华工半导体物理期末总结

合集下载

半导体物理的心得体会

半导体物理的心得体会

半导体物理的心得体会半导体物理学作为现代电子技术的重要基础,对于了解材料特性、器件设计与制造具有重要意义。

通过学习半导体物理学,我深刻认识到半导体材料的特殊性质以及对电子学发展的巨大贡献。

下面我将从晶体结构、能带理论、载流子行为以及PN结构等方面进行总结与分析。

一、晶体结构晶体结构是理解半导体物理学的基础。

晶体结构的完美排列使得半导体材料具有一定的导电性能。

晶体结构的种类包括立方晶系、六方晶系等等。

通过了解晶体结构,我明白了导电特性与晶格结构之间的密切关系,这使得我更好地理解了半导体器件的工作原理。

二、能带理论能带理论是理解半导体导电性质的关键。

半导体材料的导电行为与其电子能带的填充情况密切相关。

通过学习能带理论,我了解了半导体材料中导带和价带的能级分布情况,以及能带之间的能隙。

同时,我还了解到掺杂对材料导电性质的影响,N型半导体和P型半导体之间的差异。

能带理论为我深入理解半导体器件的工作原理提供了基础。

三、载流子行为载流子是半导体材料的导电活性粒子,对于半导体器件的性能起着决定性作用。

学习半导体物理学,我了解到半导体材料中存在着电子和空穴两种载流子。

电子是valence带中被激发到conduction带的粒子,而空穴则是原子缺陷引起的带内能级。

通过对载流子行为的研究,我明白了不同的载流子浓度和迁移率对半导体器件的性能影响。

因此,在半导体器件设计和集成电路制造过程中,合理控制载流子行为至关重要。

四、PN结构PN结构是最基本也是最常见的半导体器件结构之一。

通过学习半导体物理学,我了解到PN结构的形成与掺杂技术有密切关系。

PN结构的正向偏置和反向偏置使半导体器件能够应用于二极管、三极管等各种电子元件中。

此外,通过掌握PN结构的工作原理,我还能够理解光电二极管、太阳能电池等新型半导体器件。

总结通过学习半导体物理学,我对半导体材料的特性、器件设计和制造有了更深入的了解。

晶体结构、能带理论、载流子行为以及PN结构等方面的知识为我提供了一个全面的半导体物理学认知框架。

半导体物理归纳总结

半导体物理归纳总结

半导体物理归纳总结半导体物理是研究半导体材料及其在电子器件中的应用特性的学科领域。

在过去几十年里,半导体技术的飞速发展对我们的生活产生了巨大的影响。

本文将对半导体物理的一些重要概念和原理进行归纳总结,帮助读者更好地理解半导体器件的工作原理及其应用。

1. 半导体的基本概念半导体是介于导体和绝缘体之间的一类物质,具有中等电导率。

它的导电性质可以通过控制掺杂和温度来进行调节。

常见的半导体材料有硅和锗,它们的物理性质决定了半导体器件的性能。

2. 半导体材料的能带结构半导体材料的能带结构直接影响其导电性质。

能带是描述电子能量和电子分布的概念。

在半导体中,价带是最高的填满电子的能带,而导带是电子可以自由移动的能带。

半导体的导电性取决于导带和价带之间的能隙大小。

3. 掺杂与载流子掺杂是将某种杂质引入到半导体材料中,以改变半导体的导电特性。

掺杂可以分为施主掺杂和受主掺杂两种。

施主掺杂会引入额外的自由电子,增加半导体的导电性,而受主掺杂引入额外的空穴,减少导电性。

掺杂后产生的自由电子和空穴被称为载流子,它们在半导体中的运动导致了电流的流动。

4. pn结及其特性pn结是由p型半导体和n型半导体相接触形成的结构。

在pn结中,p区富含空穴,n区富含自由电子。

当p区和n区相接触时,会发生空穴和自由电子的复合过程,形成耗尽区。

耗尽区内形成了电场,阻止了进一步的复合。

这种特殊的结构使得pn结具有整流特性,即在正向偏置下电流可以流动,而在反向偏置下电流几乎不流动。

5. 半导体器件的应用半导体器件包括二极管、场效应晶体管、晶体管等,它们在各种电子设备中起着重要作用。

二极管是一种具有单向导电性的器件,广泛应用在电源供电和信号处理中。

场效应晶体管是一种高度可控的电流放大器,常用于放大和开关电路。

晶体管则是一种功率放大器,被广泛应用在音频和无线通讯领域。

总结:半导体物理是一门涉及半导体材料特性和器件应用的重要学科。

通过对半导体的能带结构、掺杂与载流子、pn结特性以及器件应用的介绍,我们对半导体器件的工作原理有了更深入的理解。

半导体物理期末总结

半导体物理期末总结



体心立方的倒格是边长为4/a的面心立方 。
例3:证明简立方晶面(h1h2h3)的面间距为 a d h1h2 h3 = 2 + h2 + h2 h1 2 3 证明: 法一: 由 K h =
2π d h1h2 h3
得: d h1h2 h3 =
2π K h1h2 h3
2π b1 = i a 2π b2 = j a 2π b3 = k a
3.能态密度
Z dZ N ( E ) = lim = dE E 0 E
单位能量间隔内的状态数目
2V 2 2 = 3 L 2
3
g(E) =
dZ dE
K空间考虑自旋状态密度为 E-k关系 按能量分布的状态密度 能量变化 dE k状态变化 dk
g (E ) =
4.倒格子 晶体结构=晶格+基元 一个晶体结构有两个格子,一个是正格,另一个为倒格。 正格 正格基矢 a 1 , a 2 , a 正格(点位)矢:
3
倒格 倒格基矢
b1 , b 2 , b 3
倒格(点位)矢:
Rn = n1 a1 + n2 a2 + n3 a3
K n = h1 b1 + h2 b 2 + h3 b 3
简立方:a 1 = a i , a 2 = a j , a 3 = a k ,
2π 2π b1 = a2 a3 = i Ω a
b2
3 1
2π 2π = a a = j Ω a

2π 2π b3 = a1 a 2 = k Ω a
2π b1 = i a 2π b2 = j a 2π b3 = k a
晶体结构

半导体物理的心得体会

半导体物理的心得体会

半导体物理的心得体会一、引言在学习半导体物理的过程中,我不仅仅学到了有关半导体材料、器件以及其应用的基本知识,更重要的是领悟到了科学研究的思维方式和方法。

本文将从我的学习体会出发,对半导体物理进行探讨和总结。

二、半导体材料的基本性质半导体材料是介于导体和绝缘体之间的材料,具备一些独特的特性。

比如,它的电导率随着温度的变化而改变,且在室温下的电导率介于导体和绝缘体之间。

另外,半导体材料还具备自激活和本征导电的特性,这些性质使得半导体物理具有广泛的应用前景。

三、半导体器件的工作原理半导体器件是半导体物理的重要应用之一,常见的半导体器件包括二极管、晶体管和光电二极管等。

通过研究半导体器件的工作原理,我们可以深入理解半导体材料的特性。

以二极管为例,它是由P型半导体和N型半导体结合而成。

当施加正向偏置电压时,P型半导体中的空穴向N型半导体中的电子进行扩散,并发生复合现象,导致电流通过。

而当施加反向偏置电压时,由于内建电场的作用,电流无法通过二极管,呈现出绝缘体的特性。

通过对这些器件的研究和理解,我们可以设计和改进各种半导体器件,以满足不同的应用需求。

四、半导体物理的应用领域半导体物理广泛应用于电子、光电、通信、信息技术等领域。

在电子领域,半导体材料和器件被广泛用于集成电路、计算机硬件、智能手机等电子产品中,推动了电子技术的快速发展。

在光电领域,半导体材料可以通过受激发射产生激光,同时也可以将光信号转化为电信号,实现光电转换。

在通信领域,光纤通信技术的发展离不开半导体材料和器件的支持。

在信息技术领域,半导体材料在存储器件、传感器件以及量子计算等方面的应用具有重要价值。

可以说,半导体物理的应用已经深入到我们生活的方方面面。

五、我对半导体物理的心得体会在学习半导体物理的过程中,我深刻认识到物理学与工程技术的紧密联系。

只有深入理解半导体物理的原理和机制,才能够在实践中应用和创新。

而且需要不断学习和关注最新的科研进展,以跟上发展的步伐。

华工半导体物理期末总结

华工半导体物理期末总结

一、p-n结1.PN结的杂质分布、空间电荷区,电场分布(1)按照杂质浓度分布,PN 结分为突变结和线性缓变结突变结--- P区与N区的杂质浓度都是均匀的,杂质浓度在冶金结面处(x = 0)发生突变。

单边突变结---一侧的浓度远大于另一侧,分别记为PN+ 单边突变结和P+N 单边突变结。

后面的分析主要是建立在突变结(单边突变结)的基础上突变结近似的杂质分布。

线性缓变结--- 冶金结面两侧的杂质浓度均随距离作线性变化,杂质浓度梯 a为常数。

在线性区()N x ax=-()常数=-=dxNNda ad线性缓变结近似的杂质分布。

空间电荷区:PN结中,电子由N区转移至P区,空穴由P区转移至N区。

电子和空穴的转移分别在N区和P区留下了未被补偿的施主离子和受主离子。

它们是荷电的、固定不动的,称为空间电荷。

空间电荷存在的区域称为空间电荷区。

(2)电场分布2.平衡载流子和非平衡载流子(1)平衡载流子--处于非平衡状态的半导体,其载流子浓度为n0和p0。

(2)非平衡载流子--处于非平衡状态的半导体,其载流子浓度也不再是n0和p0(此处0是下标),可以比他们多出一部分。

比平衡状态多出来的这部分载流子称为非平衡载流子3. Fermi 能级,准Fermi 能级,平衡PN结能带图,非平衡PN结能带图(1)Fermi 能级:平衡PN结有统一的费米能级。

(2)当pn结加上外加电压V后,在扩散区和势垒区范围内,电子和空穴没有统一的费米能级,分别用准费米能级。

(3)平衡PN结能带图(4)非平衡PN结能带图(5)热平衡PN结能带图C E F E i E V E电荷分布---耗尽区3. pn 结的接触电势差/内建电势差VD (PN 结的空间电荷区两端间的电势差)5. 非平衡PN 结载流子的注入和抽取6. 过剩载流子的产生与复合(1)正偏复合电流:正偏压使得空间电荷层边缘处的载流子浓度增加,以致pn>ni2。

这些过量载流子穿越空间电荷层,使得载流子浓度可能超过平衡值,预料在空间电荷层中会有载流子复合发生,相应的电流称为空间电荷区复合电流。

半导体物理知识总结

半导体物理知识总结

半导体中的电子状态主要研究内容:半导体的物理性质与半导体中电子的状态及其运动特点有密切关系。

用单电子近似的方法研究固态晶体中电子的能量状态。

所谓单电子近似,即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

用单电子近似法研究晶体中电子状态的理论成为能带论。

1、半导体的特点。

(1)、在纯净的半导体中,电导率随温度的上升而指数增加。

(2)、在半导体中杂质的种类和数量决定着半导体的电导率,而且在掺入杂质的情况下半导体的电导率随温度的变化较弱。

(3)、在半导体中可以实现非均匀掺杂。

(4)、光的辐照,高能电子等的注入,可以影响半导体的电导率。

2、半导体中电子的微观运动特点。

(1)、电子作稳恒运动,具有完全确定的能量。

这种稳恒运动状态称为量子态,而且同一个量子态上只能有一个电子。

(2)、在一定条件下,电子可以发生从一个量子态转移到另一个量子态的突变,这种突变称为量子跃迁。

3、能带理论晶体中的电子不再束缚于个别原子,而在一个具有晶格周期性的势场中作共有化运动,孤立原子能级按照电子共有化运动不同而分裂成彼此靠的很近且有一定宽度的能带。

能被电子填充的带称为允带,允带中的能级数与晶体中原子数相等。

允带之间有禁带(补充布里渊区,禁带宽度),禁带宽度的大小是区别绝缘体、半导体与金属的重要区别。

晶体中电子的能带在波矢空间具有反演对称性,且是倒格子的周期函数。

4、从能带理论解释导体、绝缘体、半导体的导电性。

电子的能带分为满带和不满带。

被电子完全占满的能带成为满带,未被电子完全填满的带称为不满带。

在外加电场时,满带中的电子状态随时间发生变化,但整体上分布仍保持对称分布,使得满带中的电子对导电无贡献。

不满带中的电子在无外场时成对称分布,总电流为零。

当施加外场时,漂移和碰撞作用达到平衡后,电子有一个稳定的分布,且电子的分布不再对称。

不对称部分的电子对导电有贡献。

导体的能带中有不满带,称为导带或价带。

半导体物理学期末总复习

半导体物理学期末总复习
半导体检测器
半导体物理器件在传感与检测领域中的应用
发展趋势
了解半导体物理器件的发展趋势,包括更高性能、更低功耗、更小体积等。
面临的挑战
分析半导体物理器件在发展中面临的挑战,包括工艺复杂度、成本、可靠性等。ຫໍສະໝຸດ 半导体物理器件的发展趋势与挑战
THANK YOU.
谢谢您的观看
半导体激光器
介绍半导体激光器的原理、结构、制造工艺和应用,包括分布反馈式激光器、布拉格光栅激光器等。
半导体物理器件在光电子中的应用
介绍半导体传感器的基本原理、分类、应用和制造工艺,重点了解气体传感器和生物传感器。
半导体传感器
介绍半导体检测器的基本原理、分类、应用和制造工艺,包括光电检测器、热电检测器等。
半导体二极管及其特性
半导体二极管伏安特性
半导体二极管的伏安特性曲线反映了二极管在不同电压下的电流密度和电阻率,从而表现出单向导电性。
半导体二极管温度特性
半导体二极管的温度系数表示温度对二极管电压的影响,温度升高会使二极管正向电压降低。
双极型晶体管结构
01
双极型晶体管由三个半导体材料区域组成,两个P型区域和一个N型区域,通过三个区域的组合和连接形成NPN或PNP结构。
双极型晶体管及其特性
双极型晶体管的电流放大效应
02
双极型晶体管的基极电流对集电极电流的控制作用称为电流放大效应,这种效应是双极型晶体管的核心特性。
双极型晶体管的击穿特性
03
双极型晶体管在特定电压和电流条件下会发生击穿,导致电流突然增加,失去单向导电性。
场效应晶体管结构
场效应晶体管的电压控制特性
场效应晶体管的频率特性
双极型晶体管的模型与仿真
场效应晶体管的模型与仿真

半导体物理的心得体会

半导体物理的心得体会

半导体物理的心得体会在当今科技飞速发展的时代,半导体物理作为一门关键的学科,对于推动电子技术、信息技术以及现代工业的进步发挥着举足轻重的作用。

通过对半导体物理的学习,我不仅深入了解了这一领域的基本原理和核心概念,还对其在实际应用中的重要性有了更为清晰的认识。

半导体物理的学习,首先让我对半导体的晶体结构有了深刻的理解。

半导体的晶体结构并非简单的无序排列,而是具有高度规则的周期性。

其中,最常见的晶体结构如金刚石结构和闪锌矿结构,它们的原子排列方式直接影响着半导体的电学和光学性质。

就拿硅来说,其金刚石结构中的共价键形成了稳定的晶格,决定了硅在常温下的良好半导体特性。

这种对晶体结构的认识,让我明白了半导体材料性质的根源所在。

半导体中的载流子,包括电子和空穴,是半导体物理中的核心概念之一。

电子和空穴的产生、复合以及输运过程,直接决定了半导体器件的性能。

在学习过程中,我了解到施主杂质和受主杂质能够分别提供电子和空穴,从而改变半导体的导电性。

例如,在 n 型半导体中,施主杂质提供的大量电子增强了导电性;而在 p 型半导体中,受主杂质引入的空穴同样起到了类似的作用。

半导体中的能带结构是一个较为抽象但又极其重要的概念。

导带和价带之间的禁带宽度,决定了半导体是属于直接带隙还是间接带隙。

直接带隙半导体在发光器件中具有独特的优势,因为电子和空穴的复合能够直接释放出光子;而间接带隙半导体则在一些逻辑器件中表现出色。

通过对能带结构的研究,我们能够更好地设计和优化半导体器件,以满足不同的应用需求。

在学习半导体物理的过程中,我还深入了解了半导体器件的工作原理。

例如,二极管作为最简单的半导体器件之一,其单向导电性是基于 pn 结的特性。

当 p 区和 n 区结合时,形成的内建电场阻止了多数载流子的扩散,但促进了少数载流子的漂移。

在正向偏置时,电流能够顺利通过;而在反向偏置时,电流极小,从而实现了单向导电的功能。

晶体管则是更为复杂但也更为重要的半导体器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、p-n结1.PN结的杂质分布、空间电荷区,电场分布(1)按照杂质浓度分布,PN 结分为突变结和线性缓变结突变结--- P区与N区的杂质浓度都是均匀的,杂质浓度在冶金结面处(x = 0)发生突变。

单边突变结---一侧的浓度远大于另一侧,分别记为PN+ 单边突变结和P+N 单边突变结。

后面的分析主要是建立在突变结(单边突变结)的基础上突变结近似的杂质分布。

线性缓变结--- 冶金结面两侧的杂质浓度均随距离作线性变化,杂质浓度梯 a为常数。

在线性区()N x ax=-()常数=-=dxNNda ad线性缓变结近似的杂质分布。

空间电荷区:PN结中,电子由N区转移至P区,空穴由P区转移至N区。

电子和空穴的转移分别在N区和P区留下了未被补偿的施主离子和受主离子。

它们是荷电的、固定不动的,称为空间电荷。

空间电荷存在的区域称为空间电荷区。

(2)电场分布2.平衡载流子和非平衡载流子(1)平衡载流子--处于非平衡状态的半导体,其载流子浓度为n0和p0。

(2)非平衡载流子--处于非平衡状态的半导体,其载流子浓度也不再是n0和p0(此处0是下标),可以比他们多出一部分。

比平衡状态多出来的这部分载流子称为非平衡载流子3. Fermi 能级,准Fermi 能级,平衡PN结能带图,非平衡PN结能带图(1)Fermi 能级:平衡PN结有统一的费米能级。

(2)当pn结加上外加电压V后,在扩散区和势垒区范围内,电子和空穴没有统一的费米能级,分别用准费米能级。

(3)平衡PN结能带图(4)非平衡PN结能带图(5)热平衡PN结能带图C E F E i E V E电荷分布---耗尽区3. pn 结的接触电势差/内建电势差VD (PN 结的空间电荷区两端间的电势差)5. 非平衡PN 结载流子的注入和抽取6. 过剩载流子的产生与复合(1)正偏复合电流:正偏压使得空间电荷层边缘处的载流子浓度增加,以致pn>ni2。

这些过量载流子穿越空间电荷层,使得载流子浓度可能超过平衡值,预料在空间电荷层中会有载流子复合发生,相应的电流称为空间电荷区复合电流。

(2)反偏产生电流:反偏PN 结空间电荷区pn<<ni2。

这将引起非平衡载流子的产生从而引起反偏产生电流。

7. 理想二极管的电流~电压关系,并讨论pn 结的单向导电性和温度特性。

(1)电流~电压关系20ln iad T p n n N N V =-=ψψψ(3)温度特性8. PN 结大注入效应,大注入(如外加正向电压增大,致使注入的非平衡少子浓度达到或超过多子浓度)和小注入(在边界处少子的浓度比多子的浓度低得多)时的电流电压 特性的比较。

(扩散系数增大一倍)----没看到图!!!!9. 比较pn 结自建电场,缓变基区自建电场和大注入自建电场的异同点。

(1) P 区留下,N 区留下,形成空间电荷区。

空间电荷区产生的电场称为内建电场,方向为由N 区指向P 区。

电场的存在会引起漂移电流,方向为由N 区指向P 区。

单边突变结电荷分布:-aN +dN电场分布(2)(3)10.势垒电容与扩散电容的产生机制。

(1)在积累空间电荷的势垒区,当PN 结外加电压变化时,引起积累在势垒区的空间电荷的变化,即耗尽层的电荷量随外加电压而增多或减少,这种现象与电容器的充、放电过程相同。

耗尽层宽窄变化所等效的电容称为势垒电容。

(2)PN 结扩散电容是正偏压下PN 结存贮电荷随偏压变化引起的电容,随直流偏压的增加而增加。

T p D V IC 2τ=11. 三种pn 结击穿机构。

雪崩击穿的条件?讨论影响雪崩击穿电压的因素。

(1)PN 结击穿:当加在PN 结上的反偏压增加到一定数值,再稍微增加,PN 结就会产生很大的反向电流。

(2)(3)雪崩击穿的条件(原理):耗尽区中的载流子受到该区电场加速而不断增加能量,当能量达到足够大时,载流子与晶格碰撞时产生电子-空穴对。

新产生的电子-空穴对又在电场作用下加速,与原子碰撞再产生第三代电子-空穴对。

如此继续,产生大量导电载流子,电流迅速上升。

(4)影响雪崩击穿电压的因素1.杂质浓度及杂质分布对击穿电压的影响耐高压选低掺杂的高阻材料做衬底,或深结。

2.外延层厚度对击穿电压的影响外延层厚度必须大于结深和势垒宽度xmB3.棱角电场对雪崩击穿电压的影响用平面工艺制造而成的PN 结,侧壁部分电场强度更大,击穿首先发生在这个部位。

PN 结实际的击穿电压比平面部分的计算值低。

4.表面状况及工艺因素对反向击穿电压的影响5.温度对雪崩击穿电压的影响雪崩击穿电压随温度升高而增大,温度系数是正的。

原因:温度升高,半导体内晶格振动加剧,载流子平均自由程减小,这样载流子获得的平均动能降低,从而使碰撞电离倍增效应所需加的电压增高。

12. PN结的交流等效电路?13.PN结的开关特性,贮存时间的影响因素。

(1)开关特性:PN结二极管处于正向偏置时,允许通过较大的电流,处于反向偏置时通过二极管的电流很小,因此,常把处于正向偏置时二极管的工作状态称为开态,而把处于反向偏置时的工作状态叫作关态。

(2)贮存时间:PN结加一恒定的正向偏压时,载流子被注入并保持在结二极管中,在扩散区建立确定的非平衡少数载流子分布,这种现象称为电荷贮存效应。

当正偏压突然转换至反偏压时,在稳态条件下所贮存的载流子并不能立刻消除。

PN结在反偏压下去除全部贮存电荷所需要的时间。

14.肖特基势垒二极管与PN结二极管的异同。

肖特基二极管内部是由阳极金属和阴极金属等构成,在N型基片和阳极金属之间形成肖特基势垒。

当在肖特基势垒两端加上正向偏压时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

PN结二极管是有半导体材料组成的,阳极是P,阴极是N,中间形成PN结,当加正向电压大于势垒电压二极管就导通了!第二章双极晶体管1.晶体管基本结构(三个区域的掺杂浓度的数值大小) 。

Npn:为发射区的掺杂浓度远大于基区的掺杂浓度2.晶体管处在放大区时的能带图,电流分布图,基区少子浓度分布图(四种偏置)。

3.晶体管具有放大能力的基本条件。

发射结正偏,集电结反偏4.发射效率γ和基区输运因子 T的定义。

提高晶体管电流放大系数的主要措施。

(1)(2)为了提高(共基极)a(约等于1)和(共射极)β=a/(1-a),需要提高y 和 T ,使它们尽量趋于1。

减小基区宽度增加载流子的扩散长度降低发射区与基区的方块电阻的比值改善器件的表面状况及减小表面复合提高基区的自建电场因子5.晶体管的Ebers-Moll模型及其等效电路和互易关系。

EM模型:把晶体管看成由一个正向二极管和一个反向二极管叠加而成。

6. 晶体管共基极(B)和共射极电流放大系数(a)之间的关系。

β=a/(1-a)7.晶体管共基极和共射极输入、输出特性和转移特性曲线8. 大电流效应(大电流密度效应,原因:小尺寸器件总电流不一定大但电流密度大)及对器件特性的影响(正向有源区)(1)大注入效应(高电平注入):PN结外加正向电压时注入的少数载流子密度等于或者超过多子平衡太密度的工作状态。

扩散系数比小注入时增大的一倍。

基区电导调制:基区大注入工作时,非平衡多子密度超过平衡多子密度,使基区电导率明显增大。

Rittner效应(由于基区电导调制效应):电阻率下降,发射效率降低,使电流增益下降、Webster(韦伯斯脱)效应(由于大注入内建电场效应):减缓大电流增益的下降(电流增益增加)。

(2)有效基区扩展效应(Kirk效应):大电流密度下BJT的有效基区随电流密度则愤完。

准中性基区扩展进入集电区的现象。

(3)发射极电流集边效应:由于基区扩展电阻rbb(基区有源电阻和无源电阻之和)存在,当基极电流流过时在无源和有源的基区都要产生横向的电位降。

从而使发射结结面上发生非均匀的载流子注入。

非均匀载流子注入使得沿着发射结出现非均匀的电流分布,。

造成在靠近边缘处有更高的电流密度。

9. 什么是Early效应? 对器件特性有什么影响?(1)Early效应:工作在正向有源区的BJT的集电结,其空间电荷区宽度及基区一侧的扩展距离,随反偏电压数值增大而增大,有效基区宽度因而随之减小,通常将有效基区宽度随集电极-基极偏压变化,并影响器件特性的现象称为基区宽度调变效应。

(2)器件特性影响:基调效应表现为晶体管的输出特性曲线微微向上倾斜,若把输出特性曲线延长则会与横轴交于一点,该点对应的电压即称为Early电压u A。

10. 基区穿通和外延层穿通。

11.三种击穿电压的关系。

BV(CBO)发射极开路时,集电结的击穿电压;BV(EBO)集电极开路时,发射结的击穿电压;(通常BE结零偏或者正偏,所以不重要)BV(CEO)基极开路时,集电极-发射极的击穿电压;穿通击穿:在雪崩击穿前集电结的空间电荷层到达了发射结,则晶体管击穿。

这种击穿电压务穿通电压。

12.写出载流子从发射极到集电极的总传输延迟时间的表达式,并说明各传输延迟时间的意义,如何提高晶体管的特征频率fT?(1)1/wa=tE+tB+td+tC(2)tB:基区渡越时间tE:发射结过度电容充电时间td:集电结耗尽层渡越时间tC:集电电容充电时间(3)提高fT:减小各渡越时间fT不是很高时,tB为主要影响因素-减小基区宽度来降低tB/提高基区电场因子fT较高,减tE=选较大的IE。

提高集电区掺杂浓度。

减小wc提高Nc。

13.fa, fB, fT ,fm的定义,及相互间的大小关系?fa:共基极3dB频率fB:共射极3dB频率fT(特征频率):wT增益-带宽乘积,hfe模量=1时的频率/在工作频率fB<f<fa的范围内,共射极电流增益的幅值与频率的乘积是一个常数fTfb<fT<fafm(最高振荡频率):共发射极专用,功率增益为1时的频率,是晶体管最终频率。

14晶体管在开关过程中,EB结和CB结偏压是如何变化的。

(1)延迟过程:EB由反偏向正偏(0.5V)导通过渡,CE由大反偏到小反偏。

(2)上升过程:EB由正偏(0.5V)到导通(0.7V),CB由反偏到零偏。

(3)贮存过程:EB正偏不变,CB正偏到零偏。

(4)下降过程:EB由导通(0.7V)到正偏(0.5V),CB由零偏到大反偏。

15HBT的优势(相对BJT)(1)化合物半导体的HBT具有更高的开关速度和截止频率。

这是因为GaAs的电子迁移率高,是相同条件下的Si的6倍,饱和电子漂移速率是Si的2倍。

(2)HBT的输出功率大。

HBT的集电极可以用宽禁带的半导体材料,反向击穿电压大,器件的输出功率大。

(3)电流增益系数大。

HBT的发射结是异质结,发射极是宽禁带的半导体,由于价带的不连续性,在基区高掺杂的情况下,也能保持较高的电流增益。

相关文档
最新文档