浅谈地基处理强夯法

浅谈地基处理强夯法
浅谈地基处理强夯法

浅谈地基处理强夯法

隧道网 https://www.360docs.net/doc/064310900.html,(2005-9-13) 来源:隧道网

摘要:本文详细介绍了强夯法的由来和在国内外的发展情况,着重阐述了强夯加固机理中的动力固结理论和震动波压密理论。另外,还介绍了强夯施工的一般流程和施工要点。最后,文章详细介绍了沪青平高速公路(中段)二标段工程中强夯法对软土路基处理的情况,并通过中期监测数据对加固效果进行了分析评价。

关键词:强夯法、饱和能、震动波压密、沪青平高速公路

1 前言

任何建筑物的荷载最终将通过基础传递到地基上。凡是基础直接建造在未经加固的天然土层上时,这种地基称为天然地基。若天然地基很软弱,则事先要经过人工处理,这种地基称之为人工地基。而其处理过程就称为“地基处理”(SOIL TREATMENT)或“地基加固”(SOIL IMPROVEMENT)。地基处理方法主要分为:换土垫层法,深层密实法,排水固结法,化学加固法,加筋法和热学法。强夯法属于地基处理方式中的深层密实法中。

强夯法设备简单,适用范围广泛,可用于填土、失陷性黄土、粘土、砂砾、碎石等各种土质。对于淤泥质软土的试验性施工证明,只要控制好施工参数,也是可行的。此法不仅用于房建工程,也适合桥涵、道路、港口码头和大型设备基础等工程,而且具有速度快、效果显著和节省投资等优点,是一种比较理想的地基处理方式。

目前,上海强夯法的应用还不是十分广泛,特别是在软基处理研究和施工方面还比较缺乏经验,希望能通过本文对强夯理论和软基处理工程实例的介绍和分析,给强夯法在上海的推广和应用提供一些资料和借鉴。

2 概述

2.1 强夯法的由来及特性

强夯法处理地基是六十年代末由法国Menard技术公司首先创造的。这种方法是将很重的锤(一般为100-400kN)从高处自由落下落(落距一般为6-40m)给地基以冲击力和振动,从而提高土的强度并降低土的压缩性,改善土的振动液化条件和消除湿陷性黄土的湿陷性等作用。同时,夯击能还可以提高土层的均匀程度,减少将来可能出现的差异沉降。强夯法开始时仅用于加固砂土和碎石,经过几十年的发展,它以适用从砾石到粘性土的各种地基土,这主要是由于施工方法的改进和排水条件的改善。

强夯法由于具有地基加固效果显著、设备简单、施工方便、适用范围广、经济易行和节省材料等优点,很快传播到世界各地。目前已经有几十个国家的数千项工程采用强夯法加固地基。

2.2 国内外发展情况

强夯法是法国Menard技术公司于1969年首创并创用的。由于强夯法特有的优点,所以在国外十分普遍。1974年英国工程师协会专门召开了深基础会议,在该次会议上Menard本人对强夯作了详细介绍。从那以后,十几年来第九、十、十一界国际土力学和基础工程会议上以及世界各地区性会议上,都发表了很多关于强夯的论文,对强夯的发展、完善起到了很大的推动作用。我国是1978年9月引进这项技术的,1979年首先在塘沽进行了强夯法加固粘土地基的实验研究。1979年6月分别在河北省廊坊与山西省阳泉,对轻亚粘土、粉细砂地基与黄土质砂粘土填方地基进行了处理。这是我国采用强夯法处理地基的最早两项工程。随后很快推广到北京、上海、天津、广州、深圳等很多地方,并且都取得了良好的技术经济效果,为国家节省了巨额基础工程费

用。

3 加固机理

3.1 动力固结理论

强夯法虽然已经在实践中证实了是一种比较好的地基处理方法,但到目前为止还没有一套成熟和完善的理论和设计计算方法。在第十界国际土力学和基础工程会议上,美国Menard教授在“地基处理”的科学发展水平报告中精辟的论述强夯法的传统固结机理:强夯法目前已经发展到地基土的大面积加固,深度可达30m。当应用于非饱和土时,压密过程基本上同实验室中的击实实验相同。在饱和无粘性土的情况下,可能会产生液化,其压密过程同爆破和振动密实的过程相似。这种方法对饱和细粒土的效果,成功和失败的例子都有报道。对这类土需要破坏土的结构、产生超空隙水压力以及通过裂隙形成排水通道。而强夯法对杂填土特别有效。

实践证明,在夯击的工程中,土体的瞬时沉降可达几十厘米;土中产生液化后使土的结构破坏,土的强度下降到最小值;随后在夯击点出现径向裂隙,成为加速空隙水压力消散的主要通道;因粘性土具有触变性,使降低的强度得到恢复和增强。Menard教授实践,并结合传统的固结机理,提出了饱和土是可以压缩的新的机理,并现在得到了大多数科学家的认可。下面再作进一步的介绍。

(1) 饱和土的压缩性

在工程实践中,不论对土的性质如何,夯击时能立即引起地基土的很大沉降,这个结果对颗粒状土是可以理解的。对渗透性很小的饱和细粒土,孔隙水的排出被认为是考虑沉降的必要和充分条件,这是传统的固结理论的基本假定。由于饱和细粒土的渗透性低,因而在瞬时荷载作用下,空隙水不能迅速排出,这样就无法理解在强夯时回立即引起很大沉降的机理。

Menard教授认为,由于土中有机物的分解,第四纪土中大多数都含有以微气泡形式出现的气体,其含量大约在1-4%。进行强夯时气体体积压缩,空隙水压力增大,随后气体有所膨胀,空隙水排出的同时,空隙水压力就减小。这样每夯一遍,气相体积和液体积都有所减少。根据实验,每夯击一遍,气体体积可减少40%。

(2) 产生液化

在重复夯击作用下,施加在土体的夯击能量,使气体逐渐受到压缩。因此,土体的沉降量与夯击能成正比。当气体按百分比接近于零时,土体变成不可压缩的。相应于空隙水压力上升到覆盖压力相等的能量级,土体即产生液化。如图1所示,液化度为空隙水压力与液化压力之比,而液化压力即为覆盖压力。当液化度为100%时,亦即为土体产生液化的临界状态。而该能量级称为“饱和能”。此时,吸附水变成自由水,土的强度下降到最小值。一旦达到“饱和能”而继续施加能量者,除了使土起重塑的破坏作用外,能量纯属是浪费。

应当指出,天然土的液化常常是逐渐发生的,绝大多数沉积物是层状和结构性的。粉质土和砂质土层比粘性土层先进人液化。并应当注意到,强夯时所出现的液化,只是土体的局部液化。

图1 夯击一遍情况

(3) 渗透性变化

在很大的夯击能作用下,地基土体中出现了冲击波和动应力。当所出现超孔隙水压力大雨颗粒间的侧向压力时,致使土颗粒间出现裂缝,形成排水通道。此时,土的渗透系数聚增孔隙水顺利排出。在有规则网格布置夯点的现场,通过积聚的夯击能量,在夯坑四周会形成有规则垂直裂缝,夯坑附近出现涌水现象。所以应规划好强夯的施工顺序,而不规则的和紊乱的夯击,可以破坏这些天然排水通道的连续性。在现场可观察到夯击前土工试验中所测的渗透系数,是不能说明夯击后孔隙水压力迅速消散的这一特性的。

当空隙水压力消散到小于土颗粒间的侧向压力时,裂缝即自行闭合,土中水的运动重新又恢复常态。有的国外资料报道,夯击时出现的冲击波,将土颗粒间吸附水转化为自由水,因而促进了毛细管通道横断面的增大。

(4) 触变恢复

在重复夯击的作用下,土体的强度逐渐减低,当土体出现液化或接近液化时,土的强度达到最低值。此时土体产生裂隙,而土中吸附水部分变成自由水,随着孔隙水压力的消散,土的抗剪强度和变形模量都有了大幅度的增长。这是由于土颗粒间紧密接触以及新吸附水层逐渐固定的原因,而吸附水逐渐固定的过程可能会延续至几个月。在触变恢复期间,土体的变形(沉降)却是很小的,有的资料中介绍在0.1%以下。如果用传统的固结理论也就不能说明这一现象,这是自由水重新被土颗粒所吸附而变成了吸附水的缘故,这也具有触变性土的特性。

众所周知,饱和粘性土是具有触变性的,当强夯以后,土结构被破坏,强度几乎降为零,如图(2)。随着时间的推移,强度逐渐恢复。这种触变强度的恢复也称为时效(time effect)。图(2)中为土体在强夯以后第17d,31d和118d十字板强度值。在一般孔隙水压力已经完全消散的情况下,夯击后六个月所测得的土的抗剪强度一般比一个月所测得的强度增长20%-30%,而变形模量增长30-80%。因此,强夯后质量检验的勘探工作或测试工作,至少宜在强夯施工后一个月再进行,不然得出的指标会偏小。

图2 强夯后地基抗剪强度的增长与时间关系

对灵敏度较高的粘土中,存在触变现象这一土的特性是众所周知的。实际上这一现象对所有细颗粒土都是明显的,仅是程度上不同而已。值得注意的是,经过强夯后土在触变恢复过程中,对振动是十分敏感的,所以在进行勘探和测试工作时候应该十分注意。

鉴于以上强夯法加固的机理,Menard教授对强夯中出现的现象,提出了一个新的弹簧活塞模型,对动力固结的机理作了解释。

图3 静力固结理论和动力固结理论的模型比较

图(3)表示静力固结理论与动力固结理论的模型间区别,主要表现在以下四个主要特性,见表1。

表1 静力固结理论和动力固结理论的区别

对动力固结的理论模型,可从四个方面进行解释:

●由于微气泡的存在,充满气缸的水以为部分是可压缩的,亦即孔隙水具有压缩性,

●对夯击前、后土的渗透性的变化,可用一个孔径可变的排水孔进行模拟;

●弹簧的刚度是模拟土体的压缩模量,过去传统的固结理论的观点以为是常数。实际上强夯法施工时候,在反复荷载的影响下,会使压缩模量有很大改变,在这个过程中,吸附水起了重要作用。

●加载后传递力的活塞和气缸间存在磨阻力。因此,液体中压力减少,不能自动导致活塞的位移和弹簧的变化。在实际现场的地基中,常观察到孔隙水压力的减少并没有相应地引起沉降。

另外,试验研究证明,强夯后所导致砂性土的液化,能够降低地基在未来地震作用下的液化。亦即经过若干次强夯液化后,虽然地基土的密度增加不多,但却能减少在未来地震作用下发生液

化的可能性。

3.2 震动波压密理论

目前,除了Menard的动力固结理论对强夯机理作解释外,还有震动波理论对强夯也作了解释。在实施强夯时,重锤由高空落下,产生强大的动能(震动源)作用于地基土。此时,动能转化为波能,从震源向深层扩散,能量释放于一定范围的地基中,使土体得到不同程度的加固。

震动波主要分为体波和面波,体波又分为纵波和横波,面波分为瑞利波和乐浦波。纵波(P 波)是由震源向外传递的压缩波,质点振动方向与波前进方向一致,这种波使孔隙水压力增大,同时还使土粒错位。横波(S波)是由震源向外传递的剪切波,质点振动方向与波前进方向垂直。瑞利波传播时,介质质点在波的传播方向与自由面的法线组成的平面内作椭圆形运动,而在与该平面垂直的水平方向没有振动。乐浦波只在与传播方向相垂直的水平方向运动。

对地基加固起主要作用的是体波。面波只限于在地基表面传播,它不但起不到加密的作用,反而使地基表面松动,故为无用波或有害波。地基压密理论将地基加固区分为四层,详见图(4)地基压密固结模式图。第一层是松弛区,地基土因受冲击力而扰动,主要是横波和面波的干扰。因横波方向和质点方向垂直,瑞利波和乐浦波分别按椭圆形运动和按地面水平向运动,所以都只在地基表面传播使土体产生上下运动,土体松动而产生松弛区。第二层是固结效果最佳区,由于压缩波在此层反复作用,使地下应力超过了地基的破坏强度,土中吸收纵波放出的能量最多,所以这层的固结效果也最好。第三层效果减弱区,这层压缩波渐减,地下应力界于地基破坏强度和屈服强度之间,致使固结强度迅速下降。第四层是无效固结区,此层地下应力处于地基的弹性界限内,能量消耗已经无法克服土体的塑性变形,顾此层基本上没有固结作用。

图4 地基压密固结模式图

在实施强夯时,随着地基的压密加固,能量会发生变化。当初夯时,土体产生压缩塑变,因波速和介质密度、弹性模量、剪切模量有关,初夯时纵波会很快被土体吸收产生塑性变形,当达到一定能量时,塑像变形完成后产生弹性变形。随着土体密度的增加,而压缩模量和剪切模量增大,波的传播速度相应加快,这时横波增加,纵波在削弱,并且波的折射和反射要消耗能量,不利于对土体的加固,如果再增加夯击能(夯次),其效果不会明显。

对非饱和土地基,其加固机理可以归结为压缩波的反复作用消耗能量做功,而对土体产生压密固结。一部分能量使土体产生塑变转换为土的位能,使土体产生弹性变形并将另一部分能量向深层传播而加固深层地基。最终使能量转换为土的塑变位能。

对含水量教高的饱和土地基,其加固机理也是压缩波的反复作用和波的折射、反射重复做功而获得加固效果的。具体说,由于压缩波的反复做功和空隙水压力的共同作用,在土中形成了网状贯通排水通道,使土体的渗透条件得到明显的改善,夯击之后,土体将在良好的渗透条件和较高的空隙水压力作用下完成其动力固结过程,使土中空隙水迅速排出,孔隙水压力迅速消散,土

体进一步密实。对饱和粘性土,因其渗透系数小,土体大量在夯后固结,因此,夯后土体应有足够的间隔时间,否则即使较小能量的过早夯击也是有害无艺,使土体无法恢复。这一动力固结过程,成为强夯法处理淤泥质土的显著特点,随着这一固结过程的完成,土体的性质将得到明显改善,获得强夯后的预期效果。

3.3 施工工艺

(1) 施工程序图

图5 施工程序图

① 平整场地

预先估计强夯后可能产生的平均地面起伏,并以此确定地面高程,然后用推土机平整。

② 铺垫层

遇到地表为细粒土,且地下水位较高的情况,有时需在表层铺设0.5-2m左右的砂、砂砾或碎石。这样做的目的是在地表形成硬层、可以用以支撑起重设备,确保机械通行、施工。又可加大地下水和表层面的距离,防止夯击效率低。另外,硬层还可以有效的保护表层土层不被破坏。

③ 夯点放线定位

宜用石灰或小木桩的办法进行。其偏差不得大于5cm。

④ 强夯施工

每夯完一遍后,用新土或坑壁的土将夯坑填平,再进行下一遍夯击,直到将计划的夯击遍数完成为止。最后一夯为满夯(搭夯)。

⑤ 现场记录

强夯施工时应对每一夯实点的夯击能量、夯击次数和每次夯击后的沉降量等做好详细的现场记录。

⑥ 安全措施

为了防止飞石伤人,现场工作人员应戴好安全帽,另外,夯击时工作人员应退出强夯机工作半径内。

4 工程实例

4.1 工程简介

沪青平高速公路(中春路一朱枫路)二标段工程地处“鱼米之乡”的青浦区。该标段沿线地势

平坦,河道纵横,水系发达,且多河塘、鱼塘和明、暗浜,地下水位高,导致了土层具有含水量高、空隙比大、压缩性高、承载力低等特点;区段内以可塑性粘性土为主,且含水量较高,多数地段处于软弱层上。强夯法软土路基处理段处于九峰江东岸,是设计九峰江桥的东桥台位置,桩号为K2+013-K2+133。为了对不同夯击能对土路基的处理效果进行对比分析,强夯段共分为两个试验区:A 区桩号K2+013-K2+073,B区桩号K2+073-K2+133。

整个区段土层由上到下分为5层,第一层为人工填土层,层厚1.5m,褐色粘性土,含水量高,呈可塑状;第二层①为灰黄色填土层,层厚约0.6m,松软、稍湿,含少量植物根茎;第二层②2为褐色粉质粘土层,层厚约1m,分布连续,强度较高;第三层③1为灰色淤泥质粉质粘土,呈流塑状,高压缩性,层厚约2.9m;第四层③2为砂质粉土层,层厚约5.5m,稍密,强度较高;第五层③3为淤泥质粉质粘土层,层厚约8.3m,呈流塑状,高压缩性。

4.2 设计要求

(1) 路基承载力标准值(基地附近)K≥120KPa,变形模量EO≥8.0MPa。

(2) 淤泥质土层在填土荷重及动荷载作用下,在路面层施工的固结沉降达到其层厚的4%。软土静力触探比贯人阻力平均值Ps≥1.0MPa。

(3) 经碾压后路基土压实度达到规范要求。

4.3 施工工艺流程

整平原地面并填土--做砂石盲沟--摊铺下层砂垫层--塑料排水板打人--摊铺上层砂垫层和

5-15mm碎石--夯击

4.4 强夯施工参数

(1) 开挖盲沟设集水井

纵向盲沟设于道路中心,沟深25~50cm,沟底向集水井方向有1%的排水坡度。横向盲沟以25cm间距设置,沟深25~60cra,沟底向集水井或道路外测有1.5%排水坡度。

集水井沿纵向盲沟每隔50m设一口,井底深应比盲沟深50cm以上,用碎石作虑料,井底用铁砂网、塑料砂网及土工布包封。

(2) 设砂石垫层

为保证机械通行施工,由于地下水位较高和粘土上施工,故需要铺设一层砂砾和碎石垫层才能进行强夯,否则土体会发生流动。碎石的厚度一般位60cm为宜,垫层无粘土。

(3) 插塑料排水板

① 插设间距及深度

九峰江桥(HQPK2+013~HQPK2+073)(实验A区)

以1.5m×1.5m正方形布点,深度20m

九峰江桥(HQPK2+073~HQPK2+133)(实验B区)

以1.7m×1.7m正方形布点,深度22m

② 排水板需要用SPB-1B型

③ 用履带式振动插板机

(4) 强夯

A区:

① 第一遍:以450kNm3.9m×3.4m梅花形布点,每点1击

② 第二遍:以900kNm4.5m×.9m梅花形布点,每点1~2击

③ 第三遍:以1800kNm5.2m×4.5m梅花形布点,每点2~5击

④ 第四遍:以2250~2700kNm6.0m×5.2m梅花形布点,每点1~2击

⑤ 第五遍:以600kNm2.9m×2.5m梅花形布点,每点1击

⑥ 相邻两遍夯击之间的最短间歇时间为7~1 5天,具体根据孔隙水压力测试结果确定;

⑦ 夯锤直径为2.52m;

⑧ 夯击范围距离试验区周边1.26m;

⑨ 强夯设备(3000kNm)一套,配120kN、150kN夯锤各1个,夯锤面积5m2。

B区:

① 第一遍:以450kNm3.9m×0.4m梅花形布点,每点1击

② 第二遍:以900kNm4.5m×3.9m梅花形布点,每点1~2击

③ 第三遍:以1800kNm5.2m×4.5m梅花形布点,每点2~5击

④ 第四遍:以600kNm2.9m×2.5m梅花形布点,每点1~2击

⑤ 相邻两遍夯击之间的最短间歇时间为7~15天,具体根据孔隙水压力测试结确定;

⑥ 夯锤直径为2.52m;

⑦ 夯击范围距离试验区周边1.26m;

⑧ 强夯设备(3000kNm)一套,配120kN、150kN夯锤各1个,夯锤面积5m2。

4.5 测试手段

(1) 孔隙水压力测试:这是了解加固深度、范围、加固效果及控制工程进度的最重要的监测方法。需作动静两种状态的测试,以了解夯击时超静水压力峰值及孔隙压力随时间消散规律。每试验小区一组测孔,每孔在不同深度布三个测计

(2) 动力触探:这是了解每一遍夯击加固效果的测试方法。在夯前及每一遍夯后7天进行检测,每500m2设一测孔。

(3) 静力触探:这是了解夯前、夯中、夯后土层特性的重要测试方法。

(4) 平板静荷载试验:这是了解加固后路基层承载力标准值、变型模量及回弹模量的测试方法。每一试验小区及路段每100m布一测点。

(5) 压实度试验

(6) 沉降监测:每小区布两个沉降板,测定淤泥质土顶面的沉降。另外用麻花钻测量砂石面的标高,每400m2布一测点。

4.6 效果评价

(1) 静力触探

经过对A、B试验区静力触探测试数据的分析,大部分地基固结度在短期内得到了大幅度增加,承载力也提高了300%以上,应该说效果还是十分明显的。但从静力触探曲线图(6)(7)看,第三层淤泥质粉质粘土层比贯入阻力Ps并无大的变化,加固效果不够理想。这主要是由于淤泥质粉质粘土高压缩性和流塑状态使得其触变性不够灵敏,静力触探曲线不能在短期反映的增长幅度不明显,甚至有低于夯前值的情况。但根据以往的强夯工程看,在静置半年后,该层的曲线应该有比较大的增长。

下面对A、B试验区测试曲线图分别进行分析:

A区:第一、二、四层加固效果都十分的明显,加固后的承载力和变形模量都满足要求。第二层粉质粘土平均h值由夯前的1.4MPa增加到夯后的2.8MPa,增加了100%;第四层砂质粉土平均Ps值由夯前的1.2MPa增加到夯后的2.8MPa,增加了130%。第三层淤泥质粘土层Ps值没有大的变化。强夯的影响深度约为1 2m。见图(6)。

B区:B区的加固效果不如A区显著,仅第一层和第五层的12~14m的加固效果比较好,其余的区域变化都不是很大,甚至在9.5~12.5m段出现夯后Ps值比夯前大幅度减小的异常情况。这可能是此段土体在强夯后结构被破坏,由于检测间隔时间不长,导致强度还没有恢复。由于静力触探是在强夯结束后不到一个月时间测出的,所以这种情况是有可能发生的。见图(7)。

(2) 动力触探

由动力触探的曲线图(8)我们明显可以看出,A区比B区的加固效果好。A区N均值夯后比夯前增长了200~300%,B区N均值夯后比夯前增长100~200%。但就6m 以上土层来说,N值都是大于10,这说明这段土层的指标是满足设计要求的。

图6 A区静力触探曲线图

图7 B区静力触曲线图

图8 轻便动力触探曲线图

(3) 沉降观测

沉降观测是强夯各项监测工作中十分重要的一项,我们的监测工作是在9月17日~10月28日期间进行的。

由图(9)可以看到A、B试验区沉降观测点的分布情况。

图9 试验区测点平面布置图

表2 沉降观测数据表

从沉降数据表中我们可以看出A区的沉降明显大于B区,除中心点外A区平均沉降为

151.25mm,B区为98.75mm,相差52.5mm,而中心沉降相差105mm。除中心点外A区日平均沉降为3.7mm,B区的日平均沉降为2.4mm。

由地基分层沉降观测是从9月25日~10月25日,共30天。A区14m沉降曲线处于第三层淤泥质粘土层,沉降量为70mm,日平均沉降为2.3mm。设计要求沉降为2900×4%=116mm,这样该层特征沉降曲线表明30天完成设计沉降的60%。B区14m沉降曲线处于第三层淤泥质粘土层,沉降量为54mm,日平均沉降为1.8mm。设计要求沉降为2900×4%=116mm,这样该层特征沉降曲线表明30天完成设计沉降的46.6%。由此,我们可以知道A区的固结效果比B区的固结效果好。

通过新强夯工艺在沪青平高速公路(中段)工程的应用和对中期监测数据的具体分析,我们可以看到其对软土路基的加固效果还是比较明显的,无论是地基承载强度,还是固结度在短期内都有大幅度的提高,而且基本都满足设计要求,不仅大大缩短了施工工期,而且还提高了软土路基的加固质量。至于对第三层淤泥质粘土软弱层的加固效果,中期监测资料还不能反映,要等后期监测资料完成后才能进行分析得出。

上海市第二市政工程有限公司

(陈斌) 点数:101440 发布:韦秀英审核:施文琪田远珬电子邮箱:website@https://www.360docs.net/doc/064310900.html,

强夯地基处理

1.1 强夯地基处理 1.1.1基本规定 1、强夯地基处理可根据加理、适用条件和施工工艺划分为强夯法和强夯置换法两种类型。 2、确定强夯地基处理方案应具备下列条件: (1)详细的岩土工程勘察资料,上部结构及基础设计资料; (2)对于人工填土地基,应详细了解填土场地原地表的地形地貌、地表植被、地表水分布及填土前的地表处理、排水、清淤等情况;了解填土的岩土成分、土石比及颗粒级配等; (3)根据工程的要求和地基存在的主要问题,确定强夯地基处理的目的,处理围和处理后要求达到的各项技术经济指标; (4)结合工程情况,了解当地强夯地基处理施工经验和施工情况,对于有特殊要求的工程,尚应了解其它地区相似场地上同类工程的处理经验和使用情况等; (5)搜集临近建筑、地下工程和有关管线等情况; (6)掌握工程场地周围的环境情况。 3、在选择强夯地基处理方案时,应考虑上部结构、基础和地基的相互作用,并经过技术经济比较,选用强夯地基处理地基或加强上部结构和强夯地基处理地基相结合的方案。 4、对已确定的强夯地基处理方案,宜按工程地基基础设计等级和场地复杂程度,在有代表性的场地上进行相应的现场试验或试验性施工,并进行必要的测试,以检验设计参数和处理效果,如达不到设计要求时,应查明原因,修改设计参数或调整地基处理方案。 5、强夯地基处理可与其它地基处理方法组合形成联合地基处理方案。 6、经强夯地基处理后的地基,当按地基承载力确定基础底面积及埋深,而需对本规程确定的地基承载力特征值进行修正时,应符合下列规定: (1)基础宽度的地基承载力修正系数应取零; (2)基础埋深的地基承载力修正系数应取1.0。经处理后的地基,当受力层围仍

XX工程强夯法地基处理方案

XX工程强夯法地基处理方案 1.1 工程概况 xx国际城A组团位于xx市xx工业区,用地面积61874m2,总建筑面积88387 m2,其中住宅84770.5 m2,商业3617 m2。xx国际城A组团,共22幢多层建筑与1F商业用房及场地平地区或景观地带。A组团22幢建筑物中,第A-01~A-04幢为11F的小高层,上部为异型柱框架结构,基础采用桩基础;其余为5+1F的多层与1F商业用房,上部结构采用砖混结构。地基经强夯处理后,基础采用钢筋混凝土条形基础。 工程所在场地大部分区域经人工填筑,填土为厚度0.10(ZX117附近)~15.69(ZX150附近),分布于整个场地,为新近随机抛填,抛填时间1~2年左右。该部分填土地基为欠固结状态,应该进行处理。同时,A组团原地基经过处理后,按照室外设计标高要求,大部分场地还需要填土,填土厚度不等,大部分填土层厚度为5m左右,在西边靠近公路侧最大填土厚度约为10m。为了区分,我们把现在已经形成的地基称为原地基,原地基必须经过处理才能填土。把现有地基经过处理后再要填筑的地基称为填筑体地基。填筑体地基同样是需要处理的。所以A组团地基处理分二阶段进行:即原地基处理与填筑体地基处理。 现分别对原地基处理和填筑体地基处理进行分析: 1.2 原地基处理: 1.2.1 原地基工程地质条件: 拟建场地地貌单元属构造剥蚀丘陵山坡地貌,根据现场钻探揭露,原地大致西北高东南低,现场地已经人工随机堆填,地面标高最低249.92m,最高263.80m,高差约14.0m,大致可以分为两个平台。东北侧平台地面标高在260~263m之间,西南侧平台地面标高在250~253m之间,地势平坦。 场地地层结构为:上覆第四纪全新统人工填土层、坡残积粉质粘土层,下伏侏罗系中统沙溪庙组砂质泥岩、砂岩互层,由新到老分述如下: 1、素填土(Q4ml):):杂色,成分由强风化~中等风化砂质泥岩、碎岩碎块石及可塑状粘性土等组成,粒径绝大部分在5~350mm之间,最大超过500mm,,硬质含量大部分超过50%,,其中碎块石含量接近,稍湿,松散~稍密。厚度0.10(ZX117附近)~15.69m(ZX150附近),分布于整个场地,为新近随机抛填,堆填时间1~2年左右。经勘察单位分析,人工填土上部松散、下部稍密,天然重度γ可取18k N∕m3,综合内摩擦角Φ可取22~26,承载力特征值可取70~100kPa。 第 1 页共30 页

强夯地基处理检测探讨

强夯地基处理检测探讨 前言 强夯加固效果的检验是强夯工程施工的一项很重要的工作,它包括施工过程中的质量检测和夯后地基的质量检验。常规检测手段主要有载荷试验、标准贯入试验、静力触探、动力触探、十字板剪切试验、旁压试验、现场剪切试验、波速试验等。随着物探技术的不断发展,物探方法在强夯地基检测中也得到推广应用。 1 常规检测方法的适用条件 强夯加固效果的检验方法,根据不同工程其要求也不一样。《建筑地基处理技术规范》(JGJ79-2002)中明确规定:强夯处理后的地基竣工验收时,承载力检验应采用原位测试和室内土工试验。强夯置换后的地基竣工验收时,承载力检验除应采用单墩载荷试验检验外,尚应采用动力触探等有效手段查明置换墩底情况及承载力与密度随深度的变化,对饱和粉土地基允许采用单墩复合地基载荷试验代替单墩载荷试验。规范中所指的原位测试手段主要有:载荷试验、标准贯入试验、静力触探、动力触探、十字板剪切试验、旁压试验、现场剪切试验、波速试验等。检验方法不同其作用和目的也不一样。 1.1 载荷试验 载荷试验重要适用于确定强夯后地基承载力和变形模量。 1.2 标准贯入试验 标准贯入试验适用于砂土、粉土和一般粘性土,可用于评价砂土的密实度、粉土和粘性土的强度和变形参数。还用于辅助载荷试验判断夯后地基承载力并确定有效加固深度,评价消除液化地基的效果。 1.3 静力触探试验 静力触探试验适用于粘性土、粉土、砂土及含少量碎石的土层。用以测定比贯入度、锥尖阻力、侧壁摩阻力和孔隙水压力。 1.4 动力触探试验 动力触探试验适用于强风化、全风化的硬质岩石、各种软质岩石、砂土、碎石土。用于确定砂土的孔隙比、碎石密实度,粉土、粘性土的状态、强度与变形参数,评价场地的均匀性和进行力学分层,检验加固和改良效果。 1.5 十字板剪切试验 十字板剪切试验适用于测定饱和软粘土的不排水抗剪强度和灵敏度。

浅谈强夯法处理地基_闫续屏

文章编号:1009-6825(2008)06-0135-02 浅谈强夯法处理地基 收稿日期:2007-11-01 作者简介:闫续屏(1967-),男,工程师,山西省机械施工公司,山西太原 030009 李锋瑞(1977-),男,工程师,山西省机械施工公司,山西太原 030009 闫续屏 李锋瑞 摘 要:对强夯法的加固原理进行了介绍,深入探讨了强夯法的设计,研究了强夯法加固湿陷性黄土、软土、填土等地基的效果,阐述了强夯法的优点及效果,分析了强夯施工中存在的问题,以提高强夯法处理地基的效果,推广强夯法的应用。关键词:强夯法,设计,技术效果,地基中图分类号:T U 472 文献标识码:A 强夯法,又称动力固结法,是用起重机械(起重机或起重机配三角架、龙门架)将8t~40t 夯锤起吊到6m~25m 高度自由落下,给地基以强大冲击能量的夯击,使土中出现冲击波和冲击应力,迫使土体孔隙压缩,土体局部液化,在夯击点周围产生裂隙,形成良好的排水通道,孔隙水和气体溢出,使土粒重新排列,经时效压密达到固结,从而提高地基承载力,降低其压缩性的一种有效地基加固方法,也是我国目前最为常用和最经济的深层地基处理方法之一。 根据地基处理的原因、目的、性质、时效及动机等有很多地基处理方法,其中强夯法由于在施工实践中具有加固效果显著、适用土类广、设备简单、施工方便、节省劳力、节约材料、施工工期短、施工文明和施工费用低等优点,在建筑地基处理中得到了广泛的应用。目前使用的夯锤重100kN~500kN,提升高度大约在10m~30m 。 1 强夯法的设计 1)强夯法的有效加固深度既是反映地基处理效果的重要参数,又是选择地基方案的重要依据。一般根据现场试夯或当地经验确定。在缺少试验资料或经验时可按表1预估。 2)强夯法单位夯击能应根据地基土类别、结构类型、荷载大小和要求处理的浓度等综合考虑,并通过现场试夯确定。在相同条件下细颗粒土的单位夯击能要比粗颗粒适当大些。一般对于细颗粒土取1500kN m/m 2 ~4000kN m/m 2 ;对于粗颗粒土取1000kN m/m 2~3000kN m/m 2。 强夯法的夯击次数应以夯坑的压缩量最大、夯坑周围隆起量最小为确定原则。除了按现场试夯得到的夯击次数和夯沉量关系曲线确定外,还应满足几个条件:a.最后两击沉降量不大于50mm,当单击夯击能量较大时小于100mm 。b.夯坑周围地面不 湿润等措施。拌好的灰土应当日使用,及时回填,搁置时间不得超过24h 。 4)孔内填料的夯实质量:向孔内填料前,孔底必须夯实,然后用灰土在最优含水量状态下分层回填夯实,每次回填厚度不大于400mm,灰土夯实后的压实系数不小于0.97。 4 质量控制技术4.1 成孔质量 1)桩孔中心点的偏差不应超过桩距设计值的5%;2)桩孔垂直度偏差不应大于1.5%;3)桩孔的直径和深度。对沉管法,其直 径与深度应与设计值相同;对爆扩法及冲击法,桩孔直径的误差不得超过设计值的 70mm,孔深不应小于设计深度0.5m 。 4.2 成桩质量 1)孔底在填料前必须夯实,填料应分层回填夯实。桩孔间距和桩径的确定以平均挤密系数 和最小挤密系数 c min 来控制。三桩之间的平均挤密系数 不宜小于0.93;挤密填孔后,3个孔 之间土的最小挤密系数 c min 对甲、乙类建筑不宜小于0.885,对其他建筑不宜小于0.84。 2)填料、夯击交替进行,均匀夯击至设计标高以上20cm~30cm 时为止。桩顶至地面间的空档可采用素土夯填轻击处理,待做桩上的垫层时,将超出设计桩顶的桩头及土层挖掉。 3)为保证夯填质量,规定填入孔内的填料量、填入次数、填料的拌合质量、含水量、夯击次数、夯击时间均有专人操作、记录和管理,并对上述项目按总桩数的2%进行抽样随机检查,每班抽样检查的数量不少于1次~2次。对于施工完毕的桩号、排号、桩数逐个与施工图对照检查,如发现问题应立即返工、补打。参考文献: [1]牛武功.夯扩桩在地基处理中的应用[J].山西建筑,2006,32(10):86-87. [2]郭 连.湿陷性黄土地基的处理方法[J].山西建筑,2006,32 (9):110-111. Research into the construction technology of ramming compacted pile in collapsed loess area SUN Yun -qing LI Hua -wei Abstract:T hrough practical engineer ing ,this paper introduces the principle of using tamping compacted pile to treat collapsed loess founda -tio n,discusses the co nstruct ion techno logy of tamping compacted pile,illustrates its quality control technology,and points out that compacted pile has the character istics as or iginal position processing,deep compaction and using local materials,w hich has technical and economic benefits in tr eating collapsed loess foundation. Key words:tamping compacted pile,collapsed loess,co nstruct ion technology 135 第34卷第6期2008年2月 山西建筑SHANXI ARCH ITECTURE Vol.34No.6Feb. 2008

强夯地基处理施工设计方案

舟山惠生海洋工程有限公司 船坞坞坑回填及强夯处理工程 施工方案 批准: 审核: 编制: 广厦建设集团有限责任公司 舟山惠生秀山山体爆破地基回填二期工程项目部 2010年4月

目录 一、工程概况 二、编制依据 三、施工总体安排 四、主要施工方法 五、强夯质量检验方法 六、施工总进度安排 七、现场施工组织管理网络 八、用于本工程的主要机械设备计划 九、用于本工程施工劳动力计划 十、质量保证措施 十一、安全生产保证措施 十二、文明施工保证措施

一、工程概况: 1 工程概况: 舟山惠生海洋工程有限公司船坞坞坑回填及强夯工程,位于舟山惠生海工基地一期工程的船坞处。一期工程期间,船坞已进行了大开挖,深度达12m以上。目前由于部分工程项目施工设计变更,需要对原船坞开挖部位进行石渣填筑强夯地基处理。 根据施工现成实际状况,经实地勘测,本工程施工工程量如下:强排水85514m3;石渣填筑148239m3;强夯面积27029㎡。 二、编制依据: 1、编制依据: (1)《建筑地基基础设计规范》(GB50007-2002) (2)建设部《建筑地基处理技术规范》(JGJ79-2002) (3)有关设计文件、图纸 2、编制原则: 质量优、效率高、工期快、信誉好、安全生产、创建文明工地。 ⑴工期:精心组织施工,确保工程在2010年6月30日前完成。 ⑵质量:工程质量竣工验收评为“合格”工程。 ⑶安全:实现安全事故“0”的目标,安全防护设施达到规范标准。 ⑷文明施工:积极参加文明竞赛活动,创建文明工地。

三、施工总体安排: 1、本工程地基强夯处理范围面积约1.5万平方米,根据本工程工期紧、施工难度较高,结合本工程工作内容,拟在项目部下设立二个施工作业队 ●回填作业队 ●强夯地基加固作业队 2、整个工程的施工工艺流程 施工准备工作→场地回填、平整→测量定位放线→第一遍点夯施工→场地回填、推平→第二遍点夯施工→场地回填、推平→第三遍满夯施工→资料整理→竣工验收。 四、主要施工方法: 1、测量放线 在强夯前,根据周围临时道路上的高等控制点用全钻仪在强夯区周围加密布置一定数量的控制点,用高等控制点及加密控制点放测出工区角点坐标(用经纬仪),再在工区内按3m×3m(梅花形)夯点间距施放夯坑位置,并用小竹签或红色塑料砂袋标出。各夯点位置(行、列距)误差<20厘米,强夯施工中若点位不清,应重新放点; 控制点坐标,工区角点坐标,夯坑位置经技术人员复测符合要求后方可进行强夯施工。 2、工区地基处理强夯施工方案: ⑴根据设计要求本工程拟采用分层夯实,基坑内回填开山石碴,

地基处理方法-强夯法

地基处理方法-强夯法 第一节一般规定 1、强夯法适用于处理碎石土、砂土、低饱和度的粉土与黏性土、湿陷性黄土、杂填土和素填土等地基。对高饱和度的粉土与黏性土等地基,当采用在夯坑内回填块石、碎石或其他粗颗粒材料进行强夯置换时,应通过现场试验确定其适用性。 2、强夯施工前,应在施工现场有代表性的场地上选取一个或几个试验区,进行试夯或试验性施工。试验区数量应根据建筑场地复杂程度、建设规模及建筑类型确定。 第二节设计 1、强夯法的有效加固深度应根据现场试夯或当地经验确定。在缺少试验资料或经验时可按下表预估。 单击夯击能(KN·m)碎石土、砂土等粉土、黏性土、湿陷性黄土等 1000 5.0~6.0 4.0~5.0 2000 6.0~7.0 5.0~6.0 3000 7.0~8.0 6.0~7.0 4000 8.0~9.0 7.0~8.0 5000 9.0~9.5 8.0~8.5 6000 9.5~10.0 >8.5~9.0 注:强夯法的有效加固深度应从起夯面算起。 2、强夯的单位夯击能量,应根据地基土类别、结构类型荷载大小和要求处理的深度等综合考虑,并通过现场试夯确定。在一般情况下,对于粗颗粒土可取1000~3000KN·m/m2;细颗粒土可取1500~4000KN·m/m2。 3、夯点的夯击次数,应按现场试夯得到的夯击次数和夯沉量关系曲线确定,且应同时满足下列条件: A.最后两击的平均夯沉量不大于50mm,当单击夯击能量较大时不大于100mm。 B. 夯坑周围地面不应发生过大的隆起。 C. 不因夯坑过深而发生起锤困难。 4、夯击遍数应根据地基土的性质确定,一般情况下,可采用2~3遍,最后再以

强夯法在建筑工程地基处理中的应用

强夯法在建筑工程地基处理中的应用 发表时间:2019-03-06T09:58:30.530Z 来源:《建筑学研究前沿》2018年第33期作者:常中伟[导读] 而施工技术也符合建筑业的要求,可以节约施工资金和施工资源,提高施工企业的经济效益。河北省平泉市城乡规划和管理综合执法局河北平泉 067500 摘要:强夯法施工工艺简单、操作模式,容易掌握,施工效率更高,更强的实用的优点,因此,在建筑工程地基处理中,经常使用的应用基础力量的方法可以提高三次或者更多次,所以,强夯法在地基处理中的应用效果,而施工技术也符合建筑业的要求,可以节约施工资金和施工资源,提高施工企业的经济效益。 关键词:强夯法;建筑工程;地基处理;应用 一、强夯地基处理技术 经过动力密实等方式将软土当中的空隙消除掉,从而全面提升软土地基自身的强度以及承载能力,使工程的质量得到保证。由此可见,强夯地基处理技术的原理便是加固原理。强夯地基处理技术的作用是在较短的时间内对地基施加冲击波,从而使地面转换为密实的状态。这种方法与其他对于地基处理所使用的方法存在着根本上的不同,强夯地基处理技术可以对于多孔、颗粒大的饱和土地进行。相关工作人员利用强夯法进行工程软基处理时,不仅要严格遵循工艺流程,还要善于总结经验,提高施工人员素质和质量控制意识。进而提高工程软基处理效果和工程建设质量。其次,强夯地基处理技术应用的范围较广,例如建筑、公路、仓库及跑道等碎砂石土较多的地基。强夯地基处理技术拥有着经济适用等特点,但有一定的局限性。 二、强夯地基处理技术的施工工艺 在工程的地基建设过程中,如果出现了塌方问题,必然会使地基土受到扰动,进而影响到地基的整体承载力,不仅会对自身的工程建设造成危害,同时还会影响周围建筑物的安全,造成重大的人员伤亡。特别是在基坑开挖深度较深并穿过不同的土层时,施工方如果不去根据不同土层的工程特性(地基土的内摩擦角、黏聚力、湿度、重度等)来确定地基基坑的边坡开挖坡度和支护方法,就会使边坡顶部受到堆载或外力的振动产生变形,由此引发塌方问题。或者是因为工程施工方在开挖土方时施工不当,在应该作支护的时候没有去做应有的保护,也会造成塌方。如果相关施工人员没有按照施工工艺的规定进行施工,可能会导致不必要的问题与麻烦。强夯地基处理技术主要包扩对于施工机械设备的挑选、施工之前相关工作人员的准备工作及施工过程当中的具体步骤等。对于施工机械设备的挑选,最好使用拥有自动脱钩装置的履带式起重机等专用机械设备,只有这样才能够达到预期的效果,提高地基处理工作的效率与水平,在施工前期的工作准备很重要,如对于施工场地内的积水进行及时处理,做好预备工作才能保证施工顺利进行。 三、强夯法在建筑工程地基处理中的应用 1、工程内容介绍 某建筑施工基地原址是水塘,地势倾斜,在对其进行挖高填低处理后,地势基本处于平坦。但在建筑施工地的周围形成了大范围的填土,且建筑稳固性难以得到保障,故采用强夯法对地基进行加固处理,以确保建筑工程稳定性与安全性符合当前社会对建筑物的基本要求。 2、施工前期的准备工作 建筑工程地基夯实需要进行大量的准备工作,这样才能保证后续施工作业在把控范围内,确保施工质量符合标准。前期准备工作包括地形地质勘查、重型机器设备等的准备、夯实工艺的确定等。 首先,对建筑工程施工现场的地形进行勘查,预测其未来发展状态。其次,根据勘查结果合理选择强夯机、起重机及其他大型施工设备。根据现场实际情况,根据强夯工艺来选择最佳的施工方案。在进行施工时,要严格按照施工方案开展活动,进而从根本上确保夯实牢固。施工现场的勘查是前期准备工作的重点,勘探人员要利用专业的设备进行钻探,并进行原位测试,组织土木试验,分析施工现场的填土面积、成分、地下水位和未来地质的变化等。经过勘查发现,该建筑工程的回填区水分含量较高,且由于原址为水塘,因此土层较为湿润。该区域土壤的主要成分为粉土、粉质黏土、粗砂,且包括大量砂砾与少量卵石。根据勘查结果,继续开展试夯工作。试夯能为强夯工作奠定基础。根据勘探人员对地质的考察结果,对回填区域进行试验作业,进而获取实际的夯实距离及锤重等信息。本次试验场地为回填区南北两侧,设计填土的厚度为9m。准备强夯设备,将其击能设计在3000kN/m2。试验时间为30d。试验后,根据国家规定的有关条款对地基进行检测,检验强夯效果。本次试验的沉量为2m,有效加固深度5m,夯击次数7~8击,夯距5m。在相同面积进行第二次试验,结束后与第一次试验结果进行对比,发现5.5m以内土层结构基本达到要求,由此可以判断有效加固深度为5.3~5.9m,但底部仍旧有2.4~3m的土层结构未能达到标准。在两次试验结束后,最终确定对厚度大于4m的土层应分成两步进行夯实工作。 3、实际夯实工作 通过试夯得出:土层若大于4m,将得不到有效的夯实处理。因此,对于大于4m的土层,需要进行两次夯实处理,但两次强夯击能值应控制合理范围内,这样才能满足回填土的实际需求。本工程第一次夯击能为4000kN/m2,第二次夯击能为1500kN/m2。两次夯距均设定为5m。在正式开展强夯工作后,每一次的夯实都应按照施工方案严格进行。通常,会将两次的夯击点穿插进行,以确保夯击时所传递的能效均衡。在整个夯击工作进行中,都应以降低夯锤质量、缩短落锤距离的方式,尽可能发挥夯击的有效性,提升土层结构的稳固性。 由于回填土层的水分含量较高,在夯击时又常遇到降雨天气,场区内出现大量积水。因此,为疏通排水,在场区内设置了30m×30m的集水井,并利用钢筋笼包过滤网,填满碎石,利用水泵抽水,通过消防水带将水引向周围水沟。 四、施工注意事项 强夯法在施工过程中应注意以下几点。 1、应将夯实的遍数控制在合理范围内,增强夯实的有效性。通常,应根据施工场地的土壤性质、土层特点、土壤质地等确定夯实遍数。将夯实遍数控制在合理范围内,通常为2~3次,最后一次以低能满夯的方式进行。同时,夯实遍数的确定与回填土层的结构存在关联,土层不同,夯实次数也存在相应变化。若回填区域的土层结构为粗颗粒土,渗透性较强,则应适当减少夯实次数。若回填区域的土层中细颗粒较多,渗透性差,则应适当增加夯实次数。

探究强夯法地基处理的设计及其检测

探究强夯法地基处理的设计及其检测 发表时间:2015-12-21T10:38:39.340Z 来源:《基层建设》2015年15期供稿作者:周文江[导读] 广东省有色金属工业建筑工程质量检测站广州本文将对强夯法地基处理设计、检测进行详细的介绍,并对各种土地夯实后的检测方法进行了详细的论述。并依此确定建筑规模及建筑类型。周文江 广东省有色金属工业建筑工程质量检测站广州 510000 摘要:强夯法是指为了提高地基的承载力,使用重锤从一定高度下落夯击土层使地基迅速固结的方法。同时也成为动力固结法。所采用的起吊设备一般为10~25吨的重锤。在10~25米的高空十重锤自由下落,依靠其强大的冲击波作用将土层夯实。本文将对强夯法地基处理设计、检测进行详细的介绍,并对各种土地夯实后的检测方法进行了详细的论述。并依此确定建筑规模及建筑类型。 关键词:地基处理;强夯法;检测;设计 1.引言 目前,强夯法地基处理的设计主要包括两个方面的内容:一是强夯置换法设计,二是强夯法设计。而对这两种方法的使用则根据具体情况而定。强夯法依靠强大的冲击和振动能量使得地基土层中出现很大的冲击波和的动应力,从根本上提高了土层的强韧度、并充分降低其压缩性、达到了改善土层的振动液化条件、以及消除湿陷性土层的湿陷性等不足。从而提高土层的均匀强度。多次实践施工证明,强夯法地基处理不仅适用于处理碎石土、砂泥土、饱和度较低的粉土以及粘性土、湿陷性黄土。还适合杂填土以及素填土等土层类型的地基。在施工的过程中也要根据土层类型采取不同的设计方法。对于高饱和度的粉土与粘性土等地基,一般采用将石块、碎石、较大颗粒物等杂物填回夯坑的方法进行设计。在将这些物体进行强夯置换的时候,应从多方面测试其可行性。确保地基稳定以及工程的质量高度。在对地基进行强夯施工之前。应在施工现场或附近具有代表性的场地上选取几个试验地,并检测其地质的复杂程度。并确定建筑类型以及建筑规模。 2.强夯设计 2.1夯实强度及频率 在强夯的单位夯击能量时,应充分的根据地基土层类型、地质结构类型以及土层荷载大小和要求处理的深度等众多因素进行综合考虑,并通过现场的具体情况而定。在对地基进行强夯法施工时,夯点的夯击次数,应该按照现场试夯所得到的夯击次数和夯沉量关系曲线确定,与此同时还应满足以下条件:首先,最后两击的平均夯沉量应不大于60mm。其次,单击夯击能量最大不超过100mm。最后,应注意在夯坑周围地面不应发生过大的隆起,并且不能因夯坑过深而影响起锤。在夯击时夯击次数应根据地基土层的性质确定,一般来说,夯击次数可为2~4遍,并且在最后时刻往往再以低能量普夯2遍,其目的是对松动的表层土进行夯实。一般情况下对于渗透性比较弱的粒土,必要时夯击次数可酌情增加。应该注意的是在两遍的夯击之间应有一定的时间间隔。间隔时间则决定于土层中水分蒸发的程度、土层间隙。当缺少实际参考资料时,还可依照土层的渗透性确定。按照测试结果,对于渗透性较差的粘性土地基的间隔时间应控制在2~4周内,而对于渗透性较好的地基土可进行持续性夯击。 2.2夯点的确定 在夯击过程中对于夯击点位置的确定要根据建筑结构类型确定,并采用等边三角形、正方形进行布置。在此过程中,第二次夯击点的间距可取与第一次相同,也可适当减小。在处理深度较大或者夯实能量较大的工程时,第一遍的夯实点间距应适当增大。强夯处理的范围也应大于建筑物本身的基础范围。各个位置超出基础处缘的长度应设计为深度的一半以上。并不应小于3m。再根据初步确定的强夯参数的基础之上设计出强夯测试方案,并现场进行强度测试。确保其可用。还应根据不同地质条件的土层,等待夯结束几周后,再次对试夯场地进行测试,并将测试结果与夯前测试数据进行详细对比,测试强夯效果,并作出相应记录,从而确定工程将要采用的各项强夯参数。 2.3地层土含水量 根据相关的现行规定,当出现施工现场地表层土软弱或地下水位较高的情况、或夯坑底积水影响施工正常运作时,须采用人工降低地下水位的方法,具体做法便是使用人力将坑内的积水排除,或者铺填一定厚度的松散性材料,从而使得地下水位低于坑底面以下2m。避免影响施工。另一方面,地基土层含水量对强夯的影响及其很大,尤其是在雨季工期紧的情况下表现的尤为明显。充分体现在强夯夯击次数增多,夯坑加深,收锤困难,甚至施工效率低之上。在这种情况下强夯效果特别差,将大大的影响施工的质量,延长工期,造成工程造价的增加。甚至经过检测夯后地层比夯前还要差。在这种情况下,必须采用人工排水的方法,通过开挖积水坑或积水井的方法将积水排干,再进行强夯施工。从而提高强夯效率。通过这种排水的方法,强夯加固效果和效率明显得到改善。 2.4强夯置换设计法 强夯置换处理范围以及试夯方案的确定一般步骤与普通强夯法无异。但在现场施工时则要根据具体情况而定。一般情况下,在夯后检测项目中普通强夯法主要侧重于现场载荷试验,目的是检测地基承载力和变形模量外。应采用超重型或重型动力触探的方法进行夯实。但强夯置换法的侧重点主要在于检查置换墩着底情况以及承载力与密度随深度的变化情况。在这种夯实设计中,地质雷达也可以用来检测置换墩的深度、直径等参数。甚至在条件许可时可在现场进行开挖,并在视觉上对置换墩着底情况以及置换墩形状、尺寸等进行相应的检查。在检查无误的情况下应在墩顶铺设一层厚度不小于60cm的压实垫层,确保其稳定性与安全性,垫层材料最好与墩体相同粒。而在对软弱粘性土地基的夯实时应只考虑墩体强韧度,忽略墩间土的作用大大的增加其承载力特征值。并通过现场单墩平板荷载试验进行检测。 3.强夯施工 在对地基进行强夯时,重锤一般情况下可取100~200kN。重锤底面设计形式可采用圆形或矩形。锤底面积适当增大,并按土的性质进行区分,锤底静压力值一般设定为20~40kPa,在施工过程中对于细颗粒土锤底静压力一般取小值。对锤底设计时底面应该对称设若干个排气孔,孔径适宜设计为200~300mm。另一方面强夯施工还应采用带自动脱钩装置的起重机甚至其它专用设备。保证重锤的自由下落和起降,在采用履带式起重机时宜在起重机臂杆末尾设置辅助力架,利用杠杆的原理节省能量。在起降过程中还要采取其它安全措施,放置在起飞过程中重锤跌落或者落锤时机架倾覆。避免造成人员的伤亡。在雨天施工时一般会遇到水位较高的情况。应对场地积水应及时排除。确保施工正常进行。

地基处理----强夯法

地基处理----强夯法 强夯法又名动力固节法或动力压实法.这种方法是反复将很重的锤(一般为10~40T)提到高处使其自由落下(落距一般为10~40米)给地基以冲击和振动,从而提高地基的强度并降低其压缩性。 强夯法处理地基是60年代末由法国Menard技术公司首先创用的。开始时仅用于处理砂土和碎石地基,后来由于施工方法的改进和排水条件的改善,逐步推广应用到细粒土基地。强夯法由于具有加固效果显著、适用土类广、设备简单、施工方便、节省劳力、施工期短、节约材料、施工文明和施工费用低等优点,很快就传播到世界各地。 强夯法适用于处理碎石土、砂土、粉土、粘性土、杂填土和素填土等地基。它不仅能提高地基土的强度、降低其压缩性、还能改善其抗振动液化的能力和消除土的湿陷性,所有还常用于处理可液化砂土地基和湿陷性黄土地基等。 强夯法虽然适用土类很广,但对于饱和度较高的粘土性,用一般强夯处理效果不明显。针对这类情况,国内相继进行了大量试验,采取强排水加强夯和置换强夯取得了很好的效果。目前在南方己广泛使用。(强排水加强夯首先就是在小范围(约1万M2)内采用高真空泵排地下水,减少土壤中的水量,然后用强夯加固土体。) 二、原理及加固机理 (一)强夯原理 1﹑强夯法处理地基是利用夯锤自由落下的冲击波使地基密实。这种由

冲击引起的振动在土中是以波的形式向地下传播的。 2﹑强夯理论认为:压缩波大部分通过液相运动,使孔隙水压力增大,同时使土粒错位,土体骨架解体,而随后到的剪切波使土颗粒处于更密实的状态。 (二)加固机理 1﹑填石层强夯:用冲击型动力荷载,使填石﹑填渣等粉碎,填石层中的孔隙体积减少,石层变得更为密实,从而提高其强度。检验指标主要是密度和变形模量。(如禄口机场强夯﹑连云港Grs区强夯等) 2﹑填土强夯:用冲击型动力荷载,使土体中的孔隙体积减少,土体变得密实,从而提高其强度。检测指标主要是强度和变形模量。(如熊猫新港区强夯﹑江宁天正基地强夯等) 3﹑粉土﹑砂土面强夯:用冲击型动力荷载,使土体中的孔隙体积减少,土体变得密实,从而提高其强度。检测指标主要是强度和变形模量,抗液化性等。(如宿迁电厂强夯﹑龙潭物流强夯等) 4﹑非饱和强夯: 用冲击型动力荷载,使土体中的孔隙体积减少,土体变得密实,从而提高其强度。检测指标主要是强度和变形模量,湿限性等。(如黄土区强夯﹑华新挖方区强夯等) 以上四种均可理解为一种机理,即土体是由固相﹑液相和气相三部分组成。在压缩波能量的作用下,土颗粒相互靠拢,因为气相的压缩性比固相和液相的压缩性大得多,所以气体部分首先被排出,颗粒进行重新排列,由天然的紊乱状态进入稳定状态,孔隙大为减少,当然,在波动能量作用下,土颗粒和期间的液体也受力而可能变形。也就是说,非饱和土的

地基强夯法处理应注意的事项

地基强夯法处理应注意的事项 王乐 由于我国建设工程发展速度很块,这几年由于土地资源紧张,海边回填土或者山坡、山谷回填土造地的工程情况很多,为了不浪费、节约或者充分土地资源和空间资源,建设、设计单位大多采用地基处理的方法利用起土方回填的空地,强夯法广泛应用于多低层建筑、油罐基础、工业园区、设备基础、码头场地等,而且地基强夯处理比其它深基础处理、其它地基处理方法经济实惠,可在工程中广泛采用。一般要求地基处理后地基承载力在160kpa~200kpa之间的地基承载力要求,结合相关规范与以往施工经验,浅谈下地基处理强夯工程应注意或者注意控制的事项。 1、强夯前场地土层需稳定、固结: 适用的强夯法回填土场地需先进行自然堆载预压,自然预压堆载时间,堆载时间要让土层稳定,处于淤泥质土、淤泥和冲填土等饱和粘性土等要设塑料排水带砂井等排水竖井,总之在进行强夯或者强夯置换前要使场地的土层达到自然固结或者预压固结。

2、适用范围: 强夯法适用处理碎石土、砂土、低饱和度的粉土和粘性土、湿陷性黄土、素填土和杂填土等;强夯置换法可适用高度饱和的粉土与软塑~流塑的粘性土等对地基变形控制不严格的工程。 3、试夯确定地基承载力、参数、场地高程: 地基强夯处理施工前,应根据施工现场有代表性的场地选取一个或几个试验区,进行试夯或试验性施工。试夯后记录试验参数,夯点的累击次数,累计沉降量,最后两击平均沉降量应满足设计要求,强夯结束后一周至数周,要进行地基承载力检测,以判定强夯设计、施工方案是否满足设计承载力要求,试夯后也可确定累计沉降量,可以预估试夯后场地的水平高程、场地是否需要补土或者削土。 4、大面积施工前场地条件: 施工前场地要进行平整,场地表面如果有巨大的孤石要先清除,曾遇到一个工程,强夯场地表面有很多花岗岩巨石,工程技术人员都比较头痛,最后决定试夯后清除表面孤石并整平场地;试夯后确定是否需要补土或者削土,使整个场地强夯后的地面高程能达到设计要求,以免强夯后地面标高偏高或者偏低,偏高则需削土,偏低则需回填土或再做地基处理,两者皆造成建设成本增加和施工工期的延长。 5、场地地表下是否有地下水: 如果强夯场地地表下有地下水,强夯过程需要有排放地下水的措施,如挖集水坑、排水沟等进行抽水排水;如果没有排除地表下的地下水,强夯过程,土体中的空隙水将无法被挤压排出、土体的空隙率将很高、密实度差,场地经强夯后无法达到设计要求。 6、排查场地周边建筑物、地下管线情况,是否设置隔震沟: 由于强夯对地面的挤压作用比较大,所以必须排查强夯区域场地周边建筑物、地下管线、市政设施情况,以面强夯破坏现有建筑物基础、地下管线和市政设施,如果有上述构筑物等,则应设置隔震沟,由于设计规范和施工规范没有涉及强夯隔震沟如何设置的内容,我们依据

分析强夯法地基处理技术及其在工程中的应用

分析强夯法地基处理技术及其在工程中的应用 【摘要】随着我国建筑事业的飞速发展,用于处理地基的方法日新月异。其中,用于地基处理的一种重要的新方法就是强夯法。近些年来,由于强夯法在地基加固处理方面独特的优势,使其广泛应用于建筑工程领域。在本文中涉及到了强夯法地基处理技术的作用机理和施工工艺以及相关的检测技术等,并详细介绍了强夯法地基处理技术在建筑工程领域中的应用。 【关键词】地基处理;强夯法;施工工艺;建筑工程 1.前言 随着我国建设事业的不断发展,用于建设的区域也越来越广,地质条件良好的场地有利于从事建筑工程,但是有时也需要在地质条件比较恶劣的位置进行建设。要在地质条件不好的位置从事建筑工程,必须要对这些质量较差的地基进行预先处理。地基处理的技术有多种,强夯法就是其中的一种新技术。 2.强夯法作用机理 强夯法地基处理技术是近几十年来发展起来的一种新技术。强夯法发展的基础是重锤夯实法,其地基处理的原理是:通过锤重10-30t的重锤和10m--20m 的落距,产生很强的冲击能,利用强大的冲击能对地基土体进行加固处理。其中的冲击能能量为6×105-8×106J。伴随着冲击能而产生的冲击波和动应力不仅能够改善不良土质的抗液化条件,消除不良土质的湿陷性,而且能够降低土质的压缩性,因此能使地基土质的强度得到大幅度的提高。 3.强夯法的优势 强夯法地基处理技术加固效果很明显,还具有施工工期短、造价比较低、施工机具简单等的优势。强夯法地基处理技术对于各类土层都有很好的适用性,经过强夯法处理后的地基具有高强度性、高密实性以及极低的湿陷性和膨胀性,同时,均匀性也有很大程度的提高。其应用范围较广,包括核电站、桥梁、仓库、堤坝、重型构筑物、机场跑道乃至公路和铁路路基等。 4.强夯法施工工艺 4.1选择施工机具设备 强夯法地基处理技术是利用重锤和落距过程产生的冲击能实现地基加固处

强夯法在可液化地基处理中的应用

强夯法在可液化地基处理中的应用 随着我国高速公路建设的快速发展,高速公路的工程质量日益受到人们的关注。由于高速公路路基填筑普遍较高,地基须承担着车辆荷载和比一段公里大得多填土荷载的双重压力,所以高速公路地基的强度和稳定性不能不引起公路技术人员的高度重视。特别是对可液化地基采取措施进行处理,来降低可液化程度,提高路基的整体稳定性尤为必要。目前处理可液化地基的方法主要有强夯振冲碎石桩、砂桩等,且主要在工业和民用建筑方面应用较多。 焦郑高速公路结合本工程地质情况,对一些可液化地基采用强夯法进行处理,效果明显,达到了预期目的,为强夯法处理高速公路可液化地基积累了经验。 地质概况 焦作至郑州高速公路是河南省规划的“米”字形干线公路主骨架的重要组成部分。 项目所在地主要处于黄河、沁河冲击平原内,地貌单元少,形态简单,地形特征为西北高东南低,沿线地下水丰富,最高地下水位埋深0.5m。经地质勘探,从地层土体、地下水及不良地质和隐伏活动性断裂分布等几个方面综合分析,把全线分成四段三种不同地质条件段落。根据《河南省地震分区图》的划分,本工程处于地震基本烈度7°区,在7°基本烈度下,它们将发生大范围的液化现象。在地震的诱导下,会发生喷砂、冒水现象,导致路基的塌陷和滑坡,严重影响路基的稳定性。为此,根据《公路工程抗震设计规范》中对重点工程的抗震要求,对该路段除对受地形影响地段而采取碎石桩处理外,其它路段均采取较为经济、实用的强夯法进行处理。 强夯试验 强夯试验的目的是通过小区试验,对试夯效果进行综合分析比较,选择适合该工程地质条件的强夯施工参数。焦郑高速公路工程设计要求强夯处理深度6~8m,处理深度内地基具有抵抗8度地震液化的能力,处理后的液化指数不大于5。为此,并结合沿线地质变化复杂的特点,我们设置了7共七个试验区,如表1。 1、单点夯能根据梅那强夯公式并结合设计处理深度、施工机械及特殊因素,单击夯能采用1500KN·m、2000 KN·m、2190 KN·m和2560 KN·m四种,满夯采用750KN·m和1050 KN·m。 2、夯点布置夯点布置采用正方形、梅花形和正三角形三种形式。夯点间距从3.53m 到 4.5m不等。各夯区外侧边缘以夯锤外缘和夯区外缘平齐为准,夯区外侧夯点间距可作小范围调整。满夯时相邻夯点彼此搭接1/4。 3、单点夯击数及夯击遍数根据单点最后三击夯坑下沉量处在5~10cm范围内的方法拟定单点夯击数8 击和9击。夯击遍数选择2遍主夯,最后一遍满夯。 4、施工试验试验设备主要采用20T或32T电动履带起重机,并配有卷扬和龙门支架,夯锤为15T重的铸铁锤,锤底直径2.5m,脱锤器为拉索牵引脱锤式。施工时从路基两侧边

(完整版)强夯地基处理工程施工方案

强夯施工组织设计 一、工程概况 根据现场实际查看,该工程全部为风化石,挖高填低而成,采用强夯地基处理法进行施工,处理后地基承载力特征值fak不小于180Kpa,以满足设计要求。 二、编制依据 1、本工程招标文件 2、本工程地基处理设计说明 3、本工程强夯夯点布置图 4、本工程勘察报告 5、建筑地基处理工程施工质量验收规范(GB5020-2002) 6、建筑施工安全检查标准(JGJ59-99) 7、建筑工程质量检验评定标准(GB50300-2001) 8、建筑工程施工质量检验统一标准(GB50300-2001) 9、工程测量规范(GB50026-93) 10、建筑工程施工质量验收统一标准(GB50300-2001) 11、建筑地基处理技术规范(JGJ79-2012) 三、施工准备 (一)技术准备

1、召集公司技术人员进行图纸会审,对有关技术问题在图纸会审时加以确定,从而选定施工方案。 2、根据相邻及相近地区的施工技术资料、制定出相应的施工措施,并有针对性的对技术难点进行咨询和研究。 在工程开工前,根据业主提供的平面坐标及水准点,在场 区建立一个平面坐标测量控制网,并应符合《工程测量规范》(GB50026-93的要求,采取直角坐标法放线。复核前期施工轴线 位置。严格按照工程测量规范要求,施工过程遵循“从整体到局 部,先控制后碎步”的原则,对整个工程进行控制。 本工程测量放线需配备经纬仪(J2)2台, DS3水准仪1 台,100米钢卷尺二把(其中一把为标准尺)。安排测量工程师2 人进行测量工作。 (二)施工技术参数的确定 根据现场实际情况,做好“三通一平”工作,了解并清理现场地下及地上和空中障碍物,确保工程的顺利施工。 平面轴线控制 1、根据业主给定的水准控制点建立平面轴线控制网, 并定出引标(醒目、坚固),施工轴线控制网应作闭合复测, 测距精度应在规范允许范围内,测角精度不低于20"。 2、±0.000以上平面采用“内控法”控制,将基准面选 在±0.000地面上控制点组成控制网,经测角、量距、校核 后使用。

强夯地基处理教学教材

强夯地基处理

1.1 强夯地基处理 1.1.1基本规定 1、强夯地基处理可根据加固原理、适用条件和施工工艺划分为强夯法和强夯置换法两种类型。 2、确定强夯地基处理方案应具备下列条件: (1)详细的岩土工程勘察资料,上部结构及基础设计资料; (2)对于人工填土地基,应详细了解填土场地原地表的地形地貌、地表植被、地表水分布及填土前的地表处理、排水、清淤等情况;了解填土的岩土成分、土石比及颗粒级配等; (3)根据工程的要求和地基存在的主要问题,确定强夯地基处理的目的,处理范围和处理后要求达到的各项技术经济指标; (4)结合工程情况,了解当地强夯地基处理施工经验和施工情况,对于有特殊要求的工程,尚应了解其它地区相似场地上同类工程的处理经验和使用情况等; (5)搜集临近建筑、地下工程和有关管线等情况; (6)掌握工程场地周围的环境情况。 3、在选择强夯地基处理方案时,应考虑上部结构、基础和地基的相互作用,并经过技术经济比较,选用强夯地基处理地基或加强上部结构和强夯地基处理地基相结合的方案。 4、对已确定的强夯地基处理方案,宜按工程地基基础设计等级和场地复杂程度,在有代表性的场地上进行相应的现场试验或试验性施工,并进行必要的测试,以检验设计参数和处理效果,如达不到设计要求时,应查明原因,修改设计参数或调整地基处理方案。 5、强夯地基处理可与其它地基处理方法组合形成联合地基处理方案。 6、经强夯地基处理后的地基,当按地基承载力确定基础底面积及埋深,而需对本规程确定的地基承载力特征值进行修正时,应符合下列规定: (1)基础宽度的地基承载力修正系数应取零;

(2)基础埋深的地基承载力修正系数应取1.0。经处理后的地基,当受力层范围内仍存在软弱下卧层时,尚应验算下卧层的地基承载力。 7、按地基变形设计或应作变形验算且需进行地基处理的工程,应对处理后的地基进行变形验算。 8、受较大水平荷载或位于斜坡上的工程,当建造在处理后的地基上时,应进行地基稳定性验算。 9、施工过程中应有专人或专门机构负责工程监理,施工结束后必须按本规程规定或国家有关规定进行施工质量检验和验收。 10、复合地基载荷试验应符合国家现行标准的有关规定。 11、对需进行地基变形计算的工程,经强夯地基处理后应进行地基沉降观测,并符合国家现行标准的有关规定。 1.1.2设计 1.1. 2.1 一般规定 1、采用强夯法处理的地基,应进行强夯试验;采用强夯置换法处理的地基,必须通过现场试验,确定其适用性和处理效果,确定合适的强夯设计参数和施工参数。 2、强夯试验应达到以下要求: (1)确定地基有效加固深度,确定处理后地基土的强度、承载力和变形指标; (2)确定合适的夯击能、夯锤尺寸和落距等施工参数; (3)校核强夯后场地的沉降量或抬升量,为确定起夯面标高提供依据; (4)确定夯点间距、夯击次数、夯击遍数、最后两击夯沉量和间隔时间等设计参数; (5)确定强夯施工停夯标准等施工质量控制指标; (6)了解强夯施工振动、侧向挤压等对周边环境和工程的影响,确定与周边工程的安全施工最小距离。 3、试验区数量应根据场地复杂程度、工程规模、工程类型及施工工艺等确定,强夯试验面积不应小于20m×20m。根据初步确定的强夯参数,提出强夯试验方案,

相关文档
最新文档