[数学]2016-2017年河南省平顶山市高一(上)数学期末试卷带解析word

合集下载

河南省平顶山市高一上学期期末数学试卷

河南省平顶山市高一上学期期末数学试卷

河南省平顶山市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法中,正确的是()A . 命题“若a<b,则a<b”的逆命题是真命题B . 命题“x=y,则sinx=siny”的逆否命题为假命题C . 命题“p且q”为假命题,则命题“p”和命题“q”均为假命题D . 命题“∃t∈R,﹣t≤0”的否定是∀t∈R,﹣t>02. (2分)为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2 .已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是()A . 直线l1和l2相交,但是交点未必是点(s,t)B . 直线l1和l2有交点(s,t)C . 直线l1和l2由于斜率相等,所以必定平行D . 直线l1和l2必定重合3. (2分)从2006名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2006人中剔除6人,剩下的2000人再按系统抽样的方法进行,则每人入选的机会()A . 不全相等B . 均不相等C . 都相等D . 无法确定4. (2分)以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为16.8,则的值分别为()A . 5,2B . 5,5C . 8,5D . 8,85. (2分)编号为1、2、3、4的四个人入座编号为1、2、3、4的四个座位,则其中至少有两个人的编号与座位号相同的概率是()A .B .C .D .6. (2分)如图程序运行后,输出的值是()A . -4B . 5C . 9D . 147. (2分) (2017高一下·福州期中) 200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约()A . 60辆B . 80辆C . 100辆D . 120辆8. (2分)甲、乙两人在相同条件下进行射击,甲射中目标的概率为P1,乙射中目标的概率为P2 ,两人各射击1次,那么甲、乙至少有一个射中目标的概率为()A .B .C .D .9. (2分)(2017·大连模拟) 如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为8,12,则输出的a=()A . 4B . 2C . 0D . 1410. (2分)已知正三棱锥的底面边长为4,高为3,在正三棱锥内任取一点,使得的概率是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6.比赛顺序是:第一局甲队对乙队,第二局是第一局中的胜者对丙队,第三局是第二局中的胜者对第一局中的败者,第四局为第三局中的胜者对第二局中的败者,则乙队连胜四局的概率是________.12. (1分)三进制数121(3)化为十进制数为________13. (1分) (2016高二上·鹤岗期中) 某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.14. (1分)掷一枚骰子,出现点数是奇数的概率是________.15. (1分) (2019高二下·宁夏月考) 秦九韶算法是中国古代求多项式的值的优秀算法.若f(x)=2x4+5x3-x2+3x+4,则f(6)=________16. (1分)为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的数量约为________ 尾17. (1分) (2019高一下·郑州期末) 水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高一年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最大值是________.18. (1分) (2017高一上·嘉兴月考) 已知是定义在上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是________.三、解答题 (共5题;共45分)19. (5分) (2019高一上·太原月考) 已知算法:①将该算法用程序框图表示;②写出该程序,若输出Y=-3,求X的值.S1、输入XS2、若X<1,执行S3. 否则执行S6S3、Y =X- 2S4、输出YS5、结束S6、若X=1 ,执行S7;否则执行S10;S7、Y =0S8、输出YS9、结束S10、Y= 2X-7S11、输出YS12、结束20. (10分) (2016高一下·承德期中) 某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下观众年龄支持A支持B支持C20岁以下10020060020岁以上(含20岁)100100400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.(2)在支持C的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.21. (10分) (2019高二下·新城期末) 某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.附:相关系数,参考数据:,,,(1)依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量(单位:小时)光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?22. (10分) (2016高一下·双峰期中) 解答(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.23. (10分) (2015高三上·滨州期末) 经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(单位:万人)近似地满足f(t)=4+ ,而人均日消费俄g(t)(单位:元)近似地满足g(t)= .(1)试求所有游客在该城市旅游的日消费总额W(t)(单位:万元)与时间t(1≤t≤30,t∈N*)的函数表达式;(2)求所有游客在该城市旅游的日消费总额的最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共5题;共45分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。

河南省平顶山市2017-2018学年高一上学期期末调研考试数学试题 扫描版含答案

河南省平顶山市2017-2018学年高一上学期期末调研考试数学试题 扫描版含答案

平顶山市2017~2018学年第一学期期末调研考试高一数学试题答案及评分参考一.选择题:(1)B (2)D (3)B (4)D (5)C (6)A (7)A (8)D (9)A (10)C (11)B (12)C .二.填空题:(13)3,(14)60°,(15)2(2)x -+2(2)y +=1,(16)14-. 三.解答题:(17)(本小题满分10分)解:(Ⅰ)将已知的对数式改写为指数式,得到24x w =,40yw =,12()xyz w =. (3)分 从而,1125311212102w wz w x y w w ===, ……………4分那么60w z =,log 60z w =. (5)分(Ⅱ)设直线l 与1l ,2l 的交点分别为11()A x y ,,22()B x y ,.则,11223100280x y x y -+=⎧⎨+-=⎩ (*) ……………6分∵A ,B 的中点为(01)P ,,∴120x x +=,122y y +=. ……………7分将21x x =-,212y y =-代入(*)得11113100260x y x y -+=⎧⎨++=⎩, 解之得1142x y =-⎧⎨=⎩,2240x y =⎧⎨=⎩, ……………8分所以,121214AB y y k x x -==--, ……………9分所以直线l 的方程为114y x =-+,即44x y +-=. ……………10分(18)(本小题满分12分)证明:(Ⅰ)连接BC 1,∵正方体ABCD -A 1B 1C 1D 1中,AB ∥C 1D 1,AB =C 1D 1,∴四边形ABC 1D 1是平行四边形,∴AD 1∥BC 1. ……………1分又∵E ,G 分别是BC ,CC 1的中点,∴EG ∥BC 1,∴EG ∥AD 1. ……………2分又∵EG ⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,∴EG ∥平面AB 1D 1. ……………4分同理EF ∥平面AB 1D 1,且EG EF =E ,EG ⊂平面EFG ,EF ⊂平面EFG ,∴平面AB 1D 1∥平面EFG .……………6分(Ⅱ)∵正方体ABCD -A 1B 1C 1D 1中,AB 1⊥A 1B .分又∵正方体ABCD -A 1B 1C 1D 1中,BC ⊥平面AA 1B 1B ,∴AB 1⊥BC . 分又∵A 1B 与BC 都在平面A 1BC 中,A 1B 与BC 相交于点B ,∴AB 1⊥平面A 1BC ,∴A 1C ⊥AB 1.……………10分同理A 1C ⊥AD 1,而AB 1与AD 1都在平面A 1B 1D 中,AB 1与AD 1相交于点A ,∴A 1C ⊥平面A 1B 1D ,因此,A 1C ⊥平面EFG . ……………12分(19)(本小题满分12分)解: (Ⅰ)∵222(21)()()22220212121x x x x f x f x a a a --+-=++=-=-=---,……………2分 对x ∈R 恒成立, ∴1a =. ……………3分(Ⅱ)设120x x <<<+∞, ∵12211221222(22)()()2121(21)(21)x x x x x x f x f x --=-=----. (*) ……………5分 ∵函数2x y =是增函数,又120x x <<,∴21220x x ->,而1210x ->,2210x ->,∴ (*)式0<. ……………6分∴21()()f x f x <,即()f x 是区间(0+∞,上是减函数. ……………7分(Ⅲ)∵()f x 是奇函数,∴(2+1)(1)0f t f t +-<可化为(2+1)(1)f t f t <-.由(Ⅱ)可知()f x 在区间(0)-∞,和(0)+∞,上都是减函数. 当2+10t >,10t ->时,(2+1)(1)f t f t <-化为2+11t t >-,解得1t >; ……………9分当2+10t <,10t -<时,(2+1)(1)f t f t <-化为2+11t t >-,解得122t -<<; ……………10分 当2+10t <,10t ->时,(2+1)0(1)f t f t <<-显然成立,无解; ……………11分综上, (2+1)(1)0f t f t +-<成立时t 的取值范围是122t -<<-或1t >. ……………12分(20)(本小题满分12分)解:(Ⅰ)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC , ………..2分又PD ⊥PB ,PB 与BC 相交于点B ,所以,PD ⊥平面PBC . ………..4分(Ⅱ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以D F ∠为直线DF 和平面PBC 所成的角. ………..5分由于AD //BC ,DF //AB ,故BF =AD =CF =1.又AD ⊥DC ,故BC ⊥DC ,ABCD 为直角梯形,所以,DF . ………..6分在R t △DPF 中,PD =,DF ,1sin 2PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角为30°. ……………8分(Ⅲ)设E 是CD 的中点,则PE ⊥CD ,又AD ⊥平面PDC ,所以PE ⊥平面ABCD . ………..9分在平面ABCD 内作EG ⊥AB 交AB 的延长线于G ,连EG ,则∠PGE 是二面角P -AB -C 的平面角. ………..10分在直角梯形ABCD 内可求得EG =,而12PE =, ………..11分所以,在R t △PEG 中,tan PE PGE GE ∠==. 所以,二面角P -AB -C 的正切值为. ………..12分(21)(本小题满分12分)解:(Ⅰ)圆Q 的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,.过(02)P ,且斜率为k 的直线方程为2y kx =+. ……………1分∵5AB =,∴圆心Q 到直线l 的距离d =, ……………2分∴,即2221520k k ++=,解得12k =-或211k =-. ……………4分所以,满足题意的直线l 方程为122y x =-+或2211y x =-+. ……………5分(Ⅱ)将直线l 的方程2y kx =+代入圆方程得22(2)12320x kx x ++-+=,整理得22(1)4(3)360k x k x ++-+=. ① ……………6分直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为3(0)4-,. ……………8分设1122()()A x y B x y ,,,,则AB 的中点E 00(,)x y 满足12022621x x k x k +-==-+,0026221k y kx k +=+=+. ……………9分 ∵201063PQ k -==--,00313OE y k k x k +==--, ……………10分 要使OE ∥PQ ,必须使13O E P Q k k ==-,解得34k =-, ……………11分 但是3(0)4k ∈-,,故没有符合题意的常数k . ……………12分(22)(本小题满分12分)解:(Ⅰ)2221log log ()0a x x ⎛⎫++=⎪⎝⎭有且仅有一解,等价于211a x x ⎛⎫+= ⎪⎝⎭有且仅有一正数解,等价于210ax x +-=有且仅有一正数解. ……………2分当0a =时,1x =,符合题意; ……………3分当0a ≠时,14a ∆=+=,14a =-,12x =. ……………4分 综上,0a =或14-. ……………5分 (Ⅱ)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减. ……………6分函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +. ……………8分()()22111log log 11f t f t a a t t -+=+-+≤+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,即()2110a t a t ++-≥,对1[,1]2t ∈成立.……………9分因为0a >,所以函数()211y at a t =++-在区间1[,1]2上单调递增, ……………10分12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. ……………11分 故a 的取值范围为2[,)3+∞. ……………12分 说明:每道解答题基本提供一种解题方法,如有其他解法请仿此标准给分.。

2016-2017学年河南省平顶山市高一(下)期末数学试卷(解析版)

2016-2017学年河南省平顶山市高一(下)期末数学试卷(解析版)

2016-2017学年河南省平顶山市高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣2.(5分)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.363.(5分)为了得到函数y=2sin(+),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点()A.向左平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)B.向右平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)C.向左平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)D.向右平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)4.(5分)样本容量为200的频率分布直方图如图所示,根据样本的频率分布直方图估计,总体数据落在[2,10)内的概率约为()A.0.2 B.0.4 C.0.8 D.0.95.(5分)若函数f(x)=sin2x﹣(x∈R),则f(x)是()A.最小正周期为的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数6.(5分)已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2 B.3 C.4 D.57.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.8.(5分)某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是()A.4 B.3 C.2 D.19.(5分)函数y=x,x∈R的递减区间为()A.B.C.D.10.(5分)已知为非零向量,满足,则与的夹角为()A.B.C. D.11.(5分)如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A.B.C.D.12.(5分)已知函数,则f(x)是()A.周期为π,图象关于点对称的函数B.最大值为2,图象关于点对称的函数C.周期为2π,图象关于点对称的函数D.最大值为2,图象关于直线对称的函数二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)=.14.(5分)程序框图(即算法流程图)如图所示,其输出结果是.15.(5分)连掷两次骰子得到点数分别为m和n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ,则θ∈(0,)的概率是.16.(5分)已知向量,向量满足,则用基底的线性表示为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知7cos2α﹣sinαcosα﹣1=0,α∈(,),求cos2α和的值.18.(12分)某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价x i(单位:元)与销售y i(单位:件)的数据资料,算得(1)求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)附:回归直线方程中,=,=﹣,其中,是样本平均值.19.(12分)设函数f(x)=sin(﹣)﹣2cos2+1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,]时y=g(x)的最大值.20.(12分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.21.(12分)已知向量=(cosα,sinα),=(cosβ,sinβ),=({1,0).(1)求向量+的长度的最大值;(2)设α=,<β<,且⊥(﹣),求的值.22.(12分)我市为了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100]并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的a值,及该市学生汉字听写考试的平均分;(2)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N中至少有一人被选中的概率.2016-2017学年河南省平顶山市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣【解答】解:sinα=﹣,则α为第四象限角,cosα==,tanα==﹣.故选:D.2.(5分)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36【解答】解:设老年职工有x人,中年职工人数是老年职工人数的2倍,则中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个个体被抽到的概率是=,用分层抽样的比例应抽取×90=18人.故选:B.3.(5分)为了得到函数y=2sin(+),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点()A.向左平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)B.向右平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)C.向左平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)D.向右平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)【解答】解:把函数y=2sinx,x∈R的图象上所有的点向左平移个单位,可得y=2sin(x+)的图象;再把所得各点的横坐标缩短为原来的3倍(纵坐标不变),可得函数y=2sin (+),x∈R的图象,故选:C.4.(5分)样本容量为200的频率分布直方图如图所示,根据样本的频率分布直方图估计,总体数据落在[2,10)内的概率约为()A.0.2 B.0.4 C.0.8 D.0.9【解答】解:由频率分布直方图得:总体数据落在[2,10)内的概率约为:(0.02+0.08)×4=0.4.故选:B.5.(5分)若函数f(x)=sin2x﹣(x∈R),则f(x)是()A.最小正周期为的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数【解答】解:f(x)=sin2x﹣=﹣=﹣cos2x,最小正周期T=,又f(﹣x)=﹣cos(﹣2x)=﹣cos2x=f(x),∴f(x)为偶函数,故选:D.6.(5分)已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2 B.3 C.4 D.5【解答】解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.7.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.8.(5分)某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是()A.4 B.3 C.2 D.1【解答】解:∵由题意知记分员在去掉一个最高分94和一个最低分88后,余下的7个数字的平均数是91,即∴636+x=91×7=637,∴x=1故选:D.9.(5分)函数y=x,x∈R的递减区间为()A.B.C.D.【解答】解:函数y=x=sin2x+﹣cos2x=sin(2x﹣)+,令2kπ+≤2x﹣≤2kπ+,求得kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈Z,故选:C.10.(5分)已知为非零向量,满足,则与的夹角为()A.B.C. D.【解答】解:设与的夹角为θ,θ∈[0,2π],∵满足,∴﹣2=0,=2,∴==2•||•||•cosθ,∴cosθ=,∴θ=,故选:B.11.(5分)如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A.B.C.D.【解答】解:圆周上使弧AB的长度为1的点B有两个,不妨令这两个点是B1,B2,则过A的圆弧B1B2的长度为2,B点落在优弧B1B2上就能使劣弧AB的长度小于1;故劣弧AB长度小于1的概率:P=,故选:D.12.(5分)已知函数,则f(x)是()A.周期为π,图象关于点对称的函数B.最大值为2,图象关于点对称的函数C.周期为2π,图象关于点对称的函数D.最大值为2,图象关于直线对称的函数【解答】解:由于函数,即f(x)=sin[π﹣(﹣x)]﹣cos(x+)=sin(x+)﹣cos(x+)=2sin(x+﹣)=2sin(x﹣),故函数f(x)的周期为2π,最大值为2,当x=时,f(x)=0,故B对且A不对;根据当x=﹣时,f(x)=﹣1,故函数的图象不关于点对称,故C不对;再根据当x=时,f(x)=,不是最值,故函数的图象不关于直线对称,故D不对,故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)=1.【解答】解:===.故答案为:1.14.(5分)程序框图(即算法流程图)如图所示,其输出结果是127.【解答】解:程序在运行过程中各变量的值如下表示:a 是否继续循环循环前1/第一圈 3 是第二圈7 是第三圈15 是第四圈31 是第五圈63 是第六圈127 否故最后输出的a值为:127故答案为:12715.(5分)连掷两次骰子得到点数分别为m和n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ,则θ∈(0,)的概率是.【解答】解:∵连掷两次骰子得到点数分别为m和n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ∴=m﹣n,∵θ∈(0,),∴>0,即m﹣n>0,m>n,∵m,n∈[1,6]的整数.总共的事件有36个,符合题意的有15个,根据古典概率公式得:=故答案为:.16.(5分)已知向量,向量满足,则用基底的线性表示为.【解答】解:∵向量满足,则,⇒,())=0,⇒λ+﹣﹣=0,⇒﹣4λ+13λ﹣5+4=0,⇒λ=.∴=,故答案为:.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知7cos2α﹣sinαcosα﹣1=0,α∈(,),求cos2α和的值.【解答】解:由7cos2α﹣sinαcosα﹣1=0,得6cos2α﹣sinαcosα﹣sin2α=0,∵α∈(,),∴cosα≠0,则∴tan2α+tanα﹣6=0,解得:tanα=2或tanα=﹣3(舍).∴cos2α===.sin2α=tan2α•cos2α==.∴=sin2α•cos+cos2α•sin=.18.(12分)某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价x i(单位:元)与销售y i(单位:件)的数据资料,算得(1)求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)附:回归直线方程中,=,=﹣,其中,是样本平均值.【解答】解:(1)根据题意,计算=x i=×51=8.5,…(1分)=y i=×480=60,…(2分)===﹣20,…(4分)=﹣=80﹣(﹣20)×8.5=250,…(5分)从而回归直线方程为=﹣20x+250;…(6分)(II)设工厂获得的利润为L元,依题意得:L=(x﹣4)(﹣20x+250)=﹣20x2+330x﹣1000 …(8分)=﹣20(x﹣8.25)2+361.25 …(9分)所以,当仅当x=8.25时,L取得最大值,…(10分)故当单价定为8.25元时,工厂可获得最大利润.…(12分)19.(12分)设函数f(x)=sin(﹣)﹣2cos2+1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,]时y=g(x)的最大值.【解答】解:(Ⅰ)化简可得x=sin(),∴f(x)的最小正周期为;(Ⅱ)在y=g(x)的图象上任取一点(x,g(x)),则它关于x=1的对称点(2﹣x,g(x))在y=f(x)的图象上,∴g(x)=f(2﹣x)=sin[(2﹣x)﹣]=sin(﹣x﹣)=cos(x+)当时,,∴y=g(x)在区间上的最大值为20.(12分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解答】解:设事件A为“方程有实根”.当a>0,b>0时,方程有实根的充要条件为a≥b(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,∴事件A发生的概率为P==(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}满足条件的构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}∴所求的概率是21.(12分)已知向量=(cosα,sinα),=(cosβ,sinβ),=({1,0).(1)求向量+的长度的最大值;(2)设α=,<β<,且⊥(﹣),求的值.【解答】解:(1)∵,∴,∴,∵﹣1≤cosβ≤1,∴,即0≤.∴当cosβ=﹣1时,向量的长度取得最大值2;(2)由,得,即.∴cosαcosβ+sinαsinβ=﹣,∴.∴cos()=.∵,又∵,∴,结合cos()=﹣,可得tan()=.而sin2β=cos()=cos2()=,∴.22.(12分)我市为了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100]并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的a值,及该市学生汉字听写考试的平均分;(2)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N中至少有一人被选中的概率.【解答】(本小题满分12分)解:(1)由频率分布直方图得:a=0.1﹣0.03﹣0.025﹣0.02﹣0.01=0.015.…(3分)=0.1×55+0.2×65+0.3×75+0.25×85+0.15×95=76.5.…(6分)(2)从这5位学生代表中任选两人的所有选法共10种,分别为:AB,AC,AM,AN,BC,BM,BN,CM,CN,MN.…(8分)代表M,N至少有一人被选中的选法共7种,分别为:AM,AN,BM,BN,CM,CN,MN.…(10分)设“学生代表M,N至少有一人被选中”为事件D,则学生M,N中至少有一人被选中的概率P(D)=.答:学生代表M,N至少有一人被选中的概率为.…(12分)。

2016-2017学年河南省高一(上)期末数学试卷word版含答案

2016-2017学年河南省高一(上)期末数学试卷word版含答案

2016-2017学年河南省高一(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)下列语句可以是赋值语句的是()A.S=a+1 B.a+1=S C.S﹣1=a D.S﹣a=12.(3分)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶3.(3分)如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A.65 B.64 C.63 D.624.(3分)下列事件:①抛一枚硬币,出现正面朝上;②某人买彩票中奖;③大年初一太原下雪;④标准大气压下,水加热到90°C时会沸腾.其中随机事件的个数是()A.1 B.2 C.3 D.45.(3分)太原市某时段100辆汽车通过祥云桥时,时速的频率分布直方图如图所示,则时速在[30,40]的汽车约有()A.30辆B.35辆C.40辆D.50辆6.(3分)从1,2,3,4,5共5个数字中任取一个数字,取出的数字为奇数的概率为()A.B.C.D.7.(3分)为了在运行如图的程序之后输出的值为5,则输入x的所有可能的值是()A.5 B.﹣5 C.5或0 D.﹣5或58.(3分)线性回归方程表示的直线必经过的一个定点是()A.B.C.D.(0,0)9.(3分)把89化成二进制数使()A.100100 B.10010 C.10100 D.101100110.(3分)阅读如图所示的程序图,运行相应的程序输出的结果s=()A.1 B.4 C.9 D.1611.(3分)函数f(x)=x2﹣x﹣2(﹣5≤x≤5),在其定义域内任取一点x0,使f(x)<0的概率是()A.B.C.D.12.(3分)若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f (x)可以是()A.f(x)=4x﹣1 B.f(x)=(x﹣1)2C.f(x)=e x﹣1 D.f(x)=ln(x﹣)二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)某校高一、高二、高三年级学生共700人,其中高一年级300人,高二年级200人,高三年级200人,现采用分层抽样的方法抽取一个容量为35的样本,那么从高一年级抽取的人数应为人.14.(4分)用“辗转相除法”求得119和153的最大公约数是.15.(4分)若连续抛掷一枚骰子两次,第一次得到的点数为m,第二次得到的点数为n,则点P(m,n)落在以坐标原点为圆心,4为半径的圆内的概率为.16.(4分)已知函数f(x)=,且0<a<1,k≠0,若函数g(x)=f(x)﹣k 有两个零点,则实数k的取值范围为.三、解答题:本大题共3小题,共44分.解答应写出必要的文字说明或推理、验算过程. 17.(10分)某同学收集了班里9名男生50m跑的测试成绩(单位:s):6,4、7.5、8.0、6.8、9.1、8.3、6.9、8.4、9.5,并设计了一个算法可以从这些数据中搜索出小于8,0的数据,算法步骤如下:第一步:i=1第二步:输入一个数据a第三步:如果a<8.0,则输出a,否则执行第四步第四步:i=i+1第五步:如果i>9,则结束算法,否则执行第二步请你根据上述算法将下列程序框图补充完整.18.一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,(1)求恰好有一件次品的概率.(2)求都是正品的概率.(3)求抽到次品的概率.19.(10分)有关部门为了了解雾霾知识在学校的普及情况,印制了若干份满分为10分的问卷到各学校做调查.某中学A,B两个班各被随机抽取5名学生进行问卷调查,得分如下:(1)请计算A,B两个班的平均分,并估计哪个班的问卷得分要稳定一些;(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样从中抽取样本容量为2的样本,求样本的平均数与总体平均数之差的绝对值不小于1的概率.请同学们在20、21两个小题中任选一题作答20.(10分)某超市选取了5个月的销售额和利润额,资料如表:(1)求利润额y对销售额x的回归直线方程;(2)当销售额为4(千万元)时,估计利润额的大小.21.在一次对昼夜温差大小与种子发芽数之间的研究中,研究人员获得了一组样本数据:(1)请根据上述数据,选取其中的前3组数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归直线方程是可靠的,请问(1)中所得的线性回归方程是否可靠?请同学们在22、23两个小题中任选一题作答22.(10分)在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).某公司每月最多生产100台报警系统装置,生产x台(x∈N*)的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?23.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/10kg)与上市时间t(单位:元)的数据如表:t中哪一个适宜作为描(1)根据上表数据判断,函数Q=at+b,Q=at2+bt+c,Q=a•b t,Q=a•logb述西红柿种植成本Q与上市时间t的变化关系?简要说明理由;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.2016-2017学年河南省高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)(2016秋•太原期末)下列语句可以是赋值语句的是()A.S=a+1 B.a+1=S C.S﹣1=a D.S﹣a=1【分析】直接根据赋值语句的格式:变量=表达式进行判断即可.【解答】解:对于选项B:不能把变量的值赋给表达式,错误;对于选项C:不能把变量的值赋给表达式,错误;对于选项D:不能把值赋给表达式,错误;对于选项A:把表达式的值赋值给变量S,正确.故选:A.【点评】本题综合考查了赋值语句的格式和功能,准确理解赋值语句的功能是解题的关键,本题属于基础题,难度小.2.(3分)(2016秋•太原期末)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶【分析】利用互斥事件的概念求解.【解答】解:“至多有一次中靶”和“至少有一次中靶”,能够同时发生,故A错误;“两次都中靶”和“至少有一次中靶”,能够同时发生,故B错误;“只有一次中靶”和“至少有一次中靶”,能够同时发生,故C错误;“两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.故选:D.【点评】本题考查互斥事件的判断,是基础题,解题时要熟练掌握互斥事件的概念.3.(3分)(2016秋•太原期末)如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A.65 B.64 C.63 D.62【分析】分别将甲、乙两名运动员的得分按小到大或者大到小排序,分别确定中位数,再相加即可.【解答】解:因为甲、乙两名篮球运动员各参赛9场,故中位数是第5个数.甲的得分按小到大排序后为:13,15,23,26,28,34,37,39,41,所以,中位数为28乙的得分按小到大排序后为:24,25,32,33,36,37,41,42,45,所以,中位数为36所以,中位数之和为28+36=64,故选B.【点评】考查统计知识,茎叶图中找中位数.将茎叶图数据重新排序,再取中间位置的数是解决问题的思路.找对中位数是解决问题的关键.4.(3分)(2016秋•太原期末)下列事件:①抛一枚硬币,出现正面朝上;②某人买彩票中奖;③大年初一太原下雪;④标准大气压下,水加热到90°C时会沸腾.其中随机事件的个数是()A.1 B.2 C.3 D.4【分析】依据随机事件定义,即随机事件就是可能发生也可能不发生的事件,即可判断出事件中是随机事件的个数.【解答】解:依据随机事件定义,可知①②③是随机事件,故选C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2016秋•太原期末)太原市某时段100辆汽车通过祥云桥时,时速的频率分布直方图如图所示,则时速在[30,40]的汽车约有()A.30辆B.35辆C.40辆D.50辆【分析】由已知中的频率分布直方图为100辆汽车通过某一段公路时的时速的频率分布直方图,我们可得到样本容量,再由图中分析出时速在[30,40]的频率,即可得到该组数据的频数,进而得到答案.【解答】解:由已知可得样本容量为100,又∵数据落在区间的频率为0.03×10=0.3∴时速在[30,40]的汽车大约有100×0.3=30,故选:A.【点评】本题考查的知识点是频率分布直方图,其中根据已知中的频率分布直方图结合频率=矩形高×组距计算各组的频率是解答此类问题的关键.6.(3分)(2015•沈阳模拟)从1,2,3,4,5共5个数字中任取一个数字,取出的数字为奇数的概率为()A.B.C.D.【分析】从1,2,3,4,5共5个数字中任取一个数字,取出的数字为奇数共有3种可能,根据概率公式计算即可,【解答】解:从1,2,3,4,5共5个数字中任取一个数字,取出的数字为奇数共有3种可能,故取出的数字为奇数的概率P=故选:D.【点评】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.7.(3分)(2016秋•太原期末)为了在运行如图的程序之后输出的值为5,则输入x的所有可能的值是()A.5 B.﹣5 C.5或0 D.﹣5或5【分析】由已知的语句分析可得:该程序的功能是计算并输出分段函数y=的值,进而得到答案.【解答】解:由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,若输出的值为5,则输入x的所有可能的值是﹣5或5,故选:D【点评】本题考查的知识点是分段函数的应用,程序语句,分析出程序的功能是解答的关键.8.(3分)(2016秋•太原期末)线性回归方程表示的直线必经过的一个定点是()A.B.C.D.(0,0)【分析】根据线性回归方程一定过这组数据的样本中心点,得到线性回归方程表示的直线必经过(,得到结果.【解答】解:∵线性回归方程一定过这组数据的样本中心点,∴线性回归方程表示的直线必经过(故选A.【点评】本题看出线性回归方程,本题解题的关键是理解线性回归方程过这组数据的样本中心点,本题不用计算,是一个基础题.9.(3分)(2016秋•太原期末)把89化成二进制数使()A.100100 B.10010 C.10100 D.1011001【分析】利用“除2取余法”即可计算得解.【解答】解:利用“除2取余法”可得:∴89(10)=1011001(2).故选:D.【点评】本题考查了“除2取余法”把“十进制”数化为“2进制”数,属于基础题.10.(3分)(2013•梅州二模)阅读如图所示的程序图,运行相应的程序输出的结果s=()A.1 B.4 C.9 D.16【分析】模拟执行程序,依次写出每次循环得到的n,s,a的值,当n=3时,不满足条件n <3,退出循环,输出s的值为9.【解答】解:模拟执行程序框图,可得a=1,s=0,n=1s=1,a=3满足条件n<3,n=2,s=4,a=5满足条件n<3,n=3,s=9,a=7不满足条件n<3,退出循环,输出s的值为9,故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的n,s,a的值是解题的关键,属于基本知识的考查.11.(3分)(2016秋•太原期末)函数f(x)=x2﹣x﹣2(﹣5≤x≤5),在其定义域内任取一点x0,使f(x)<0的概率是()A.B.C.D.【分析】先解不等式f(x0)<0,得能使事件f(x)<0发生的x的取值长度为3,再由x总的可能取值,长度为定义域长度10,得事件f(x)<0发生的概率是0.3.【解答】解:∵f(x)<0⇔x2﹣x﹣2<0⇔﹣1<x<2,∴f(x0)<0⇔﹣1<x<2,即x∈(﹣1,2),∵在定义域内任取一点x,∴x∈[﹣5,5],∴使f(x)<0的概率P==.故选C.【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键.12.(3分)(2009•福建)若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可以是()A.f(x)=4x﹣1 B.f(x)=(x﹣1)2C.f(x)=e x﹣1 D.f(x)=ln(x﹣)【分析】先判断g(x)的零点所在的区间,再求出各个选项中函数的零点,看哪一个能满足与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25.【解答】解:∵g(x)=4x+2x﹣2在R上连续,且g()=+﹣2=﹣<0,g()=2+1﹣2=1>0.设g(x)=4x+2x﹣2的零点为x0,则<x<,0<x0﹣<,∴|x﹣|<.又f(x)=4x﹣1零点为x=;f(x)=(x﹣1)2零点为x=1;f(x)=e x﹣1零点为x=0;f(x)=ln(x﹣)零点为x=,故选A.【点评】本题考查判断函数零点所在的区间以及求函数零点的方法,属于基础题.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2016秋•太原期末)某校高一、高二、高三年级学生共700人,其中高一年级300人,高二年级200人,高三年级200人,现采用分层抽样的方法抽取一个容量为35的样本,那么从高一年级抽取的人数应为15 人.【分析】先求出抽取样本的比例是多少,再计算从高二学生中应抽取的人是多少.【解答】解:根据题意,得抽取样本的比例是=,∴从高一学生中应抽取的人数为300×=15.故答案为15.【点评】本题考查了分层抽样方法的应用问题,是容易题目.14.(4分)(2016秋•太原期末)用“辗转相除法”求得119和153的最大公约数是17 .【分析】利用“辗转相除法”即可得出.【解答】解:153=119×1+34,119=34×3+17,34=17×2.∴153与119的最大公约数是17.故答案为17.【点评】本题考查了“辗转相除法”,属于基础题.15.(4分)(2016秋•太原期末)若连续抛掷一枚骰子两次,第一次得到的点数为m,第二次得到的点数为n,则点P(m,n)落在以坐标原点为圆心,4为半径的圆内的概率为.【分析】本题考查的知识点是古典概型的意义,关键是要找出连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点的总个数,及点P(m,n)落在以坐标原点为圆心,4为半径的圆内的个数,代入古典概型计算公式即可求解.【解答】解:连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36个其中点P(m,n)落在以坐标原点为圆心,4为半径的圆内的有:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)共8个故点P(m,n)落在以坐标原点为圆心,4为半径的圆内的概率P=,故答案为.【点评】古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.16.(4分)(2016秋•太原期末)已知函数f(x)=,且0<a<1,k≠0,若函数g(x)=f(x)﹣k有两个零点,则实数k的取值范围为(0,1).【分析】画出分段函数的图象,数形结合得答案.【解答】解:由分段函数f(x)=,由y=f(x)﹣k=0,得f(x)=k.令y=k与y=f(x),作出函数y=k与y=f(x)的图象如图:由图可知,函数y=f(x)﹣k有且只有两个零点,则实数k的取值范围是(0,1).故答案为:(0,1).【点评】本题考查分段函数的应用,考查函数零点的判断,体现了数形结合的解题思想方法,是中档题.三、解答题:本大题共3小题,共44分.解答应写出必要的文字说明或推理、验算过程. 17.(10分)(2016秋•太原期末)某同学收集了班里9名男生50m跑的测试成绩(单位:s):6,4、7.5、8.0、6.8、9.1、8.3、6.9、8.4、9.5,并设计了一个算法可以从这些数据中搜索出小于8,0的数据,算法步骤如下:第一步:i=1第二步:输入一个数据a第三步:如果a<8.0,则输出a,否则执行第四步第四步:i=i+1第五步:如果i>9,则结束算法,否则执行第二步请你根据上述算法将下列程序框图补充完整.【分析】首先根据是解题所给的条件,先输入一个数a,若a<8.0,则输出a,否则不能输出a,据此设计从这些成绩中搜索出小于8.0的成绩算法,进而根据做出的算法,即可将程序框图补充完整,注意条件的设置.【解答】解:将程序框图补充完整如下:【点评】本题考查选择结构,考查写出实际问题的算法,考查程序框图的画法,属于基础题.18.(2016秋•太原期末)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,(1)求恰好有一件次品的概率.(2)求都是正品的概率.(3)求抽到次品的概率.【分析】(1)把随机抽出两件产品恰好有一件次品这一事件列举出来,看方法数有多少,再列举总的方法数,两者相除即可.(2)用列举法计算都是正品的情况,再除以总的方法数.(3)用互斥事件的概率来求,先计算都是正品的概率,再让1减去都是正品的概率即可.【解答】解:将六件产品编号,ABCD(正品),ef(次品),从6件产品中选2件,其包含的基本事件为:(AB)(AC)(AD)(Ae)(Af)(BC)(BD)(Be)(Bf)(CD)(Ce)(Cf)(De)(Df)(ef).共有15种,(1)设恰好有一件次品为事件A,事件A中基本事件数为:8则P(A)=(2)设都是正品为事件B,事件B中基本事件数为:6则P(B)=(2)设抽到次品为事件C,事件C与事件B是对立事件,则P(C)=1﹣P(B)=1﹣【点评】在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.19.(10分)(2016秋•太原期末)有关部门为了了解雾霾知识在学校的普及情况,印制了若干份满分为10分的问卷到各学校做调查.某中学A,B两个班各被随机抽取5名学生进行问卷调查,得分如下:(1)请计算A,B两个班的平均分,并估计哪个班的问卷得分要稳定一些;(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样从中抽取样本容量为2的样本,求样本的平均数与总体平均数之差的绝对值不小于1的概率.【分析】(1)由表中数据,我们易计算出A、B两个班的得分的方差S12与S22,然后比较S12与S22,根据谁的方差小谁的成绩稳定的原则进行判断.(2)我们计算出从A、B两个班的5个得分中各随机抽取一场的得分的基本事件总数,然后再计算出其中样本平均数与总体平均数之差的绝对值不小于1的基本事件个数,代入古典概率计算公式,即可求解.【解答】解:(1)由表中数据知:A班的平均数为==8,B班的平均数为==8,=[(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(9﹣8)2]=2.4,A班的方差为S2AB班的方差为S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,B∴A,B两个班的平均分都是8,∵A班的方差大于B班的方差,∴B班的问卷得分要稳定一些.(2)从B班5名学生得分中抽出2名学生有以下可能的情况:(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9(,(8,10),(9,10),共10情况,样本的平均数与总体平均数之差的绝对值不小于1其中样本6和7,6和8,8和10,9和10的平均数满足条件,∴样本的平均数与总体平均数之差的绝对值不小于1的概率p=.【点评】本题考查的知识点是方差的计算及应用,古典概型等知识点,解题的关键是根据茎叶图的茎是高位,叶是低位,列出茎叶图中所包含的数据,再去根据相关的定义和公式进行求解和计算.请同学们在20、21两个小题中任选一题作答20.(10分)(2016秋•太原期末)某超市选取了5个月的销售额和利润额,资料如表:(1)求利润额y对销售额x的回归直线方程;(2)当销售额为4(千万元)时,估计利润额的大小.【分析】(1)根据所给的表格做出横标和纵标的平均数,求出利用最小二乘法要用的结果,做出线性回归方程的系数,写出线性回归方程.(2)将x=4代入线性回归方程中得到y的一个预报值,可得答案.【解答】解:(1)由题意得=6,=3.4,xi yi=112,xi2=200,∴==0.5,=3.4﹣0.5×6=0.4,则线性回归方程为=0.5x+0.4,(2)将x=4代入线性回归方程中得:=0.5×4+0.4=2.4(百万元).【点评】本题考查线性回归方程,考查用线性回归方程预报y的值,这种题目是新课标中出现的知识点,并且已经作为高考题目在广东省出现过,注意这种题型.21.(2016秋•太原期末)在一次对昼夜温差大小与种子发芽数之间的研究中,研究人员获得了一组样本数据:(1)请根据上述数据,选取其中的前3组数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归直线方程是可靠的,请问(1)中所得的线性回归方程是否可靠?【分析】(1)根据表中数据,计算、,求出回归系数,写出线性回归方程;(2)利用回归方程计算x=10和x=8时的值,验证所得到的线性回归直线方程是可靠的.【解答】解:(1)由表中前3组数据,计算=×(13+12+11)=12,=×(30+26+25)=27,且3=972,=977,=434,3=432,∴==,=﹣=27﹣×12=﹣3;∴y关于x的线性回归方程是=x﹣3;(2)当x=10时,=×10﹣3=22,则|22﹣23|<2;当x=8时,=×8﹣3=17,则|17﹣16|<2;由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,所以得到的线性回归直线方程是可靠的.【点评】本题考查了回归直线方程的计算与应用问题,是基础题目.请同学们在22、23两个小题中任选一题作答22.(10分)(2011•月湖区校级模拟)在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).某公司每月最多生产100台报警系统装置,生产x台(x∈N*)的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?【分析】本题是二次函数模型解题策略:构造二次函数模型,函数解析式求解是关键,然后利用配方法、数形结合法等方法求解二次函数最值,但要注意自变量的实际取值范围.【解答】解:由题意知,x∈[1,100],且x∈N*P(x)=R(x)﹣C(x)=3000x﹣20x2﹣(500x+4000)=﹣20x2+2500x﹣4000,MP(x)=P(x+1)﹣P(x)=﹣20(x+1)2+2500(x+1)﹣4000﹣[﹣20x2+2500x﹣4000]=2480﹣40x,(2),当x=62或x=63时P(x)的最大值为74120(元)∵MP(x)=2480﹣40x是减函数,∴当x=1时,MP(x)的最大值为2440(元)∴P(x)与MP(x)没有相同的最大值【点评】本题考查了函数的实际应用,解决应用题需要实际问题变量的范围.23.(2016秋•太原期末)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/10kg)与上市时间t(单位:元)的数据如表:(1)根据上表数据判断,函数Q=at+b,Q=at2+bt+c,Q=a•b t,Q=a•logt中哪一个适宜作为描b述西红柿种植成本Q与上市时间t的变化关系?简要说明理由;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.【分析】(1)由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不可能是单调函数,故选取二次函数Q=at2+bt+c进行描述,将表格所提供的三组数据(50,150),(110,108),(250,150)代入Q,即得函数解析式;(2)由二次函数的图象与性质可得,函数Q在t取何值时,有最小值.【解答】解:(1)由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不t,在a≠0时,均为单可能是常数函数,也不是单调函数;而函数Q=at+b,Q=a•b t,Q=a•logb调函数,这与表格提供的数据不吻合,所以,选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据(50,150),(110,108),(250,150)分别代入可得,通过计算得a=,b=﹣,c=故西红柿种植成本Q与上市时间t的变化关系函数得到Q=t2﹣t+;(2)Q=t2﹣t+=(t﹣150)2+100,∴t=150(天)时,西红柿种植成本Q最低,为100元/10kg.【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.。

河南省平顶山市2016-2017学年高一上学期期末调研考试数学试题 (word版含答案)

河南省平顶山市2016-2017学年高一上学期期末调研考试数学试题 (word版含答案)

河南省平顶山市2016-2017学年高一上学期期末调研考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}2,3,5,6A =,{}1,3,4,6,7B =,{M x x A =∈,且}x B ∉,则M =( )A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,82.函数()f x = )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎛⎤- ⎥⎝⎦C .1,2⎛⎫-+∞ ⎪⎝⎭D .()0,+∞ 3.长方形1111ABCD A B C D -的八个顶点落在球O 的表面上,已知1345AB AD BB ===,,,那么球O 的表面积为( )A .25πB .200πC .100πD .50π4.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16+C .48D .16+5.已知函数()y f x =在R 上为奇函数,且当0x ≥时,()22f x x x =-,则当0x <时,函数()f x 的解析式为( )A .()()2f x x x =-+B .()()2f x x x =-C .()()2f x x x =--D .()()2f x x x =+6.四棱柱1111ABCD A B C D -中,1160A AB A AD DAB ∠=∠=∠=︒,1A A AB AD ==,则1CC 与BD 所成角为( )A .30︒B .45︒C .60︒D .90︒7.已知直线1:210l x ay +-=与()2:2110l a x ay ---=平行,则a 的值是( )A .0或1B .1或14C .0或14D .148.函数()01xxa y a x=<<的图象的大致形状是( )A .B .C .D .9.设,αβ是两个不同的平面,,l m 是两条不同的直线,且,l m αβ⊂⊂,下列命题正确的是( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m10.设1,0a b c >><,给出下列四个结论:①1c a >;②c c a b <;③()()log log b b a c b c ->-;④b c a c a a -->.其中所有的正确结论的序号是( )A .①②B .②③C .①②③D .②③④11.已知e 是自然对数的底数,函数()2x f x e x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是( )A .1a b <<B .1a b <<C .1a b <<D .1b a <<12.已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,,B BD l β∈⊥,D 为垂足,若21AB AC BD ===,,则D 到平面ABC 的距离等于( )A B C D .1 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2log ,0,3,0,x x x f x x >⎧⎪=⎨≤⎪⎩,则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 . 14.经过原点并且与直线20x y +-=相切于点()2,0的圆的标准方程是 .15.正三棱锥V ABC -中,VB BC =V AB C --的大小为 .16.已知函数()f x 在()0,+∞单调递减,()20f =,若()10f x -<,则x 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设函数()f x 是定义域为R 的任意函数.(1)求证:函数()()()2f x f x g x --=是奇函数,()()()2f x f x h x +-=是偶函数;(2)如果()()ln 1x f x e =+,试求(1)中的()g x 和()h x 的表达式.18.如图,直三棱柱111ABC A B C -中,,M N 分别为111,A B B C 的中点.(1)求证:MN //平面11A ACC ;(2)已知12A A AB ==,BC =90CAB ∠=︒,求三棱锥11C ABA -的体积.19.设a R ∈是常数,函数()221x f x a =-+.(1)用定义证明函数()f x 是增函数;(2)试确定a 的值,使()f x 是奇函数;(3)当()f x 是奇函数时,求()f x 的值域.20.如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD .(1)证明:平面PBD ⊥平面PAC ;(2)设1AP AD =,60CBA ∠=︒,求A 到平面PBC 的距离.21.设有一条光线从(2P -射出,并且经x 轴上一点()20Q ,反射. (1)求入射光线和反射光线所在的直线方程(分别记为12l l 、);(2)设动直线:l x my =-()06M -,到l 的距离最大时,求12,,l l l 所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.22.设圆C 的圆心在x 轴上,并且过()()1,1,1,3A B -两点.(1)求圆C 的方程;(2)设直线y x m =-+与圆C 交于,M N 两点,那么以MN 为直径的圆能否经过原点,若能,请求出直线MN 的方程;若不能,请说明理由.试卷答案一、选择题1-5:ABDBA 6-10:DCDAB 11、12:AC二、填空题 13.19 14.()()22112x y -++= 15.60︒16.(](),13,-∞-⋃+∞三、解答题17.解:(1)∵()f x 的定义域为R ,∴()g x 和()h x 的定义域都为R . ∵()()()2f x f x g x --=,∴()()()()2f x f x g x g x ---==-.∴()g x 是奇函数,∵()()()2f x f x h x +-=,∴()()()()2f x f x h x h x -+-==,∴()h x 是偶函数.(2)∵()()ln 1x f x e =+,由(1)得,()()()()()ln 1ln 122x x e e f x f x g x -+-+--==()1ln 1ln ln 222x x xe e e e x⎛⎫++- ⎪⎝⎭===.∵()()()f x g x h x =+,∴()()()9ln 12x xh x f x g x e =-=+-.18.解:(1)设K 是1B C 的中点,分别在111,AB C B C C ∆∆中使用三角形的中位线定理得1//,//MK AC KN CC .又,MK NK 是平面MNK 内的相交直线,∴平面//MNK 平面11AA C C . 又MN ⊂平面MNK ,∴//MN 平面11AA C C .(2)∵90CAB ∠=︒,2AB =,BC ,∴1AC =,∴1ABC S ∆=. ∵111ABC A B C -是直棱柱,∴棱柱的高为12AA =, ∴棱柱111ABC A B C -的体积为1112ABC A B C V -=. ∴11111123C ABA ABC A B C V V --==.19.解:(1)设12x x -∞<<<+∞,则()()()()21121221222221212121x x x x x x f x f x --=-=++++.()* ∵函数2x y =是增函数,又12x x <,∴21220x x ->, 而1210x +>,2210x +>,∴()*式0>. ∴()()21f x f x >,即()f x 是R 上的增函数.(2)∵()()22202121x x f x f x a -+-=--=++对x R ∈恒成立, ∴1a =.(3)当1a =时,()2121x y f x ==-+. ∴21021x y =->+,∴1y <, 继续解得1201x y y+=>-, ∴11y -<<,因此,函数()f x 的值域是()1,1-.20.解:(1)∵ABCD 为菱形,∴BD AC ⊥. ∵PA ⊥平面ABCD ,∴BD PA ⊥.∴BD ⊥平面PAC .又BD ⊂平面PBD ,∴平面PBD ⊥平面PAC .(2)∵1,AP AD =60CBA ∠=︒,∴AC =2ABC S ∆==.∵2PC PB ==,∴12PBCS ∆==. 若设A 到平面PBC 的距离为x .∴A PBC P ABC V V --=,∴11133x =,∴x =即A 到平面PBC21.解:(1)∵PQ k ==,∴)1:2l y x =-.∴入射光线所在的直线1l 0y +-.∵12,l l 关于x 轴对称,∴反射光线所在的直线2l 0y --.(2)∵l 恒过点()N -,∴作MH l ⊥于H ,则MH 0NH =时M H 最大. 即,l MN ⊥时点M 到l 的距离最大.∵MN k =m =l 的方程为x =-设12,,l l l 所围三角形的内切圆的方程为()()2222x y t r -+-=,则2tr ==2t =(或)21t =舍去), ∴所求的内切圆方程为()()22221x y -+-=.22.解:(1)∵圆C 的圆心在AB 的垂直平分线上, 又AB 的中点为()0,2,1AB k =,∴AB 的中垂线为2y x =-+. ∵圆C 的圆心在x 轴上,∴圆C 的圆心为()2,0C ,因此,圆C 的半径r AC = ∴圆C 的方程为()22210x y -+=.(2)设()()1122,,,M x y N x y 是直线y x m =-+与圆C 的交点, 将y x m =-+代入圆C 的方程得:()2224260x m x m -++-=. ∴2121262,2m x x m x x -+=+⋅=. ∴MN 的中点为22,22m m H +-⎛⎫ ⎪⎝⎭. 假如以MN 为直径的圆能过原点,则12OH MN =.∵圆心()2,0C 到直线MN 的距离为d =,∴MN =.∴2260m m --=,解得1m =±.经检验1m =时,直线MN 与圆C 均相交,∴MN 的方程为1y x =-+1y x =-+。

2017-2018学年河南省平顶山市高一上学期期末调研考试---数学试题(图片版)

2017-2018学年河南省平顶山市高一上学期期末调研考试---数学试题(图片版)

高一数学试题答案及评分参考一.选择题:(1)B (2)D (3)B (4)D (5)C (6)A (7)A (8)D (9)A (10)C (11)B (12)C .二.填空题:(13)3,(14)60°,(15)2(2)x -+2(2)y +=1,(16)14-. 三.解答题:(17)(本小题满分10分)解:(Ⅰ)将已知的对数式改写为指数式,得到24x w =,40yw =,12()xyz w =. (3)分 从而,1125311212102w wz w x y w w ===, ……………4分 那么60w z =,log 60z w =. ……………5分 (Ⅱ)设直线l 与1l ,2l 的交点分别为11()A x y ,,22()B x y ,.则,11223100280x y x y -+=⎧⎨+-=⎩ (*) ……………6分 ∵A ,B 的中点为(01)P ,,∴120x x +=,122y y +=. ……………7分 将21x x =-,212y y =-代入(*)得11113100260x y x y -+=⎧⎨++=⎩, 解之得1142x y =-⎧⎨=⎩,2240x y =⎧⎨=⎩, ……………8分 所以,121214AB y y k x x -==--, ……………9分 所以直线l 的方程为114y x =-+,即440x y +-=. ……………10分(18)(本小题满分12分) 证明:(Ⅰ)连接BC 1,∵正方体ABCD -A 1B 1C 1D 1中,AB ∥C 1D 1,AB =C 1D 1,∴四边形ABC 1D 1是平行四边形,∴AD 1∥BC 1. ……………1分又∵E ,G 分别是BC ,CC 1的中点,∴EG ∥BC 1,∴EG ∥AD 1. ……………2分 又∵EG ⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,∴EG ∥平面AB 1D 1. ……………4分 同理EF ∥平面AB 1D 1,且EG EF =E ,EG ⊂平面EFG ,EF ⊂平面EFG ,∴平面AB 1D 1∥平面EFG . ……………6分 (Ⅱ)∵正方体ABCD -A 1B 1C 1D 1中,AB 1⊥A 1B . ……………7分又∵正方体ABCD -A 1B 1C 1D 1中,BC ⊥平面AA 1B 1B ,∴AB 1⊥BC ……………8分又∵A 1B 与BC 都在平面A 1BC 中,A 1B 与BC 相交于点B , ∴AB 1⊥平面A 1BC ,∴A 1C ⊥AB 1. ……………10分同理A 1C ⊥AD 1,而AB 1与AD 1都在平面A 1B 1D 中,AB 1与AD 1相交于点A ,∴A 1C ⊥平面A 1B 1D ,因此,A 1C ⊥平面EFG . ……………12分(19)(本小题满分12分)解: (Ⅰ)∵222(21)()()22220212121x x x x f x f x a a a --+-=++=-=-=---,……………2分对x ∈R 恒成立, ∴1a =. ……………3分(Ⅱ)设120x x <<<+∞,∵12211221222(22)()()2121(21)(21)x x x x x x f x f x --=-=----. (*) ……………5分∵函数2x y =是增函数,又120x x <<,∴21220x x ->,而1210x ->,2210x ->,∴ (*)式0<. ……………6分∴21()()f x f x <,即()f x 是区间(0)+∞,上是减函数. ……………7分F G E C1D1A1B1D CAB(Ⅲ)∵()f x 是奇函数,∴(2+1)(1)0f t f t +-<可化为(2+1)(1)f t f t <-.由(Ⅱ)可知()f x 在区间(0)-∞,和(0)+∞,上都是减函数. 当2+10t >,10t ->时,(2+1)(1)f t f t <-化为2+11t t >-,解得1t >; ……………9分当2+10t <,10t -<时,(2+1)(1)f t f t <-化为2+11t t >-,解得122t -<<-;……………10分当2+10t <,10t ->时,(2+1)0(1)f t f t <<-显然成立,无解;……………11分综上, (2+1)(1)0f t f t +-<成立时t 的取值范围是122t -<<-或1t >.……………12分(20)(本小题满分12分)解:(Ⅰ)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,………..2分又PD ⊥PB ,PB 与BC 相交于点B ,所以,PD ⊥平面PBC .………..4分(Ⅱ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.………..5分由于AD //BC ,DF //AB ,故BF =AD =CF =1.又AD ⊥DC ,故BC ⊥DC ,ABCD 为直角梯形,所以,DF .………..6分在R t △DPF 中,22PD =,DF 2,1sin 2PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角为30°. ……………8分(Ⅲ)设E 是CD 的中点,则PE ⊥CD ,又AD ⊥平面PDC ,所以PE ⊥平面ABCD . ………..9分在平面ABCD 内作EG ⊥AB 交AB 的延长线于G ,连EG ,则∠PGE 是二面角P -AB -C 的平面角. ………..10分在直角梯形ABCD 内可求得32EG =而12PE =, ………..11分所以,在R t △PEG 中,2tan 3PE PGE GE ∠==. 所以,二面角P -AB -C 的正切值为23. ………..12分(21)(本小题满分12分)解:(Ⅰ)圆Q 的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,. 过(02)P ,且斜率为k 的直线方程为2y kx =+. ……………1分 ∵85AB =,∴圆心Q 到直线l 的距离22452()55d =-, ……………2分∴251k +,即2221520k k ++=,解得12k =-或211k =-. ……………4分 所以,满足题意的直线l 方程为122y x =-+或2211y x =-+. ……………5分(Ⅱ)将直线l 的方程2y kx =+代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ① ……………6分 直线与圆交于两个不同的点AB ,等价于 2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->, 解得304k -<<,即k 的取值范围为3(0)4-,. ……………8分设1122()()A x y B x y ,,,,则AB 的中点E 00(,)x y 满足 12022621x x k x k +-==-+,0026221k y kx k+=+=+. ……………9分 ∵201063PQ k -==--,00313OE y k k x k +==--, ……………10分要使OE ∥PQ ,必须使13OE PQ k k ==-,解得34k =-, ……………11分 但是3(0)4k ∈-,,故没有符合题意的常数k . ……………12分(22)(本小题满分12分) 解:(Ⅰ)2221log log ()0a x x ⎛⎫++= ⎪⎝⎭有且仅有一解,等价于211a x x ⎛⎫+= ⎪⎝⎭有且仅有一正数解, 等价于210ax x +-=有且仅有一正数解. ……………2分当0a =时,1x =,符合题意; ……………3分当0a ≠时,140a ∆=+=,14a =-,12x =. ……………4分综上,0a =或14-. ……………5分(Ⅱ)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减. ……………6分函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +. ……………8分()()22111log log 11f t f t a a t t -+=+-+≤+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,即()2110at a t ++-≥,对1[,1]2t ∈成立. ……………9分因为0a >,所以函数()211y at a t =++-在区间1[,1]2上单调递增, ……………10分12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. ……………11分 故a 的取值范围为2[,)3+∞. ……………12分 说明:每道解答题基本提供一种解题方法,如有其他解法请仿此标准给分.。

2016-2017学年河南省高一上学期期末联考数学试题word版含答案

2016-2017学年河南省高一上学期期末联考数学试题word版含答案

2016-2017学年河南省高一上学期期末联考数学试题一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|23,|50A x x B x Z x x =-<<=∈-<,则A B = ( )A .{}1,2B .{}23,C .{}12,3,D .{}2,3,4 2. ,,m n l 为不重合的直线,,,αβγ为不重合的平面,则下列说法正确的是( ) A .,m l n l ⊥⊥,则//m n B .,αγβγ⊥⊥,则αβ⊥ C .//,//m n αα,则//m n D .//,//αγβγ,则//αβ3. 已知ABC ∆在斜二测画法下的平面直观图A B C '''∆,A B C '''∆是边长为a 的正三角形,那么在原ABC ∆的面积为( ) A .232a B .234a C .262a D . 26a 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50π C. 125π D .都不对5.在空间直角坐标系中,点()1,3,5P -关于xOy 面对称的点的坐标是 ( ) A .()1,3,5-- B .()1,3,5- C. ()1,3,5 D .()1,3,5--6.过点()1,2A 且与原点距离最大的直线方程为 ( )A .240x y +-=B .370x y +-= C. 250x y +-= D .350x y +-= 7. 若20.320.3,log 0.3,2a b c ===,则,,a b c 的大小关系是( )A .a c b <<B .a b c << C. b a c << D .b c a << 8.若函数()()0,1xxf x ka aa a -=->≠在(),-∞+∞上既是奇函数又是增函数,则函数()()log a g x x k =+的图象是( )A .B . C. D .9.在平面直角坐标系xOy 中,以()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点,点,N M 分别在线段,OA OB 上,若MN 与圆C 相切,则MN 的最小值为( ) A .1 B . 22- C. 222+ D .222-10.定义在R 上的奇函数()f x ,当0x ≥时,()()[)[)12log 1,0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()()01F x f x a a =-<<的所有零点之和为 ( )A .21a- B .21a-- C. 12a -- D .12a -11.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点P 是平面1111A B C D 内的一个动点,则三棱锥P ABC -的正视图与俯视图的面积之比的最大值为 ( )A . 1B . 2 C.12 D .1412. 若函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦,则()2log 3f =( )A .1B .45 C. 12D .0 二、填空题(本大题共4小题,每小题4分,共16分,将答案填在答题纸上)13.已知函数()2log ,03,0xx x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦. 14.圆2240x y x +-=在点()1,3P 处的切线方程为: .15.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足()()213f x f -<的x 取值集合是 . 16.在直角坐标系内,已知()3,2A 是圆C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆C 上存在点P ,使090MPN ∠=,其中,M N 的坐标分别为()(),0,,0m m -,则实数m 的取值集合为 .三、解答题 (本大题共6小题,共56分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分8分) 已知集合{}1|121,|3819x A x m x m B x ⎧⎫=-≤≤+=≤≤⎨⎬⎩⎭. (1)当2m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围.18. (本小题满分8分)已知圆()22:19C x y -+=内有一点()2,2P ,过点P 作直线l 交圆C 于A B 、两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当直线l 的倾斜角为45°时,求弦AB 的长.已知函数()()b f x ax c a b c x =++、、是常数是奇函数,且满足()()5171,224f f ==. (1)求,,a b c 的值;(2)试判断函数()f x 在区间10,2⎛⎫⎪⎝⎭上的单调性并用定义证明.20. (本小题满分10分)如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱2PA PD ==,底面ABCD 为直角梯形,其中//,,222,BC AD AB AD AD AB BC O ⊥===为AD 中点.(1)求证:PO ⊥平面ABCD ;(2)求异面直线PB 与CD 所成角的余弦值;(3)线段AD 上是否存在Q ,使得它到平面PCD 的距离为32?若存在,求出AQ QD的值;若不存在,请说明理由.已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当2AOB π∠=时,求k 的值;(2)若1,2k P =是直线l 上的动点,过P 作圆O 的两条切线PC PD 、,切点为C D 、,探究:直线CD 是否过定点?若过定点则求出该定点,若不存在则说明理由;(3)若EF GH 、为圆22:2O x y +=的两条相互垂直的弦,垂足为21,2M ⎛⎫⎪ ⎪⎝⎭,求四边形EGFH 的面积的最大值.22. (本小题满分12分)设函数()y f x =的定义域为D ,值域为A ,如果存在函数()x g t =,使得函数()y f g t =⎡⎤⎣⎦的值域仍是A ,那么称()x g t =是函数()y f x =的一个等值域变换.(1)判断下列函数()x g t =是不是函数()y f x =的一个等值域变换?说明你的理由; ①()()21log ,0,,0f x x x x g t t t t=>==+>; ②()()21,,2,tf x x x x R xg t t R =-+∈==∈.(2)设()2log f x x =的定义域为[]2,8x ∈,已知()2231mt t nx g t t -+==+是()y f x =的一个等值域变换,且函数()y f g t =⎡⎤⎣⎦的定义域为R ,求实数m n 、的值.2016-2017学年河南省高一上学期期末联考数学试题答案一、选择题1-5: ADCBC 6-10: CCCDD 11、12:BC二、填空题13.1914. 340x y +-= 15. {}|12x x -<< 16. []3,7 三、解答题17.(1){}|25A B x x =-≤≤ (4分);(2)3m ≥ (4分) 解:当2m =时,{}|15A x x =-≤≤,由B 中不等式变形得24333x -≤≤,解得24x -≤≤,即{}|24B x x =-≤≤.∴m 的取值范围为{}|3m m ≥.18.(1)220x y --=;(4分)(2)34.(4分)试题解析:(1)已知圆()22:19C x y -+=的圆心为()1,0C ,因直线过点,P C ,所以直线l 的斜率为2,直线l 的方程为()21y x =-,即220x y --=.(2)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为22y x -=-,即0x y -=, 圆心C 到直线l 的距离为12,圆的半径为3,弦AB 的长为34. 19.(1)12,,02a b c ===(4分)(2)证明见解析(4分) 解:(1)∵()f x 为奇函数,∴()()f x f x -=-,∴b bax c ax c x x--+=---,∴0c =,又()()5171,224f f ==,∴5217224a b b a ⎧+=⎪⎪⎨⎪+=⎪⎩,∴12,,02a b c ===.(2)由(1)可知()122f x x x =+.函数()f x 在区间10,2⎛⎫⎪⎝⎭上为减函数. 证明如下:任取12102x x <<<,则()()()()1212121212121212411112222222x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=--=- ⎪⎝⎭. ∵12102x x <<<,∴1212120,20,410x x x x x x -<>-<. ∴()()()()12120f x f x f x f x ->⇒>,∴()f x 在102⎛⎫ ⎪⎝⎭,上为减函数.20.(1)证明见解析;(3分)(2)63(3分);(3)存在,13AQ QD =.(4分) 试题解析:(1)证明:在PAD ∆中,PA PD O =为AD 中点,所以PO AD ⊥.又侧面PAD ⊥底面ABCD ,平面PAD 平面,ABCD AD PO =⊂平面PAD , 所以PO ⊥平面ABCD .(2)解:连接BO ,在直角梯形ABCD 中,//,22BC AD AD AB BC ==,有//OD BC 且OD BC =,所以四边形OBCD 是平行四边形,所以//DC OB . 由(1)知,PO OB POB ⊥∠为锐角, 所以POB ∠是异面直线PB 与CD 所成的角,因为222AD AB BC ===,在Rt AOB ∆中,1,1AB AO ==,所以2OB =,在Rt POA ∆中,因为2,1AP AO ==,所以1OP =,在Rt PBO ∆中,3PB =,所以6cos 3PBO ∠=, 所以异面直线PB 与CD 所成的角的余弦值为63.(3)解:假设存在点Q ,使得它到平面的距离为32. 设QD x =,则12DQC S x ∆=,由(2)得2CD OB ==, 在POC Rt ∆中,2PC =,所以()233,242PCDPC CD DP S ∆===⨯=, 由P DQC Q PCD V V --=得32x =,所以存在点Q 满足题意,此时13AQ QD =. 21.(1)3k =±(3分);(2)见解析(3分);(3)52(4分) 解析:(1)∵2AOB π∠=,∴点O 到l 的距离22d r =,∴2222321k k =⇒±+ .(2)由题意可知:,,,O P C D 四点共圆且在以OP 为直径的圆上,设1,22P t t ⎛⎫- ⎪⎝⎭.其方程为:()1202x x t y y t ⎛⎫-+-+= ⎪⎝⎭, 即221202x tx y t y ⎛⎫-+--=⎪⎝⎭, 又C D 、在圆22:2O x y +=上, ∴1:2202CD l tx t y ⎛⎫+--=⎪⎝⎭,即2202y x t y ⎛⎫+--= ⎪⎝⎭,由02220y x y ⎧+=⎪⎨⎪+=⎩,得121x y ⎧=⎪⎨⎪=-⎩∴直线CD 过定点112⎛⎫- ⎪⎝⎭,.(3)设圆心O 到直线EF GH 、的距离分别为12,d d .则2221232d d OM+==, ∴22222211222212222EF r d d GH r d d =-=-=-=-()()222422122221325522246442442S EF GH d d d d d ⎛⎫==--=-++=--+≤ ⎪⎝⎭, 当且仅当2234d =,即1232d d ==时,取“=”∴四边形EGFH 的面积的最大值为52. 22.(1)①不是等值域变换,②是等值域变换;(5分) (2)33335,522m n =-=+(7分) 解:(1)①不是等值域变换,②()221331244f x x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,即()f x 的值域为3,4⎡⎫+∞⎪⎢⎣⎭,当t R ∈时,()21332244t f g t ⎛⎫=-+≥⎡⎤ ⎪⎣⎦⎝⎭,即()y f g t =⎡⎤⎣⎦的值域仍为3,4⎡⎫+∞⎪⎢⎣⎭,所以()x g t =是()f x 的一个等值域变换,故①不是等值域变换,②是等值域变换;(2)()2log f x x =定义域为[]2,8,因为()x g t =是()f x 的一个等值域变换,且函数()y f g t =⎡⎤⎣⎦的定义域为R ,∴()223,1mt t n x g t t R t -+==∈+的值域为[]2,8, ()()22222328213811mt t n t mt t n t t -+≤≤⇔+≤-+≤++, ∴恒有()()()()12289422094880m m n m n <<⎧⎪∆=---=⎨⎪∆=---=⎩,解得33523352m n ⎧=-⎪⎪⎨⎪=+⎪⎩.。

2016-2017学年河南省高一上学期期末考试数学试题word版含答案

2016-2017学年河南省高一上学期期末考试数学试题word版含答案

2016-2017学年河南省高一上学期期末考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,有且只有一项符合题目要求。

把答案填写在答题卡上)1.已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 关系是( )A .B AC =B .BC C =C .A C ⊂≠D .A B C ==2.设扇形的弧长为2,面积为2,则扇形中心角的弧度数是( )A .1B .4C .1或4D .π3.已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( )A.k =1且c 与d 同向B.k =1且c 与d 反向C.k =-1且c 与d 同向D.k =-1且c 与d 反向4.下列函数中,以π为周期且在区间(0,)2π上为增函数的函数是( ).A.sin2xy = B.sin y x = C.tan y x =- D.cos 2y x =-5. )A .sin2+cos2B .cos2﹣sin2C .sin2﹣cos2D .±cos2﹣sin2 6.将函数5sin(6)4y x π=+的图象上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中心是( )A .(,0)16π B .(,0)9π C. (,0)4π D .(,0)2π7.已知tan ,tan αβ是方程240x ++=的两个根,且)2,2(ππβα-∈、,则=+βα( )A .3πB 32π-C 323ππ-或D 323ππ--或 8.2cos80°+cos160°cos70°的值是( )A .-12B .-32C .- 3D .- 29.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增10. 已知函数()sin tan f x a x b x c =++,其中,,a b R c Z ∈∈,选取,,a b c 的一组值计算(2)f 和(2)f -,所得出的结果一定不可能是( )A .4和6B .3和1C .2和4D .3和611.定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .⎡⎢⎣B .[]1,1-C .⎤⎥⎦D .⎡-⎢⎣12.已知函数f (x )=sin(ωx +φ)(ω>0,|φ|≤2π),x =4π-为f (x )的零点,x =4π为y =f (x )图像的对称轴,且f (x )在)365,18(ππ单调,则ω的最大值为( ) A 11 B 9 C 7 D 5 二.填空题:本大题共4小题,每小题5分,共20分13.若角600°的终边上有一点(-4,m ),则m 的值是: .14.已知方程sin 1x x m =+在[0,]x π∈上有两个不相等的实数解,则实数m 的取值范围是 .15.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 16.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .三、解答题:共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河南省平顶山市高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5.00分)已知全集U={1,2,3,4,5,6,7,8},A={2,3,5,6},B={1,3,4,6,7},M={x|x∈A,且x∉B},则M=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}2.(5.00分)函数f(x)=的定义域为()A.(﹣,0)B.(﹣,0] C.(﹣,+∞)D.(0,+∞)3.(5.00分)长方体ABCD﹣A1B1C1D1的八个顶点落在球O的表面上,已知AB=3,AD=4,BB1=5,那么球O的表面积为()A.25πB.200πC.100πD.50π4.(5.00分)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16C.48 D.16+325.(5.00分)已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是()A.f(x)=﹣x(x+2)B.f(x)=x(x﹣2)C.f(x)=﹣x(x﹣2)D.f(x)=x(x+2)6.(5.00分)四棱柱ABCD﹣A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,则CC1与BD所成角为()A.30°B.45°C.60°D.90°7.(5.00分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A.0或1 B.1或C.0或D.8.(5.00分)函数y=(0<a<1)的图象的大致形状是()A.B.C.D.9.(5.00分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β下面命题正确的是()A.若l∥β,则α∥βB.若α⊥β,则l⊥m C.若l⊥β,则α⊥βD.若α∥β,则l∥m 10.(5.00分)设a>b>1,c<0,给出下列四个结论:①a c>1;②a c<b c;③log b(a﹣c)>log b(b﹣c);④a b﹣c>a a﹣c,其中所有的正确结论的序号是()A.①②B.②③C.①②③D.②③④11.(5.00分)已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g (x)=lnx+x﹣2的零点为b,则下列不等式中成立的是()A.a<1<b B.a<b<1 C.1<a<b D.b<1<a12.(5.00分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1二、填空题(共4小题,每小题5分,满分20分)13.(5.00分)已知函数f(x)=则f(f())=.14.(5.00分)经过原点并且与直线x+y﹣2=0相切于点(2,0)的圆的标准方程是.15.(5.00分)正三棱锥V﹣ABC中,VB=,BC=2,则二面角V﹣AB﹣C的大小为.16.(5.00分)已知偶函数f(x)在(0,+∞)单调递减,f(2)=0,若f(x﹣1)<0,则x的取值范围是.三、解答题(共6小题,满分70分)17.(10.00分)设函数f(x)是定义域为R的任意函数(Ⅰ)求证:函数g(x)=是奇函数,h(x)=是偶函数(Ⅱ)如果f(x)=ln(e x+1),试求(Ⅰ)中的g(x)和h(x)的表达式.18.(12.00分)如图,直三棱柱ABC﹣A1B1C1中,M,N分别为A1B,B1C1的中点(Ⅰ)求证:MN∥平面A1ACC1(Ⅱ)已知A1A=AB=2,BC=,∠CAB=90°,求三棱锥C1﹣ABA1的体积.19.(12.00分)设a∈R是常数,函数f(x)=a﹣(Ⅰ)用定义证明函数f(x)是增函数(Ⅱ)试确定a的值,使f(x)是奇函数(Ⅲ)当f(x)是奇函数,求f(x)的值域.20.(12.00分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD (Ⅰ)证明:平面PBD⊥平面PAC(Ⅱ)设AP=1,AD=,∠CBA=60°,求A到平面PBC的距离.21.(12.00分)设有一条光线从P(﹣2,4)射出,并且经x轴上一点Q(2,0)反射(Ⅰ)求入射光线和反射光线所在的直线方程(分别记为l1,l2)(Ⅱ)设动直线l:x=my﹣2,当点M(0,﹣6)到l的距离最大时,求l,l1,l2所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.22.(12.00分)设圆C的圆心在x轴上,并且过A(﹣1,1),B(1,3)两点(Ⅰ)求圆C的方程(Ⅱ)设直线y=﹣x+m与圆C交于M,N两点,那么以MN为直径的圆能否经过原点,若能,请求出直线MN的方程;若不能,请说明理由.2016-2017学年河南省平顶山市高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5.00分)已知全集U={1,2,3,4,5,6,7,8},A={2,3,5,6},B={1,3,4,6,7},M={x|x∈A,且x∉B},则M=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}【解答】解:由题意,A={2,3,5,6},B={1,3,4,6,7},M={x|x∈A,且x∉B}=C A B={2,5},故选:A.2.(5.00分)函数f(x)=的定义域为()A.(﹣,0)B.(﹣,0] C.(﹣,+∞)D.(0,+∞)【解答】解:函数f(x)=有意义,可得2x+1>0,且log(2x+1)≥0,即为0<2x+1≤1,解得﹣<x≤0,则定义域为(﹣,0].故选:B.3.(5.00分)长方体ABCD﹣A1B1C1D1的八个顶点落在球O的表面上,已知AB=3,AD=4,BB1=5,那么球O的表面积为()A.25πB.200πC.100πD.50π【解答】解:∵长方体ABCD﹣A1B1C1D1的八个顶点都在球O的球面上,∴长方体的体对角线为外接球的直径,设球半径为r,则长方体的体对角线长为=5,则2r=5,则r=.∴外接球的表面积为4πr2=4×()2π=50π.故选:D.4.(5.00分)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16C.48 D.16+32【解答】解:由已知中的三视图,可得四棱锥的底面棱长为4,故底面面积为:16,棱锥的高为2,故棱锥的侧高为:=2,故棱锥的侧面积为:4××4×=16,故棱锥的表面积为:16+16,故选:B.5.(5.00分)已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是()A.f(x)=﹣x(x+2)B.f(x)=x(x﹣2)C.f(x)=﹣x(x﹣2)D.f(x)=x(x+2)【解答】解:任取x<0则﹣x>0,∵x≥0时,f(x)=x2﹣2x,∴f(﹣x)=x2+2x,①又函数y=f(x)在R上为奇函数∴f(﹣x)=﹣f(x)②由①②得x<0时,f(x)=﹣x(x+2)故选:A.6.(5.00分)四棱柱ABCD﹣A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,则CC1与BD所成角为()A.30°B.45°C.60°D.90°【解答】解:四棱柱ABCD﹣A1B1C1D1中,∵∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,=,∴CC1∥BB1,∴∠DBB1是CC1与BD所成角(或所成角的补角),设A1A=AB=AD=1,则BD=1,2=+2||•||cos120°+2||•||cos120°+2||•|| cos60°=1+1+1﹣1﹣1+1=2,∴DB1=,∴,∴∠DBB1=90°,∴CC1与BD所成角为90°.故选:D.7.(5.00分)已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A.0或1 B.1或C.0或D.【解答】解:当a=0时,两直线的斜率都不存在,它们的方程分别是x=1,x=﹣1,显然两直线是平行的.当a≠0时,两直线的斜率都存在,故它们的斜率相等,由≠,解得:a=.综上,a=0或,故选:C.8.(5.00分)函数y=(0<a<1)的图象的大致形状是()A.B.C.D.【解答】解:当x>0时,|x|=x,此时y=a x(0<a<1);当x<0时,|x|=﹣x,此时y=﹣a x(0<a<1),则函数(0<a<1)的图象的大致形状是:,故选:D.9.(5.00分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β下面命题正确的是()A.若l∥β,则α∥βB.若α⊥β,则l⊥m C.若l⊥β,则α⊥βD.若α∥β,则l∥m 【解答】解:对于A,若l∥β,则α∥β或α,β相交,不正确;对于B,若α⊥β,则l、m位置关系不定,不正确;对于C,根据平面与平面垂直的判定,可知正确;对于D,α∥β,则l、m位置关系不定,不正确.故选:C.10.(5.00分)设a>b>1,c<0,给出下列四个结论:①a c>1;②a c<b c;③log b(a﹣c)>log b(b﹣c);④a b﹣c>a a﹣c,其中所有的正确结论的序号是()A.①②B.②③C.①②③D.②③④【解答】解:∵a>b>1,c<0,∴①函数y=a x为增函数,故a c<a0=1,故①错误;②函数y=x C为减函数,故a c<b c,故②正确;③函数y=log b x为增函数,故a﹣c>b﹣c,故log b(a﹣c)>log b(b﹣c),故③正确;④函数y=a x为增函数,a﹣c>b﹣c,故a b﹣c<a a﹣c,故④错误,故选:B.11.(5.00分)已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g (x)=lnx+x﹣2的零点为b,则下列不等式中成立的是()A.a<1<b B.a<b<1 C.1<a<b D.b<1<a【解答】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.12.(5.00分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1【解答】解:由题意画出图形如图:直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离转化为三棱锥D﹣ABC的高为h,所以AD=,CD=,BC==V D﹣ABC可知由V B﹣ACD所以,h=故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5.00分)已知函数f(x)=则f(f())=.【解答】解:∵函数f(x)=,∴f()==﹣2,f(f())=f(﹣2)=3﹣2=.故答案为:.14.(5.00分)经过原点并且与直线x+y﹣2=0相切于点(2,0)的圆的标准方程是(x﹣1)2+(y+1)2=2.【解答】解:设圆心的坐标为(a,b),则a2+b2=r2①,(a﹣2)2+b2=r2②,=1③;由①②③组成方程组,解得:a=1,b=﹣1,r2=2;故所求圆的标准方程是(x﹣1)2+(y+1)2=2.故答案为(x﹣1)2+(y+1)2=2.15.(5.00分)正三棱锥V﹣ABC中,VB=,BC=2,则二面角V﹣AB﹣C的大小为60°.【解答】解:如图,正三棱锥V﹣ABC中,VB=,BC=2,取AC中点O,连结VO,BO,∵VA=VC=VB=,AB=AC=2,AO=CO=,∴VO⊥AC,BO⊥AC,VO==2,BO==3,∴∠VOB是二面角V﹣AB﹣C的平面角,cos∠VOB===,∴∠VOB=60°.∴二面角V﹣AB﹣C的大小为60°.故答案为:60°.16.(5.00分)已知偶函数f(x)在(0,+∞)单调递减,f(2)=0,若f(x﹣1)<0,则x的取值范围是(﹣∞,﹣1)∪(3,+∞).【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)<0等价为f(x﹣1)<f(2),即f(|x﹣1|)<f(2),∴|x﹣1|>2,解得x<﹣1或x>3,故答案为:(﹣∞,﹣1)∪(3,+∞).三、解答题(共6小题,满分70分)17.(10.00分)设函数f(x)是定义域为R的任意函数(Ⅰ)求证:函数g(x)=是奇函数,h(x)=是偶函数(Ⅱ)如果f(x)=ln(e x+1),试求(Ⅰ)中的g(x)和h(x)的表达式.【解答】解:(Ⅰ)证明:对于g(x)=,其定义域为R,有g(﹣x)==﹣g(x),则g(x)=为奇函数;h(x)=,其定义域为R,h(﹣x)==h(x),则h(x)=为偶函数;(Ⅱ)f(x)=ln(e x+1),则g(x)=====,而f(x)=g(x)+h(x),则h(x)=f(x)﹣g(x)=ln(e x+1)﹣.18.(12.00分)如图,直三棱柱ABC﹣A1B1C1中,M,N分别为A1B,B1C1的中点(Ⅰ)求证:MN∥平面A1ACC1(Ⅱ)已知A1A=AB=2,BC=,∠CAB=90°,求三棱锥C1﹣ABA1的体积.【解答】(Ⅰ)证明:设K是B1C的中点,分别在△AB1C,△B1C1C中利用三角形中位线定理可得:MK∥AC,KN∥CC1,又MK∩NK=K,∴平面MNK∥平面AA1C1C,又MN⊂平面MNK,∴MN∥平面A1ACC1;(Ⅱ)解:∵∠CAB=90°,AB=2,BC=,=1,∴AC=,则S△ABC∵ABC﹣A1B1C1是直棱柱,∴高为AA1=2,∴棱柱ABC﹣A 1B1C1的体积为.∴.19.(12.00分)设a∈R是常数,函数f(x)=a﹣(Ⅰ)用定义证明函数f(x)是增函数(Ⅱ)试确定a的值,使f(x)是奇函数(Ⅲ)当f(x)是奇函数,求f(x)的值域.【解答】解:(Ⅰ)根据题意,设﹣∞<x1<x2<+∞,则f(x2)﹣f(x2)=(a﹣)﹣(a﹣)=﹣,又由函数y=2x为增函数,且x1<x2,则有﹣>0,而(+1)与(+1)均大于0,则有f(x1)﹣f(x2)=﹣=>0,故函数f(x)=a﹣为增函数,(Ⅱ)根据题意,f(x)是奇函数,则必有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),解可得a=1;(Ⅲ)根据题意,由(2)可得,若f(x)是奇函数,则有a=1,故f(x)=1﹣,变形可得2x=>0解可得:﹣1<k<1,故函数f(x)的值域为(﹣1,1).20.(12.00分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD (Ⅰ)证明:平面PBD⊥平面PAC(Ⅱ)设AP=1,AD=,∠CBA=60°,求A到平面PBC的距离.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,底面ABCD为菱形,∴BD⊥AC,∵PA⊥平面ABCD,∴BD⊥PA,∵AC∩PA=A,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PBD⊥平面PAC.解:(Ⅱ)∵AP=1,AD=,∠CBA=60°,∴AC=,,∵PC=PB=,∴=,设A到平面PBC的距离为h,∵V A=V P﹣ABC,﹣PBC∴,解得h=.∴A到平面PBC的距离为.21.(12.00分)设有一条光线从P(﹣2,4)射出,并且经x轴上一点Q(2,0)反射(Ⅰ)求入射光线和反射光线所在的直线方程(分别记为l1,l2)(Ⅱ)设动直线l:x=my﹣2,当点M(0,﹣6)到l的距离最大时,求l,l1,l2所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.【解答】解:(Ⅰ)∵k PQ=﹣,∴l1:y=﹣(x﹣2),∵l1,l2关于x轴对称,∴l2:y=(x﹣2);(Ⅱ)设M到直线l的距离为MH,∵l恒过点N(﹣2,0),∴MH=,∴NH=0时,MH最大,即l⊥MN时,M到l的距离最大,∵k MN=﹣,∴m=,∴l的方程为x=y﹣2,设所求方程为(x﹣2)2+(y﹣t)2=r2,∴r==,∴t=2(另一根舍去),∴所求方程为(x﹣2)2+(y﹣2)2=1.22.(12.00分)设圆C的圆心在x轴上,并且过A(﹣1,1),B(1,3)两点(Ⅰ)求圆C的方程(Ⅱ)设直线y=﹣x+m与圆C交于M,N两点,那么以MN为直径的圆能否经过原点,若能,请求出直线MN的方程;若不能,请说明理由.【解答】解:(Ⅰ)根据题意,设圆心坐标为C(a,0),半径为r,则其标准方程为:(x﹣a)2+y2=r2,由于点A(﹣1,1)和B(1,3)在圆C上,则有(x+1)2+1=r2①,(x﹣1)2+9=r2②,解可得a=2,r2=10,故圆的标准方程为:(x﹣2)2+y2=10;(Ⅱ)设M(x1,y1),N(x2,y2)是直线y=﹣x+m与圆C的交点,联立y=﹣x+m与(x﹣2)2+y2=10可得:2x2﹣(4+2m)x+m2﹣6=0,则有x1+x2=m+2,x1•x2=,则MN中点H的坐标为(,),假设以MN为直径的圆经过原点,则有|OH|=|MN|,圆心C到MN的距离d=,则有|MN|=2=2,又由|OH|=|MN|,则有()2+()2=10﹣,解可得m=1±,经检验,m=1±时,直线与圆相交,符合题意;故直线MN的方程为:y=﹣x+1+或y=﹣x+1﹣.。

相关文档
最新文档