数学旋转的专项培优易错试卷练习题(含答案)及详细答案
【数学】数学旋转的专项培优易错试卷练习题(含答案)附答案

一、旋转真题与模拟题分类汇编(难题易错题)1.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=17,5∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+34)=30334+.综上所述,30334-≤S≤30334+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.3.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE=°,CD=;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =42,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)1255;(4)BD=210或21143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =1255.故答案为1255. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =22,∴BD =2114. 故答案为210或21143.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.4.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度.【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】(1)如图1中,只要证明PMN 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得2222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴2222BE PM MN MN ===. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =-=-, ∴2171MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =+=, ∴21712MN BE ==. 综上所述,MN 17﹣117. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】 【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=.(3)四边形ADGF 是正方形.理由如下:∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=.∵将AFE ∆沿AE 折叠得到AME ∆,∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠.∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆.∴222246213BM DE EG DG==+=+=.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.6.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.7.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。
人教数学旋转的专项培优易错试卷练习题(含答案)附详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD=∠EAB∴△FAD≌△EAB∴∠AFD=∠AEB,DF=BE∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°﹣90°=90°,∴DF⊥BE(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.延长DF交EB于点H,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE∵△FAD ∽△EAB , ∴∠AFD =∠AEB , ∵∠AFD+∠AFH =180°, ∴∠AEH+∠AFH =180°, ∵∠EAF =90°,∴∠EHF =180°﹣90°=90°, ∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a . 延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB ∴DF AFk BE AE==∴DF=kBE由△FAD∽△EAB得∠AFD=∠AEB∵∠AFD+∠AFH=180°∴∠AEB+∠AFH=180°∵四边形AEHF的内角和为360°,∴∠EAF+∠EHF=180°∵∠EAF=α,∠EHF=β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.3.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.4.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.5.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.【答案】(1)证明见解析(2)当旋转角等于30°时,AB 与A 1B 1垂直. (3)理由见解析 【解析】试题分析:(1)由等边三角形的性质得AB =BB 1,又因为BB 1=2BC ,得出AB =2BC ; (2) 利用AB 与A 1B 1垂直得∠A 1ED=90°,则∠A 1DE=90°-∠A 1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A 1CB=180°-∠BDC-∠B=60°,所以∠ACA 1=90°-∠A 1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB 与A 1B 1垂直; (3)由于AB ∥CB 1,∠ACB 1=90°,根据平行线的性质得∠ADC=90°,在Rt △ADC 中,根据含30度的直角三角形三边的关系得到CD=12AC ,再根据旋转的性质得AC=A 1C ,所以CD=12A 1C ,则A 1D=CD . 试题解析:(1)∵△ABB 1是等边三角形; ∴ AB =BB 1 ∵ BB 1=2BC ∴AB =2BC(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°, ∴∠A 1DE=90°-∠A 1=90°-30°=60°, ∵∠B=60°,∴∠BCD=60°, ∴∠ACA 1=90°-60°=30°,即当旋转角等于30°时,AB 与A 1B 1垂直. (3)∵AB ∥CB 1,∠ACB 1=90°, ∴∠CDB=90°,即CD 是△ABC 的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.6.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.7.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.8.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.9.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.10.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.【答案】(1)PE=PF;(2)①成立,理由参见解析;②;③PE=2PF,理由参见解析;PE=(m-1)·PF.【解析】试题分析:(1)可利用角平分线性质定理得到PE=PF;(2)①成立,可用角边角定理判定△AOF≌△DOE,从而得到PE=PF;②要想求出EF的长,关键要求出OE的长,由∠DOM15°可得∠AEO=45+15=60º,作OH⊥AD于H,若正方形的边长为2,则OH=1,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF即可求出;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,△PHB和△PKD都是等腰直角三角形,是相似的,∵BD3BP,∴可算出HP:PK的值,然后通过△FHP∽△PKE得到PE与PF的关系.由前面的思路可得出当BD=m·BP时,BD:PD=(m-1):1,∴PE:PF=(m-1):1,从而确定PE与PF的数量关系.试题解析:(1)∵四边形ABCD是正方形,∴∠OAF=∠OAE=45º,又∵PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,PE仍等于PF,∵四边形ABCD是正方形,∴∠OAF=∠ODE=45º,OA=OD,又∵∠AOF和∠DOE都是∠AOE的余角,∴∠AOF=∠DOE,∴△AOF≌△DOE(ASA),∴OE=OF,即PE=PF;②作OH⊥AD于H,由∠DOM15°可得∠AEO=45+15=60º,∠HOE=30°,若正方形的边长为2,则OH=1,在Rt△HEO中,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF=OE=×=;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,∵∠PHB=∠PKD=90°∠PBH=∠PDK=45°,∴△PHB∽△PKD,∴,∵BD=3BP,∴=,∵∠HPF+∠FPK=90°∠KPE+∠FPK=90°,∴∠HPF=∠KPE,又∵∠PHF=∠PKE=90°,∴△PHF∽△PKE,∴=,即PE="2PF" ;当BD=m·BP时,BD:PD=(m-1):1,△PHF∽△PKE,PE:PF=BD:PD=(m-1):1,∴PE=(m-1)·PF.考点:1.正方形性质;2.三角形相似的判定;3.旋转性质;4.探索线段的数量关系规律.。
人教数学旋转的专项培优易错试卷练习题(含答案)含答案

一、旋转 真题与模拟题分类汇编(难题易错题)1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。
数学旋转的专项培优易错试卷练习题(含答案)附详细答案

试题解析:(1)由题意抛物线的顶点 C(0,4),A( 2 2 ,0),设抛物线的解析式为
y ax2 4 ,把 A( 2
2
,0)代入可得
a=
1 2
,∴
抛物线
C
的函数表达式为
y 1 x2 4. 2
(2)由题意抛物线 C′的顶点坐标为(2m,﹣4),设抛物线 C′的解析式为
y
1 2
x
m2
4
,由
(2)∵ ∠ FAE=45°,∠ ACB=45°,∴ ∠ FAC+∠ CAE=45°,∠ CAE+∠ AEC=45°,∴ ∠ FAC
(1)如图 1,当 a= 4 2 时,求 b 的值;
(2)当 a=4 时,在图 2 中画出相应的图形并求出 b 的值; (3)如图 3,请直接写出∠ EAF 绕点 A 旋转的过程中 a、b 满足的关系式.
【答案】(1) 4 2 ;(2)b=8;(3)ab=32.
【解析】
试题分析:(1)由正方形 ABCD 的边长为 4,可得 AC=4 2 ,∠ ACB=45°. 再 CE=a=4 2 ,可得∠ CAE=∠ AEC,从而可得∠ CAF 的度数,既而可得 b=AC;
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出 CE=CF,继而证明出 △ ABE≌ △ ADF,得到 AE=AF,从而证明出△ AEF 是等腰三角形;(2)DM、MN 的数量关 系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置 关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角 相等即可得出结论;(3)成立,连接 AE,交 MD 于点 G,标记出各个角,首先证明出
人教数学 旋转的专项 培优易错试卷练习题附答案

一、旋转真题与模拟题分类汇编(难题易错题)1.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD =∠EAB∴△FAD ≌△EAB∴∠AFD =∠AEB ,DF =BE∵∠AFD+∠AFG =180°,∴∠AEG+∠AFG =180°,∵∠EAF =90°,∴∠EGF =180°﹣90°=90°,∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE .延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE ∵△FAD ∽△EAB ,∴∠AFD =∠AEB ,∵∠AFD+∠AFH =180°,∴∠AEH+∠AFH =180°,∵∠EAF =90°,∴∠EHF =180°﹣90°=90°,∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a .延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE 由△FAD ∽△EAB 得∠AFD =∠AEB∵∠AFD+∠AFH =180°∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°,∴∠EAF+∠EHF =180°∵∠EAF =α,∠EHF =β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.2.如图1.在△ABC 中,∠ACB =90°,点P 为△ABC 内一点.(1)连接PB 、PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B 、C 、P 的对应点分别为点D 、A 、E ,连接CE .①依题意,请在图2中补全图形;②如果BP ⊥CE ,AB +BP =9,CE =33,求AB 的长.(2)如图3,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC =4,AB =8时,根据此图求PA +PB +PC 的最小值.【答案】⑴①见解析,②AB =6;⑵47.【解析】分析:(1)①根据题意补全图形即可;②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE ,∴BC ∥AD 且BC =AD ,PB =DE .∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,∴222CE DE CD +=,∴()()222339x x +-=, ∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN .易得△APM 、△ABN 都是等边三角形,∴PA =PM ,∴PA +PB +PC =PM +MN +PC =CN ,∴BN =AB =8,∠BNA =60°,∠PAM =60°,∴∠CAN =∠CAB +∠BAN =60°+60°=120°,∴∠CBN =90°.在Rt △ABC 中,易得:2222=8443BC AB AC -=-=,∴在Rt △BCN 中,22486447CN BC BN =+=+=.点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.3.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM ,∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,AC BC=tan30°, ∴k=tan30°=3, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.4.在正方形ABCD 中,连接BD .(1)如图1,AE ⊥BD 于E .直接写出∠BAE 的度数.(2)如图1,在(1)的条件下,将△AEB 以A 旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD 交于M ,AE′的延长线与BD 交于N .①依题意补全图1;②用等式表示线段BM 、DN 和MN 之间的数量关系,并证明.(3)如图2,E 、F 是边BC 、CD 上的点,△CEF 周长是正方形ABCD 周长的一半,AE 、AF 分别与BD 交于M 、N ,写出判断线段BM 、DN 、MN 之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.5.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.6.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.7.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值=PB-PE=5-32, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.8.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.【答案】(1)PE=PF;(2)①成立,理由参见解析;②;③PE=2PF,理由参见解析;PE=(m-1)·PF.【解析】试题分析:(1)可利用角平分线性质定理得到PE=PF;(2)①成立,可用角边角定理判定△AOF≌△DOE,从而得到PE=PF;②要想求出EF的长,关键要求出OE的长,由∠DOM15°可得∠AEO=45+15=60º,作OH⊥AD于H,若正方形的边长为2,则OH=1,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF即可求出;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,△PHB和△PKD都是等腰直角三角形,是相似的,∵BD3BP,∴可算出HP:PK的值,然后通过△FHP∽△PKE得到PE与PF的关系.由前面的思路可得出当BD=m·BP时,BD:PD=(m-1):1,∴PE:PF=(m-1):1,从而确定PE与PF的数量关系.试题解析:(1)∵四边形ABCD是正方形,∴∠OAF=∠OAE=45º,又∵PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,PE仍等于PF,∵四边形ABCD是正方形,∴∠OAF=∠ODE=45º,OA=OD,又∵∠AOF和∠DOE都是∠AOE的余角,∴∠AOF=∠DOE,∴△AOF≌△DOE(ASA),∴OE=OF,即PE=PF;②作OH⊥AD于H,由∠DOM15°可得∠AEO=45+15=60º,∠HOE=30°,若正方形的边长为2,则OH=1,在Rt△HEO中,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF=OE=×=;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,∵∠PHB=∠PKD=90°∠PBH=∠PDK=45°,∴△PHB∽△PKD,∴,∵BD=3BP,∴=,∵∠HPF+∠FPK=90°∠KPE+∠FPK=90°,∴∠HPF=∠KPE,又∵∠PHF=∠PKE=90°,∴△PHF∽△PKE,∴=,即PE="2PF" ;当BD=m·BP时,BD:PD=(m-1):1,△PHF∽△PKE,PE:PF=BD:PD=(m-1):1,∴PE=(m-1)·PF.考点:1.正方形性质;2.三角形相似的判定;3.旋转性质;4.探索线段的数量关系规律.9.在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.(1)依题意补全图 1;(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:.【答案】(1)详见解析;(2)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(2)①连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(2)①证明:连接 BD,如图 2,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,∴AQ=AP,∠QAP=90°,∵四边形 ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在 Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt△BPD 中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.②解:结论:BP=AB.理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴10.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.试题解析:图②中OD+OE=2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=2OC,即OD+DP+OE-EQ=2OC,∴OD+OE=2OC.图③不成立,有数量关系:OE-OD OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:OC,∴OD,OE,OC满足OC.点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。
数学旋转的专项培优易错试卷练习题(含答案)含详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=3FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.2.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x ,∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ).(3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=632=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.3.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.4.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.5.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.6.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.7.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标;(2)当OG=4时,求AG的长;(3)求证:GA平分∠OGE;(4)连结BD并延长交轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【答案】(1)(8,4);(2);(3)().【解析】试题分析:(1)如图1,过点B作BH⊥x轴于点H,由已知可得∠BAH=∠COA,在Rt△ABH中,tan∠BAH=tan∠AOC=,AB=5,可求得BH=4,AH=3,所以OH=8,即可得点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在Rt△AOM中,tan∠AOC=,OA=5,可求得AM=4,OA=3,所以GM=1,再由勾股定理即可求得AG=;(3)如图1,过点A 作AN⊥EF轴于点N,易证△AOM≌△AFN,根据全等三角形的性质可得AM=AN,再由角平分线的判定可得GA平分∠OGE;(4)如图2,过点G作GQ⊥x轴于点Q,先证△GOA∽△BAP,根据相似三角形的性质求得GQ=,再由锐角三角函数求得OQ=,即可得点G的坐标为().试题解析:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=3AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG-OM=4-3=1,∴AG=;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,∠AOM=∠F,OA=FA,∠AMO=∠ANF=90°,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=1, ∴∠OGA=ABP ,又∵∠GOA=∠BAP ,∴△GOA ∽△BAP , ∴, ∴GQ=×4=.∵tan ∠AOC=,∴OQ=×=, ∴G (,).考点:三角形、四边形、锐角三角函数的综合题.8.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题。
数学旋转的专项培优 易错 难题练习题(含答案)含答案解析

一、旋转真题与模拟题分类汇编(难题易错题)1.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.2.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN2AP=2,∴最大值为2+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO﹣AB﹣AE=6﹣4﹣2=2﹣2,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.3.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.4.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.5.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.6.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.7.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理8.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ【解析】试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:∵点E、F、G分别是正方形边AD、AB、BC的中点,∴△AEF和△BGD是两个全等的等腰直角三角形.∴EF=FG,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF⊥FG.(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此)=-.EF BP EQ(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,))===-=-.EF GF GP BP EQ BP。
数学旋转的专项培优 易错 难题练习题(含答案)及答案解析

1.在平面直角坐标系中,四边形 AOBC 是矩形,点 O(0,0),点 A(5,0),点 B(0, 3).以点 A 为中心,顺时针旋转矩形 AOBC,得到矩形 ADEF,点 O,B,C 的对应点分别 为 D,E,F. (1)如图①,当点 D 落在 BC 边上时,求点 D 的坐标; (2)如图②,当点 D 落在线段 BE 上时,AD 与 BC 交于点 H. ①求证△ ADB≌ △ AOB; ②求点 H 的坐标. (3)记 K 为矩形 AOBC 对角线的交点,S 为△ KDE 的面积,求 S 的取值范围(直接写出结 果即可).
【答案】(1)D(1,3);(2)①详见解析;②H( 17 ,3);(3) 5
30 3 34 ≤S≤ 30 3 34 .
4
4
【解析】
【分析】
(1)如图①,在 Rt△ ACD 中求出 CD 即可解决问题;
(2)①根据 HL 证明即可;
②,设 AH=BH=m,则 HC=BC-BH=5-m,在 Rt△ AHC 中,根据 AH2=HC2+AC2,构建方程求出
长.
【答案】(1)90°, n ;(2)无变化;(3) 12 5 ;(4)BD= 2 10 或 2 114 .
2
5
3
【解析】
试题分析:(1)①根据直径的性质,由 DE∥ AB 得 CD CE 即可解决问题.②求出 CB CA
BD、AE 即可解决问题. (2)只要证明△ ACE∽ △ BCD 即可. (3)求出 AB、AE,利用△ ACE∽ △ BCD 即可解决问题. (4)分类讨论:①如图 5 中,当 α=90°时,半圆与 AC 相切,②如图 6 中,当 α=90°+∠ ACB 时,半圆与 BC 相切,分别求出 BD 即可. 试题解析:(1)解:①如图 1 中,当 α=0 时,连接 DE,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,矩形 OABC 的顶点 A 在 x 轴正半轴上,顶点 C 在 y 轴正半轴上,点 B 的坐标为
(4,m)(5≤m≤7),反比例函数 y= 16 (x>0)的图象交边 AB 于点 D. x
(1)用 m 的代数式表示 BD 的长; (2)设点 P 在该函数图象上,且它的横坐标为 m,连结 PB,PD ①记矩形 OABC 面积与△ PBD 面积之差为 S,求当 m 为何值时,S 取到最大值; ②将点 D 绕点 P 逆时针旋转 90°得到点 E,当点 E 恰好落在 x 轴上时,求 m 的值.
OA OB COA DOB ,∴ △ AOC≌ △ BOD,∴ AC=BD; CO OD
(3)①如图 3 中,当 A、C、D 共线时,作 OH⊥AC 于 H.
在 Rt△ COH 中,∵ OC=1,∠ COH=30°,∴ CH=HD= 1 ,OH= 3 .在 Rt△ AOH 中,
2
2
AH= OA2 OH 2 = 13 ,∴ BD=AC=CH+AH= 1 13 .
2
2
最大值=3,PC 的最小值= 3 ﹣1.
【解析】
分析:(1)如图 1 中,易知当点 D 在线段 AD 和线段 AD 的延长线上时,OC∥ AB,此时旋 转角 α=60°或 240°.
(2)结论:AC=BD.只要证明△ AOC≌ △ BOD 即可. (3)在图 3、图 4 中,分别求解即可. (4)如图 5 中,由题意,点 C 在以 O 为圆心,1 为半径的⊙O 上运动,过点 O 作 OH⊥AB 于 H,直线 OH 交⊙O 于 C′、C″,线段 CB 的长即为 PC 的最大值,线段 C″H 的长即
为 PC 的最小值.易知 PC 的最大值=3,PC 的最小值= 3 ﹣1.
点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、
勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解 决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属 于中考压轴题.
为 PC 的最小值.易知 PC 的最大值=3,PC 的最小值= 3 ﹣1.
详解:(1)如图 1 中,∵ △ ABC 是等边三角形,∴ ∠ AOB=∠ COD=60°,∴ 当点 D 在线段 AD 和线段 AD 的延长线上时,OC∥ AB,此时旋转角 α=60°或 240°.
故答案为 60 或 240; (2)结论:AC=BD,理由如下: 如图 2 中,∵ ∠ COD=∠ AOB=60°,∴ ∠ COA=∠ DOB.在△ AOC 和△ BOD 中,
解:(1)∵ 四边形 OABC 是矩形, ∴ AB⊥x 轴上, ∵ 点 B(4,m), ∴ 点 D 的横坐标为 4,
∵ 点 D 在反比例函数 y= 16 上, x
∴ D(4,4), ∴ BD=m﹣4; (2)①如图 1,∵ 矩形 OABC 的顶点 B 的坐标为(4,m), ∴ S 矩形 OABC=4m, 由(1)知,D(4,4),
∴ CD=DF=DE=6.∵ S△ BCE=2S△ ACD,∴ AF=2AD,∴ AD= 1 ×6=2,∴ AE=AD+DE=2+6=8. 1 2
点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离 相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全 等三角形是解题的关键. 4.正方形 ABCD 的边长为 1,对角线 AC 与 BD 相交于点 O,点 E 是 AB 边上的一个动点 (点 E 不与点 A、B 重合),CE 与 BD 相交于点 F,设线段 BE 的长度为 x.
CE CF ∵ ACF BCE ,∴ △ ACF≌ △ BCE(SAS),∴ AF=BE,∴ AD=AF+DF=BE+DE,即
AC BC
AD=BE+DE; 故答案为:AD=BE+DE. (3)∵ ∠ DCE=∠ DCF=∠ PCQ=45°,∴ ∠ ECF=45°+45°=90°,∴ △ ECF 是等腰直角三角形,
∴ m(m﹣4)=16,
∴ m=2+2 5 或 m=2﹣2 5 (舍).
【点睛】 此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全 等三角形的判定,构造出全等三角形是解本题的关键.
2.在等边△ AOB 中,将扇形 COD 按图 1 摆放,使扇形的半径 OC、OD 分别与 OA、OB 重 合,OA=OB=2,OC=OD=1,固定等边△ AOB 不动,让扇形 COD 绕点 O 逆时针旋转,线 段 AC、BD 也随之变化,设旋转角为 α.(0<α≤360°)
2
2
如图 4 中,当 A、C、D 共线时,作 OH⊥AC 于 H.
易知 AC=BD=AH﹣CH= 13 1 . 2
综上所述:当 A、C、D 三点共线时,BD 的长为 13 1 或 13 1 ;
2
2
(4)如图 5 中,由题意,点 C 在以 O 为圆心,1 为半径的⊙O 上运动,过点 O 作
OH⊥AB 于 H,直线 OH 交⊙O 于 C′、C″,线段 CB 的长即为 PC 的最大值,线段 C″H 的长即
∴ S△ PBD= 1 (m﹣4)(m﹣4)= 1 (m﹣4)2,
2
2
∴ S=S 矩形 OABC﹣S△ PBD=4m﹣ 1 (m﹣4)2=﹣ 1 (m﹣8)2+24,
2
2
∴ 抛物线的对称轴为 m=8,
∵ a<0,5≤m≤7,
∴ m=7 时,S 取到最大值;
②如图 2,过点 P 作 PF⊥x 轴于 F,过点 D 作 DG⊥FP 交 FP 的延长线于 G,
求得 OF=OM= 解方程
,即可得到结果;
(2)过 P 作 PG⊥AB 交 AB 的延长线于 G,如图 2,根据已知条件得到∠ ECB=∠ PEG,根据
全等三角形的性质得到 EB=PG=x,由三角形的面积公式得到 S= (1﹣x)•x,根据二次函数 的性质即可得到结论. 试题解析:(1)过 O 作 OM∥ AB 交 CE 于点 M,如图 1, ∵ OA=OC, ∴ CM=ME, ∴ AE=2OM=2OF, ∴ OM=OF,
(1)如图 1,当 AD=2OF 时,求出 x 的值; (2)如图 2,把线段 CE 绕点 E 顺时针旋转 90°,使点 C 落在点 P 处,连接 AP,设△ APE 的面积为 S,试求 S 与 x 的函数关系式并求出 S 的最大值. 【答案】(1)x= ﹣1; (2)S=﹣ (x﹣ )2+ (0<x<1), 当 x= 时,S 的值最大,最大值为 ,. 【解析】 试题分析:(1)过 O 作 OM∥ AB 交 CE 于点 M,如图 1,由平行线等分线段定理得到 CM=ME,根据三角形的中位线定理得到 AE=2OM=2OF,得到 OM=OF,于是得到 BF=BE=x,
3.如图:在△ ABC 中,∠ ACB=90°,AC=BC,∠ PCQ=45°,把∠ PCQ 绕点 C 旋转,在整个旋 转过程中,过点 A 作 AD⊥CP,垂足为 D,直线 AD 交 CQ 于 E. (1)如图①,当∠ PCQ 在∠ ACB 内部时,求证:AD+BE=DE; (2)如图②,当 CQ 在∠ ACB 外部时,则线段 AD、BE 与 DE 的关系为_____; (3)在(1)的条件下,若 CD=6,S△ BCE=2S△ ACD,求 AE 的长.
【答案】(1)证明见解析;(2)△ PDQ 是等腰直角三角形;理由见解析(3)成立;理 由见解析. 【解析】 试题分析:(1)由正方形的性质得出 AB=BC=CD=AD,∠ B=∠ ADF=90°, ∠ BCA=∠ DCA=45°,由 BE=DF,得出 CE=CF,△ CEF 是等腰直角三角形,即可得出结论; (2)由直角三角形斜边上的中线的性质得出 PD= AF,PQ= AF,得出 PD=PQ,再证明 ∠ DPQ=90°,即可得出结论;
(1)当 OC∥ AB 时,旋转角 α=
度;
发现:(2)线段 AC 与 BD 有何数量关系,请仅就图 2 给出证明.
应用:(3)当 A、C、D 三点共线时,求 BD 的长.
拓展:(4)P 是线段 AB 上任意一点,在扇形 COD 的旋转过程中,请直接写出线段 PC 的
最大值与最小值.
【答案】(1)60 或 240;(2) AC=BD,理由见解析;(3) 13+1 或 13 1 ;(4)PC 的
∴ ∠ DGP=∠ PFE=90°,
∴ ∠ DPG+∠ PDG=90°,
由旋转知,PD=PE,∠ DPE=90°,
∴ ∠ DPG+∠ EPF=90°,
∴ ∠ PDG=∠ EPF,
∴ △ PDG≌ △ EPF(AAS),
∴ DG=PF,
∵ DG=AF=m﹣4,
∴ P(m,mLeabharlann 4),∵ 点 P 在反比例函数 y= 16 , x
, ∴ △ EPG≌ △ CEB, ∴ EB=PG=x, ∴ AE=1﹣x,
∴ S= (1﹣x)•x=﹣ x2+ x=﹣ (x﹣ )2+ ,(0<x<1), ∵ ﹣ <0, ∴ 当 x= 时,S 的值最大,最大值为 ,.
考点:四边形综合题 5.如图 1,在正方形 ABCD 中,点 E、F 分别在边 BC,CD 上,且 BE=DF,点 P 是 AF 的中 点,点 Q 是直线 AC 与 EF 的交点,连接 PQ,PD. (1)求证:AC 垂直平分 EF; (2)试判断△ PDQ 的形状,并加以证明; (3)如图 2,若将△ CEF 绕着点 C 旋转 180°,其余条件不变,则(2)中的结论还成立 吗?若成立,请加以证明;若不成立,请说明理由.
∴
,
∴ BF=BE=x,
∴ OF=OM= , ∵ AB=1,
∴ OB= ,