这下,__时y_降随_函_x数.的
做一做
画出函数y=-2x+2的图象,结合图象回答 下列问题:
(2)当x取何值时,y=0? 解:((2)因3)为当yx=取0 何所值以时-,2yx>+20=?0 ,x=1
(3)因为 y>0 所以 -2x+2 > 0 ,x < 1
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升;
y x 2
y x 2
(增的大图2)而象当从_减_k左_小<_到_0,时右下这,__时y降_随_函_x数.的
y减少
x增大
概括
一次函数y=kx+b有下列性质: (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升;
一次函数的性质(1)
说一说:
1、一次函数的一般式。 y=kx+b(k,b为常数,k≠0)
2、一次函数的图象是什么?
一条直线。
1.掌握一次函数y=kx+b(k≠0)的性质。 2.能根据k与b的值说出函数的有关性质。
y 2 x 1 3
x 0 3 2
y10
y 3x 2 y 2 x 1 3
y增大 x增大
解:方法一 把两点的坐标代入函数关系式
当 x=2 时, m= 4
3
1
当 x= -3 时, n= 2
所以 m > n。
方法二因为
1
K= 6
>0,所以函数y随x增大而增大。
从而直接得到 m > n。
小结
经过本节课的学习,你有哪些收获?
(2) 当k<0时,Байду номын сангаас随x的增大而减___小__,这时函 数的图象从左到右下__降___.
一次函数图像与性质ppt课件

图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
一次函数的图像和性质

图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×
|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0
一次函数的图像与性质

一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。
本文将探讨一次函数的图像及其相关性质。
I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。
斜率 a 决定了直线的倾斜方向和角度。
若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。
截距 b 则表示了直线与 y 轴的交点。
II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。
斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。
通过斜率,我们可以判断一次函数的增减性。
2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。
截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。
截距的大小也影响了直线与坐标轴的交点。
3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。
通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。
4. 增减性一次函数的增减性由斜率来决定。
当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。
5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。
当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。
6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。
增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。
一次函数图象课件

物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题
一次函数的图像课件(浙教版)

2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=
②对于函数y= -
x,若x2>x1,则y2
x+3,若x2
>
>
y1
x1,则y2<y1
视察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的
y=±2x-4
_________________.
解:∵令x=0,则y=-4;令y=0,则x= ,
∴直线y=kx-4与两坐标轴的交点分别是(0,-4),( ,0),
∴S=×|-4|×| |=4,即k=±2,
∴直线的解析式为y=±2x-4.
故答案为:y=±2x-4.
4. 已知一次函数y=(3-k)x-2k2+18,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备
1. 教学目标
【教学目标】
知识与技能:
1.理解正比例函数的概念.
2.会用描点法画正比例函数图象.一次函数图像
3.掌握正比例函数的性质.一次函数性质
过程与方法:
1.通过实际情境引入,培养学生数学建模的能力.
2.通过对正比例函数的性质的探究,使学生经历做数学的过程,初步形成正确、科学的学习方法.
情感态度与价值观:
1.实际情境引入,使学生认识到生活实例中有大量的函数模型,激发学生学习数学的兴趣.
2.培养学生热爱自然、热爱生活的优秀品质.
2. 教学重点/难点
【教学重点】
1.正比例函数的概念.一函数性质一次函数图像
2.探究正比例函数的性质.一次函数的应用
【教学难点】
正比例函数的性质中的y与x的变化关系.
3. 教学用具
4. 标签
教学过程
一、创设情境,引入
设计意图:从课本案例出发,通过数形结合让学生理解。
通过实际情境引入,使学生认识到现实生活和数学密不可分,向学生渗透热爱自然、关注珍惜物种、人与动物和谐共处的情感教育.
同时发展学生从实际问题中提取有用的数学信息,建立数学模型的能力.
二、观察思考、归纳概念
列问题中,变量之间的对应关系是函数关系吗?
如果是,请写出函数解析式?
1.圆的周长L随半径r的变化而变化?
2.铁的密度为7.8g/cm3,铁块的质量m(单位;g)随它的
体积V的变化而变化。
3.每个练习本的厚度为0.5cm,一些练习本摞在一起的
总厚度h(单位:cm)随联系标的本数n的变化而变化。
4.冷冻一个0°C的物体,使它每分下降2°C,物体的
温度T(单位:°C)随冷冻时间t(单位:min)的变化
而变化。
师生活动:教师多媒体呈现上述五个实际问题.
学生独立解答,解答后小组交流,出代表进行反馈.
教师要重点关注:(1)题中学生易将写成 .(4)题中每分钟下降2℃应记为“-2℃”,避免学生将写为 .关注学生能否准确找出中的常量.
设计意图:
通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点.
通过对实际问题讨论,使学生体验从具体到抽象的认识过程.
问题2:将上表中的前四个函数与第五个函数进行比较,思考:前四个函数有什么共同特点?
师生活动:学生观察、思考.小组交流,分析、归纳共同特点,出代表反馈.
教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点.教师根据学生的表述板书:
共同点:常数×自变量.
教师板书:y=kx
概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数.
教师追问:这里为什么强调k是常数,k≠0呢?
学生交流、讨论,互相补充.
设计意图:
通过将前四个函数与第五个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念.
有效地克服了因没有对比直接观察使学生出现的不适性、盲目性.
培养学生的观察、分析、归纳、概括等思维能力.
三、练习运用,内化概念
判断下列函数是否为正比例函数?如果是,请指出比例系数.
师生活动:1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出
正比例系数k的值.
(1)y=-0.1x (2)y=2x2 (3)y2=4x (4)y=-
4x+3 (5)y=2(x-x2 )+2x2
(2) 1.如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
2.如果y=kxk-1,是y关于x的正比例函数,则k=__________.
3.如果y=3x+k-4,是y关于x的正比例函数,则k=_________.
学生独立解答,
教师根据学生反馈情况,引导学生根据“常数×自变量”归纳辨别正比例函
数要注意的问题.
设计意图:使学生结合实例深入理解概念的内涵,做到具体问题具体分析. 四、合作探究,概括性质
正比例函数的解析式具有共同的结构特征,它们的图像是否也有某种必然的
共同之处呢?
1.画一画
画出下列函数的图像.
例1.画出下列正比例函数的图像:
(1)y=2x
(2) y=-2x
师生活动:师生共同列表、描点、连线,画出正比例函数(1)y=2x(2)y=-
2x的图像
分别说出图像特征,比较两个函数图像的相同点和不同点
同时猜测正比例函数y=kx的图像特征。
设计意图:使学生熟练函数图象的画法.
为下一环节小组观察图像、归纳正比例函数图象做准备.避免只看一两个函数图象就轻易下结论的不科学、不客观的作法.
2. 在同一坐标系内画出下列正比例函数的图像:
(1)y=3x (2)y=-3x
验证你的猜想是否正确
设计意图:培养学生动手实践的能力,同时使学生亲历画图——观察——猜想——验证,给学生提供自主探索的机会,使学生亲身体验做数学的过程,知
道学习数学、研究数学的基本程序.
总结:正比例函数的图像特征:
一般地,正比例函数 y=kx (k是常数,k不等于0 )的图象
是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.
五、用“两点法”画出正比例函数的图像
正比例函数的图像是经过原点的直线,那么怎样画正比例函数的图象最简单?为什么?
用“两点法”确定正比例
函数图像的方法:确定(0,0)和(1,k)点
师生活动:教师引导学生思考、交流、归纳,得出两点法.
六、练一练
用两点法画出下列正比例函数图像
y=1/2x y=-1/2x
师生活动:学生练习,教师巡视指导.
设计意图:巩固“两点法”画图像的方法.
七比一比,看谁反应快
.1.正比例函数y=kx(k=0)的图像是——,它一定经过点——和——
• 2.函数y=4x经过第——象限,y随x的——
• 3.如果函数y=-ax的图像经过一、三象限,
•那么y=ax的图像经过——。
课后习题
1、已知函数 y=-9x, 则下列说法错误的是( )
A.函数图像经过第二,四象限。
B.y 的值随 x 的增大而增大。
C.原点在函数的图像上。
D.y 的值随 x 的增大而减小
2、若函数 y (2m 6) x2 (1 m) x 是正比例函数,则 m 的值是( A、 m =-3 B、 m =1 C、 m =3 C、 m >-3 ) )
3、已知 ( x1 , y1 ) 和 ( x2 , y2 ) 是直线 y 3x 上的两点,且 x1 x2 ,则 y1 与 y2 的大小关系是( )A、 y1 > y2 B、y1 < y2 C、y1 = y2 D、以上都不可能
思考题:已知 y+3 和 2x-1 成正比例,且 x=2 时,y=1。
(1)写出 y 与 x 的函数解析式。
(2)当 0≤x≤3 时,y 的最大值和最小值分别是多
设计意图:通过学生自己回顾、归纳本节内容,使学生对本节课的内容进行一次重新梳理,使学生能从整体上对本节内容有一个深刻地认识,使知识内化.。