九年级数学下册教学课件中考题型优生培养计划专题六圆的有关计算

合集下载

2020年年九年级数学中考复习课件:圆的有关计算(56张PPT)

2020年年九年级数学中考复习课件:圆的有关计算(56张PPT)
第3页
3.(2019·广西梧州中考)如图,已知半径为1的⊙O上有三点A、B、C,OC与 AB 交 于 点 D , ∠ADO = 85° , ∠CAB = 20° , 则 阴 影 部 分 的 扇 形 OAC 的 面 积 是
5 __3_6_π___.
第4页
命题点二 与扇形有关的阴影面积计算
4.(2015·遵义中考)如图,在圆心角为90°的扇形OAB中,半径OA=2 cm,C为
定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,掌握切线的性
质定理、相似三角形的判定定理和性质定理是解题的关键.
第 33 页
例5 (2018·贵州贵阳中考)如图,AB为⊙O的直径,且AB=4,点C在半圆 上 , OC⊥AB , 垂 足 为 点 O , P 为 半 圆 上 任 意 一 点 , 过 P 点 作 PE⊥OC 于 点 E , 设 △OPE的内心为M,连接OM、PM.
解题技巧:本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质, 掌握弧长公式是解题的关键.
第 24 页
突破点二 与扇形有关的面积计算 例2 (2018·贵州安顺中考)如图,C为半圆内一点,O为圆心,直径AB长为2 cm, ∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C ′
(D)
A.3 C.32
B. 3 D. 2
第 28 页
思路分析:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD= 45°,BD= 2 AB.∵∠ABC=105°,∴∠CBD=60°.∵CB=CD,∴△CBD为等边 三角形,∴BC=BD= 2 AB.∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧 面积与下面圆锥的侧面积的比等于AB∶CB,∴下面圆锥的侧面积为 2×1= 2.

初三下数学课件(北师版)-圆

初三下数学课件(北师版)-圆

14.如图,已知矩形 ABCD 的边 AB=1,AD=2.
(1)以点 A 为圆心,2 为半径作⊙A.则点 B、C、D 与⊙A 的位置关系分别是 怎样的? (2)以点 A 为圆心作⊙A,半径 r 满足什么条件时,点 B、C、D 中至少有一 点在圆内,且至少有一点在圆外?
解:(1)因为 AB=1<2,所以点 B 在以 A 为圆心,2 为半径的⊙A 内,因为 AC= AB2+BC2= 5>2.所以点 C 在以 A 为Байду номын сангаас心,2 为半径的⊙A 外;因 为 AD=2,所以点 D 在以 A 为圆心,2 为半径的⊙A 上;
(2)因为 AB=1,AD=2,AC= 5,所以 AB<AD<AC,所以当 1<r< 5时, 点 B、C、D 中至少有一点在圆内,且至少有一点在圆外.
8.在数轴上,点 A 表示的实数为 3,点 B 所表示的实数为 a,⊙A 的半径 为 2,下列说法中不正确的是( A ) A.当 a<5 时,点 B 在⊙A 内 B.当 1<a<5 时,点 B 在⊙A 内 C.当 a<1 时,点 B 在⊙A 外 D.当 a=1 或 5 时,点 B 在⊙A 上
9.如图,AB、MN 是⊙O 的互相垂直的直径,点 P 在 上,且不与 A、M
点和圆的位置关系 点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内.若设⊙O 的半 径为 r,点到圆心 O 的距离为 d,则有:点在圆外,即 d > r;点在圆上, 即 d = r;点在圆内,即 d < r. 自我诊断 2.如图所示,OA、OB 为⊙O 的半径,C、D 分别为 OA、OB 的中 点,若 AD=5 cm,则 BC= 5 cm.
重合,过点 P 作 MN、AB 的垂线,垂足分别是 C、D.当点 P 在 上移动时, 矩形 PCOD 的形状、大小随之变化,则 PC2+PD2 的值( C )

初中数学初三数学下册《圆中的计算问题》教案、教学设计

初中数学初三数学下册《圆中的计算问题》教案、教学设计
(一)导入新课
1.教学活动设计
在本节课的导入阶段,我将通过展示生活中常见的圆形物体,如硬币、圆桌、车轮等,引发学生对圆的关注。接着,提出问题:“你们觉得圆有什么特别之处?”让学生思考并回答,从而激发学生对圆的性质和计算问题的兴趣。
2.教学内容
(1)引导学生观察圆形物体,发现圆的形状特点。
(2)让学生用自己的语言描述圆的定义和性质。
4.通过典型例题的分析与讲解,使学生掌握解题方法和技巧,提高解题能力。
(三)情感态度与价值观
1.培养学生热爱数学、勇于探索的精神,增强学生对数学学科的兴趣和信心。
2.培养学生严谨、细致的学习态度,使学生养成独立思考、自主学习的好习惯。
3.通过对圆的性质和计算问题的研究,使学生体会数学的和谐美、逻辑美,提高学生的审美情趣。
三、教学重难点和教学设想
(一)教学重难点
1.理解和掌握圆的基本性质,如圆的对称性、圆周角定理等。
2.运用垂径定理、切线定理、弦长公式等解决圆中的计算问题。
3.将实际问题转化为数学模型,运用数学知识解决与圆相关的问题。
(二)教学设想
1.创设情境,导入新课
通过展示生活中常见的圆形物体,如车轮、硬币等,引发学生对圆的兴趣,为新课的学习打下基础。
(3)简要回顾已学的圆的基本知识,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计
在此环节,我将采用讲解、示范、提问等方式,向学生传授圆的基本性质和计算方法。同时,结合实际例子,让学生更好地理解和掌握新知识。
2.教学内容
(1)讲解圆的半径、直径、周长和面积的定义及计算方法。
(2)介绍圆的对称性质、圆周角定理、圆内接四边形的性质。
当前学生正处于青春期,思维活跃,好奇心强,对新鲜事物充满兴趣。他们对数学学科的兴趣和信心是教学的重要基础。此外,学生在学习过程中可能存在以下问题:对复杂题目的畏惧心理、解题思路不清晰、对知识点掌握不牢固等。

圆 初三 ppt课件ppt课件ppt

圆 初三 ppt课件ppt课件ppt

圆的性质
01
圆的直径是半径的两倍 ,半径是直径的一半。
02
圆内接正多边形的所有 边都相等,所有内角也 都相等。
03
圆的外切正多边形的所 有边都相等,所有内角 也都相等。
04
圆的周长和面积都随着 半径的增加而增加。
圆的度量
圆的周长公式
C = 2πr,其中r是圆的半径。
圆的面积公式
A = πr^2,其中r是圆的半径。
圆弧的长度公式
圆内接多边形的周长和面积公式
L = θ/360° × 2πr,其中θ是圆心角的大小 ,r是圆的半径。
P = nπr/180,A = nr^2/4,其中n是多边 形的边数,r是圆的半径。
02 圆的对称性
圆的中心对称性
总结词
圆关于其圆心对称
详细描述
圆关于其圆心具有中心对称性 ,即任意一点关于圆心的对称 点也在圆上。
• 总结词:掌握圆的综合问题需要理解圆的性质和定理,以 及与其他几何知识的结合。
圆的综合问题 圆的综合问题
圆的综合题解题思路 利用圆的性质和定理解决实际问题。
结合其他几何知识,如三角形、四边形等,进行解题。
圆的综合问题 圆的综合问题
运用代数、方程等数学方法进行求解。 圆的综合题解题方法
观察题目,分析已知条件和未知量。
C = 2πr,其中r是圆的半 径,π是一个常数约等于 3.14159。
周长计算方法
使用圆的半径计算出周长 ,可以通过公式直接计算 ,也可以使用计算器或图 形计算软件进行计算。
周长计算实例
假设一个圆的半径为5厘 米,那它的周长就是 31.4厘米。
圆在几何作图中的应用
圆规作图
圆规是用来画圆的工具,通过固定半径长度,可以在纸上 画出标准的圆形。

2020年九年级数学中考专题复习《和圆有关的计算》 课件 (共19张PPT)

2020年九年级数学中考专题复习《和圆有关的计算》 课件 (共19张PPT)

扇形面积公式:S扇形
=
1 2
lR
扇形面积公式:S扇形
=
n R2
360
知识梳理,融会贯通
圆 弧长
C
圆锥的侧面积和全面积
扇形面积
A

a
h
r
O
B
r
O
圆锥的底面的周长2πr = 侧面展开扇形的弧长l.
S扇形
1 2
l
a
1 2
2
r
a
r
a
圆锥的侧面积:S侧 = ra
圆锥的全面积:S全 =S侧 +S底 = ra+ r2
4 3
.
BC=2,EC 1. 已知边长
A
OE tan 30 EC= 3 1 3 .
3
3
边心距
OC 2 3 . 3
S圆 = OC2
23 3
2
4 3
.
半径
3
3
面积
23 3
B
1
OO
60° R
30°
EE
CC
图1-1
典例解析,能力提升
变式练习 如图1-2,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口
图3-1
S阴影
SABC
S扇形EAF
18 9 .
2
求不规则图形面积的方法----和差法
典例解析,能力提升
例4 如图4-1,菱形ABCD的边长为2cm,∠A=60° ,BD是以点A为圆心, AB长为半径
的弧, CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为_____3___ cm2 .
S阴影 S扇形OAB SOAB
120 22 1

北师大版九年级下册圆课件

北师大版九年级下册圆课件

教案北师大版九年级下册圆课件教学目标:1. 知识与技能:使学生掌握圆的基本概念,包括圆的定义、圆的半径、直径、圆心等,并能运用这些概念解决实际问题。

2. 过程与方法:通过小组讨论、动手操作和探究活动,培养学生观察、分析和解决问题的能力。

3. 情感态度价值观:培养学生对数学的兴趣和合作学习的意识。

教学重点:圆的基本概念和性质圆在实际生活中的应用教学难点:圆的性质及其证明圆在实际问题中的应用教学准备:多媒体课件圆规、直尺、白纸等绘图工具实际物品(如硬币、圆桌等)教学过程:第一阶段:导入1. 活动内容:展示生活中的圆形物品,如硬币、圆桌等,引导学生观察并思考这些物品的共性。

2. 活动过程:学生观察并讨论这些物品的形状特点。

第二阶段:探究圆的性质1. 活动内容:小组合作,利用圆规和直尺绘制圆,探究圆的性质。

2. 活动过程:学生分组,每组绘制一个圆,并测量其半径和直径。

学生观察并讨论圆的性质,如圆上任意两点到圆心的距离相等。

第三阶段:圆的应用1. 活动内容:解决实际问题,应用圆的知识。

2. 活动过程:教师呈现实际问题,如计算圆形花园的面积。

学生小组讨论解决方案,运用圆的公式进行计算。

各组分享解决方案和计算结果。

2. 活动过程:教师引导学生回顾圆的定义、性质和应用。

学生分享学习心得和遇到的困难。

教学延伸:提供相关的阅读材料或视频,供学生在课后进一步学习圆的知识。

设计相关的家庭作业,巩固学生对圆的理解和应用。

这个教案旨在通过实际操作和小组合作,使学生深入理解圆的概念和性质,并能够将所学知识应用于解决实际问题。

希望这个教案能对你的教学有所帮助!教案探索光的传播与反射教学目标:1. 知识与技能:使学生理解光的传播原理,掌握光的反射定律,并能运用这些知识解释日常生活中的光学现象。

2. 过程与方法:通过实验观察、小组讨论和问题解决,培养学生实验操作能力、观察力和逻辑思维能力。

3. 情感态度价值观:激发学生对物理现象的好奇心,培养科学探究精神和团队合作意识。

九下圆ppt课件ppt课件

九下圆ppt课件ppt课件

与圆有关的综合题型的解题思路
确定圆心和半径
首先需要确定题目中给 出的圆的圆心和半径,
这是解题的基础。
理解题目要求
仔细阅读题目,明确题 目要求,理解题目的具
体要求和解题目标。
运用几何知识
在解题过程中,需要运 用几何知识,如勾股定 理、弦长公式等,来解
决问题。
建立数学模型
根据题目的具体要求, 建立相应的数学模型, 将实际问题转化为数学
详细描述弦切角定理指出,弦切 Nhomakorabea等于它所夹的弧所对的圆心角的一半。这个定理在证 明和解决与弦、切线和圆有关的几何问题时非常有用。
相交弦定理与切割线定理
总结词
相交弦定理和切割线定理是圆中两条线 段相交或一条线段切割圆时所遵循的规 律。
VS
详细描述
相交弦定理指出,两条相交的弦的乘积等 于它们所夹的弧所对的圆心角的两倍。切 割线定理则描述了一条线段切割圆时,该 线段与从圆心到该线段的线段的乘积等于 该线段所夹的弧所对的圆心角的两倍。这 两个定理在证明和解决与弦、切线和圆有 关的几何问题时非常有用。
圆心到圆上任一点的距离相等
03
圆心到圆上任意一点的距离都等于半径。
圆的基本性质
直径所对的圆周角是直角
弦心距定理
在一个圆中,直径所对的圆周角是直 角,即90度。
在圆中,过弦的中点的直径与弦垂直 ,且平分弦。
圆内接四边形的对角互补
在一个圆内接四边形中,相对的两个 角之和为180度。
圆的应用
01
02
03
九下圆ppt课件
• 圆的定义与性质 • 圆的方程 • 圆的几何性质 • 圆的面积与周长 • 圆的切线与割线 • 圆的综合问题
01

九年级下册数学课件(华师版)圆中的计算问题

九年级下册数学课件(华师版)圆中的计算问题

知识要点
弧长公式
l n 2 R n R
360
180
注意 用弧长公式 l n R ,进行计算时,要注意公式中n的
180
意义.n表示1°圆心角的倍数,它是不带单位的.
算一算 已知弧所对的圆心角为60°,半径是4,则弧 长为__43__.
例1 制造弯形管道时,要先按中心线计算“展直长度”,再下 料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)
则整个旋转过程中线段OH所扫过的面积为 (C )
A1
A.
7 3
7 8
C.
3
B.
4 3


7 8
3
D. 4 3 3
H
A
O
C
O1 H1
B
C1
3.如图,☉A、☉B、 ☉C、 ☉D两两不相交,且半径都是2cm,
则图中阴影部分的面积是12cm2 .
C B
A
D
4.(例题变式题)如图、水平放置的圆柱形排水管道的截面 半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.

3
3.已知扇形的圆心角为120°,半径为2,则这个扇形的
面积S扇=
4 3
.
例2 如图,圆心角为60°的扇形的半径为10cm.求这个扇形的 面积和周长.(精确到0.01cm2和0.01cm)
解:∵n=60,r=10cm,
∴扇形的面积为
S = n r2 = 60 102 = 50 52.36(cm2 ).
扇形.
B B
弧 圆心角 O
A
扇形 O
A
判一判
下列图形是扇形吗?
想一想
问题1 半径为R的圆,面积是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档