山东省德州市夏津实验中学2015-2016学年八年级上学期第一次月考数学试题解析(解析版)
人教版八年级数学上山东省德州市夏津实验中学第一次月考数学试题(无答案)

初中数学试卷初二数学测试题2015.10一、选择题(本大题12小题,每小题3分,共36分)1、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OB米,A、B间的距离不可能是()==15OA米,10A.5米B.10米C.15米D.20米第4题图2、已知等腰三角形的两边长分别为3和5,则它的周长是 ( )A.8B. 11C.13D.11或133、三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不确定4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、90 ºB、120 ºC、160 ºD、180 º5、八边形的对角线共有 ( )A.8条B.16条C.18条D.20条6.使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等. 7.下列条件中,能够证明两个三角形全等的有()①两边及其中一边上的中线对应相等;②两角及第三个角的角平分线对应相等;③两个直角三角形任意两条对应边相等;④两个等腰三角形任意两条对应边相等A 、1个B 、2个C 、3个D 、4个8.若△ABC ≌△DEF ,△ABC 的周长为100,AB=30,EF=25,则AC=( )A 、55B 、45C 、30D 、259.如图,OA OB =,OC OD =,50O ∠=o ,35D ∠=o ,则AEC ∠等于( )A 、60oB 、50oC 、45oD 、30o10.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于O ,连结AO ,则图中共有全等的三角形的对数为( )A 、2对B 、3对C 、4对D 、5对11.如图,AB//DE ,CD =BF ,若△ABC ≌△EDF ,还需要补充的条件可以是( )A 、AC =EFB 、AB =DEC 、∠B =∠ED 、不用补充 OE D C A B第9题图 第10题图 第11题图12、如图,在△ABC 中,∠C=90°,AD 平分∠BAC交BC 于D ,若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( )A 、18B 、32C 、28D 、24 第12题图二、填空题(本大题10小题,每小题3分,共30分)13、一个多边形的内角和等于它的外角和的3 倍,它是 边形.14.如图,AB ∥CD ,∠A=45°,∠C=∠E ,∠C= .OE A BD C A C D B15、已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是.16、盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有的原理.17.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,再向左转30°……照这样走下去,他第一次回到出发点A点时,一共走了.米.18、如图所示∠A+∠B+∠C+∠D+∠E+∠F= .19、如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 = .第17题 19题图 18题图20.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是____度21.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为第20题图第21题图22、某同学把一块三角形的的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带 去。
初中数学山东省德州市夏津县八年级数学上学期第一次月考考试题考试卷及答案.docx

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:以下列各组长度的线段为边,能构成三角形的是 ( )A.7,3,4 B.5,6,12 C.3,4,5 D.1,2,3试题2:等腰三角形的一个外角是80°,则其底角是()A.40°B.100°或40° C.100° D.80°试题3:三角形的角平分线、中线和高:( )A.都是线段B. 不都是线段C.都是直线D. 都是射线试题4:如图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=82°,则∠DAE=() A:7 B:8° C:9° D:10°试题5:三角形的三条高在:( )A.三角形的内部B. 三角形的外部C.三角形的边上D.三角形的内部、外部或边上试题6:如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要()A:AB=CD B:EC=BF C:∠A=∠D D:AB=BC试题7:六边形的内角和等于:( )A.360°B.540°C.720°D.900°试题8:四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的某些角的大小 B.四边形的周长C.四边形的边长 D.四边形的内角和试题9:九边形的对角线有()A.25条B.31条C.27条D.30条试题10:下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形试题11:一个三角形的三边长分别为x、2、3,那么x的取值范围是:( )A. 1<x<5B. 2<x<3C. 2<x<5D. x>2试题12:如图,在△A BC中,D是BC延长线上一点,∠B = 40°,∠ACD = 120°,则∠A等于()A.90°B.60°C.70°D.80°试题13:一个多边形内角和是10800,则这个多边形的边数为()A、 6B、 7C、 8D、 9试题14:已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A、 55°B、 70°C、 40°D、 110°试题15:在△中,若∠A=78°,∠B=57°,则______________.试题16:已知等腰三角形的两边长是5cm和11cm,则它的周长是_________________.试题17:如图,已知,,AC=AD.给出下列条件: ① AB=AE;② BC=ED;③;④.其中能使的条件为___________________(注:把你认为正确的答案序号都填上).盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有的原理.试题19:如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC的度数为________.试题20:如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若,则如图,已知AB=DC,AD=BC,E、F是DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=试题22:如图,在△ABC中,分别画出:(1)AB边上的高CD;(2)AC边上的高BE;(3)BC上的中线AM.试题23:在△ABC中,,求∠A、∠B、∠C的度数.试题24:如图,在△ABC中, AD⊥BC于D,AE平分∠DAC,∠BAC=800,∠B=600;求∠AEC的度数.试题25:如图,已知:∠A=27°,∠EFB=95°,∠B=38°,求∠D和∠DEB的度数.试题26:如图:AC=DF,AD=BE,BC=EF。
2015-2016八年级数学第一次月考试卷及答案

2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。
八年级上第一次月考数学试卷含解析

2016-2017学年山东省德州市夏津八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cm C.1cm,2cm,3cm D.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个 B.2个 C.3个 D.4个9.如图,在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8°C.9°D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67°B.46°C.23°D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是.16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是.19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,BE=BF,连接AE、EF和CF,求证:AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE 交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.2016-2017学年山东省德州市夏津八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cm C.1cm,2cm,3cm D.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3条高,其中2条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的性质;全等三角形的判定与性质.【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8°C.9°D.10°【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE的度数,再根据角平分线的定义可求得∠BAD的度数,从而不难求解.【解答】解:∵AE⊥BC于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD平分∠BAC交BC于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67°B.46°C.23°D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF (此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5 cm,∠C=40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC ﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE 交于E点.求证:∠E=∠A.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,∴△BCA≌△BDA(SAS),∴AC=AD.26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.2017年2月15日第21页共21页。
德州市夏津县八年级上抽测数学试卷含答案解析

山东省德州市夏津县2015-2016学年八年级(上)抽测数学试卷(12月份)一、选择题(每小题3分,共30分)1.下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+13.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.下列各图中,正确画出AC边上的高的是()A.B.C. D.5.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°6.图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ7.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形 D.正六边形8.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()A.30°B.45°C.60°D.20°9.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26 B.24 C.22 D.20二、填空题(每小题4分,满分24分)11.计算:﹣2x(x﹣2)=.12.若32×83=2n,则n=.13.(﹣)2015×32016=.14.如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.15.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=度.16.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题(共46分)17..18.先化简,再求值:(x﹣1)(x﹣2)﹣3x(x+3)+2(x+2)(x﹣1),其中x=.19.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?20.如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.21.如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC 是等腰三角形.22.探究与应用(1)问题如图1,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=90°,求证:△ADP≌△BPC.(2)探究如图2,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=θ时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:图3,在△ABD中,AB=6,AD=BD=BP=5,且满足∠A=∠DPC,求DC的长.2015-2016学年山东省德州市夏津县八年级(上)抽测数学试卷(12月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法、幂的乘方和完全平方公式计算即可.【解答】解:A、a2+a2=2a2,错误;B、a2•a3=a5,错误;C、(﹣a2)2=a4,正确;D、(a+1)2=a2+2a+1,错误;故选C.【点评】此题考查同类项、同底数幂的乘法、幂的乘方和完全平方公式,关键是根据法则进行计算.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.下列各图中,正确画出AC边上的高的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【专题】图表型.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°【考点】等腰三角形的性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故选D.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ【考点】全等三角形的判定.【分析】仔细观察图形,验证各选项给出的条件是否符合全等的判定方法,符合的是全等的不符合的则不全等,题目中D选项的两个三角形符合SAS,是全等的三角形,其它的都不能得到三角形全等.【解答】解:A选项中条件不满足SAS,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足SAS,不能判定两三角形全等;D选项中条件满足SAS,能判定两三角形全等.故选D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.做题时要根据已知条件结合图形利用全等的判定方法逐个寻找.7.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:A、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B、角形内角和为360°,能整除360°,能密铺,故此选项不合题意;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选:C.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()A.30°B.45°C.60°D.20°【考点】等腰三角形的性质.【分析】根据图中所示,设出所需求的未知量,再利用三角形角度之间的关系,表示出各个角,根据三角形内角和定理列出方程求解即可.【解答】解:设∠A=x,∵AD=DE,∴∠DEA=∠A=x,∵DE=EB,∴∠EBD=∠EDB=,∵∠BDC=∠A+∠DBA=x+=,∵AB=AC,BD=BC,∴∠C=∠BDC=∠ABC=,∵∠A+∠ABC+∠C=180°,即:x+=180°,∴x=45°,∴∠A=45°.故选B.【点评】此题主要考查等腰三角形的判定,三角形内角和定理及三角形外角的性质的综合运用.应用三角形内角和列出方程解题是很重要的方法,要熟练掌握.9.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定【考点】角平分线的性质.【分析】由已知条件进行思考,结合利用角平分线的性质可得点D到AB的距离等于D到AC的距离即CD的长,问题可解.【解答】解:∵∠C=90°,AD平分∠BAC交BC于D∴D到AB的距离即为CD长CD=5﹣3=2故选C.【点评】本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26 B.24 C.22 D.20【考点】多边形内角与外角;多边形的对角线.【分析】先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1080°,解得n=8,∴多边形的对角线的条数是:==20.故选D.【点评】本题考查了多边形的内角和定理与多边形的对角线的条数的公式,熟记公式是解题的关键.二、填空题(每小题4分,满分24分)11.计算:﹣2x(x﹣2)=﹣2x2+4x.【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式运算法则求出即可.【解答】解:﹣2x(x﹣2)=﹣2x2+4x.故答案为:﹣2x2+4x.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.12.若32×83=2n,则n=14.【考点】同底数幂的乘法.【专题】计算题.【分析】先将等式左边化为同底数幂的乘法,再根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:∵32×83=2n,∴25×29=2n,即214=2n,∴n=14,故答案为14.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.13.(﹣)2015×32016=﹣3.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式=(﹣×3)2015×3=﹣3.故答案为:﹣3.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.如图,已知∠1=∠2,请你添加一个条件:∠B=∠C或∠BAD=∠CAD或BD=CD,使△ABD≌△ACD.【考点】全等三角形的判定.【专题】开放型.【分析】∠1、∠2分别是△ADB、△ADC的外角,由∠1=∠2可得∠ADB=∠ADC,然后根据判定定理AAS、ASA、SAS尝试添加条件.【解答】解:添加∠B=∠C,可用AAS判定两个三角形全等;添加∠BAD=∠CAD,可用ASA判定两个三角形全等;添加BD=CD,可用SAS判定两个三角形全等.故填∠B=∠C或∠BAD=∠CAD或BD=CD.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=25度.【考点】三角形的外角性质;三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=80°,AB=AD=DC,∴∠ABD=∠ADB=50°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=130°,又∵AD=DC,∴∠C=∠DAC=(180°﹣∠ADC)=25°,∴∠C=25°.【点评】此类题目考查学生分析各角之间关系的能力,运用所学的三角形知识点求解.16.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【考点】等边三角形的性质;全等三角形的判定与性质.【专题】动点型.【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.【点评】本题考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.三、解答题(共46分)17..【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以单项式法则计算,第二项利用单项式乘以多项式法则计算,合并即可得到结果.【解答】解:原式=2x2y+3xy﹣x2y=x2y+3xy.【点评】此题考查了整式的混合运算,涉及的知识有:单项式乘以单项式,单项式乘以多项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.先化简,再求值:(x﹣1)(x﹣2)﹣3x(x+3)+2(x+2)(x﹣1),其中x=.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】首先去括号,然后合并同类项,即可把式子进行化简,然后代入数值即可求解.【解答】解:(x﹣1)(x﹣2)﹣3x(x+3)+2(x+2)(x﹣1)=x2﹣3x+2﹣3x2﹣9x+2(x2+x﹣2)=x2﹣3x+2﹣3x2﹣9x+2x2+2x﹣4=﹣10x﹣2,当x=时,原式=﹣.【点评】本题主要考查了整式的化简求值,正确去括号,合并同类项正确化简求值是关键.19.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,∴△BCA≌△BDA(SAS),∴AC=AD.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.同一题中由全等提供的结论证明其它三角形全等是经常使用的方法,注意掌握.20.如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DC,可得∠C=∠A,然后由AE=CF,得AE+EF=CF+EF,最后利用SAS判定△ABF≌△CDE.【解答】解:∵AB∥DC,∴∠C=∠A,∵AE=CF,∴AE+EF=CF+EF,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC 是等腰三角形.【考点】等腰三角形的判定.【专题】证明题.【分析】利用平行线的性质得出∠GDF=∠CEF进而利用ASA得出△GDF≌△CEF,再利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,比较简单,判定两三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,需要熟练掌握.22.探究与应用(1)问题如图1,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=90°,求证:△ADP≌△BPC.(2)探究如图2,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=θ时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:图3,在△ABD中,AB=6,AD=BD=BP=5,且满足∠A=∠DPC,求DC的长.【考点】全等三角形的判定与性质.【分析】(1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP≌△BPC;(2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4.【解答】解:(1)∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,在△ADP与△BPC中,,∴△ADP≌△BPC;(2)结论AD•BC=AP•BP仍然成立.理由:∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(3)过点D作DE⊥AB于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∴DC=DE=4.【点评】本题考查了全等三角形的判定与性质,关键是根据由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP≌△BPC.。
山东省德州市八年级上学期数学第一次月考试卷(五四学制)

山东省德州市八年级上学期数学第一次月考试卷(五四学制)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) x是一个三位数,y是一个一位数,把y放在x的左边得到一个四位数,则这个四位数的值等于()A . 10y+xB . yxC . 1000y+xD . 1000x+y2. (2分)下列从左到右的变形,是因式分解的是()A . (a+3)(a﹣3)=a2﹣9B . x2+x﹣5=(x﹣2)(x+3)+1C . a2b+ab2=ab(a+b)D . x2+1=x(x+ )3. (2分)如果关于x的分式方程 =2﹣的解为正数,且关于x的不等式组无解,那么符合条件的所有整数m的和为()A . 5B . 3C . 1D . 04. (2分)多项式6x3y2﹣3x2y2+12x2y3的公因式为()A . 3xyB . ﹣3x2yC . 3xy2D . 3x2y25. (2分) (2015七下·茶陵期中) 因式分解(x﹣1)2﹣9的结果是()A . (x+8)(x+1)B . (x+2)(x﹣4)C . (x﹣2)(x+4)D . (x﹣10)(x+8)6. (2分) (2017八上·西湖期中) 给出下面个式子:① ;② ;③ ;④ ;⑤ ,其中不等式有().A . 个B . 个C . 个D . 个7. (2分)马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:a4-■=(a2+4)(a+2)(a-▲)中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是()A . 64,8B . 24,3C . 16,2D . 8,18. (2分)已知正方形的边长为xcm,若把这个正方形的每边长都减少3cm,则正方形减少的面积为()A . 3B . 6x – 9C . (x-3)2D . 6x9. (2分) (2020八上·嘉陵期末) 若,则的值为()A . 4B . 5C . 6D . 710. (2分) (2017七下·龙海期中) 几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A . 至少4人B . 至多4人C . 至少5人D . 至多5人二、填空题 (共8题;共9分)11. (2分) (2017八下·西城期中) 如图,甲、乙两人以相同路线前往距离单位的培训中心参加学习,图中、分别表示甲、乙两人前往目的地所走的路程随时间(分)变化的函数图象,由图可知,乙每分钟比甲________(填“多”或“少”)走________ .12. (1分)(2011·泰州) 分解因式:2a2﹣4a=________.13. (1分)若,则=________14. (1分) (2015九上·柘城期末) 若4x2+2(k﹣3)x+9是完全平方式,则k=________.15. (1分)(2017·集宁模拟) 若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于________.16. (1分)如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a 的取值范围为________17. (1分)计算(x2+nx+3)(x2﹣3x)的结果不含x3的项,那么n=________ .18. (1分)不等式组的非负整数解是________.三、解答题 (共9题;共82分)19. (10分)(2017·江西模拟) 根据要求回答问题:(1)解不等式组:(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.20. (10分) (2017八下·临沂开学考) 分解因式:(1)﹣2a2+4a﹣2(2) 3x﹣12x3.21. (5分) (2017七下·自贡期末) 解不等式:并将它的解集在数轴上表示出来.22. (10分) (2019八上·通化期末) 把下列多项式因式分解(1) x3=4xy2;(2)(a-1)(a+3)+423. (5分)若x﹣y=8,xy=10.求x2+y2的值.24. (5分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王保应选择哪种方案,使运输费最少?最少运费是多少?25. (10分)(2017·孝义模拟) 计算题:计算和分解因式(1)计算:﹣|﹣4|+2cos60°﹣(﹣)﹣1(2)因式分解:(x﹣y)(x﹣4y)+xy.26. (15分) (2019七上·萧山月考) 某工厂加工齿轮,已知每1块金属原料可以加工成3个A齿轮或4个B 齿轮(说明:每块金属原料无法同时既加工A齿轮又加B齿轮),已知1个A齿轮和2个B齿轮组成一个零件,为了加工更多的零件,要求A、B齿轮恰好配套.请列方程解决下列问题:(1)现有25块相同的金属原料,问最多能加工多少个这样的零件?(2)若把36块相同的金属原料全部加工完,问加工的A、B齿轮恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的A、B齿轮恰好配套,请求出n所满足的条件.27. (12分)(2017·溧水模拟) 某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;(1)当时间为20s、100s时,该食物的温度分别为________℃,________℃;(2)求线段DE所表示的y与x之间的函数表达式;(3)时间是多少时,该食物的温度最高?最高是多少?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共82分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
山东省夏津实验中学八年级数学上学期第一次月考试题(

二○一四年秋第一次月考八年级数学试题一、选择题(每小题3分,共36分)1.一个多边形内角和是1080°,则这个多边形的边数为A 、 6B 、 7C 、 8D 、 92.能将三角形面积平分的是三角形的A 、角平分线B 、高C 、中线D 、外角平分线3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是A 、13cmB 、6cmC 、5cmD 、4cm4. 使两个直角三角形全等的条件是A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条边对应相等5.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店 去配一块完全一样的玻璃,那么最省事方法是A 、带①去B 、带②去C 、带③去D 、①②③都带去6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=A 、90°B 、 120°C 、160°D 、180°7.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°,则∠D 的度数为A 、50°B 、 30°C 、80°D 、1008.下列说法错误的是A 、锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B 、钝角三角形有两条高线在三角形外部C 、直角三角形只有一条高线D 、任意三角形都有三条高线、三条中线、三条角平分线9. 以下列各组线段为边,能组成三角形的是A 、2 cm,3 cm,5 cmB 、5 cm,6 cm,10 cmC 、1 cm,1 cm,3 cmD 、3 cm,4 cm,9 cm10.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形11.一个三角形的两边长分别为3cm 和7cm ,则此三角形第三边长可能是()A .3cm B.4 cm C. 7 cm D.11cm12.下列说法正确的是( )第6题图 ODCB A (第7题)A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等第13题图 OD A C B C D B A第14题图班级________姓名_______________得分_______二、填空题(每小题4分,共20分.把答案填在题中横线上)13.如图所示,AC ,BD 相交于点O ,△AOB ≌△COD ,∠A=∠C ,则其它对应角分别为_____________,对应边_________14.如图一面小红旗其中∠A=60°∠B=30则∠BCD=________.15.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是____________16.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是______度.17. 等腰三角形的周长为20 cm ,一边长为6 cm ,则底边长为__________.三、解答题(本大题共4小题,共64分) 18.(6分)如下右图,已知△ABC 中,AB =AC ,AD 平分∠BA C ,请补充完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中:∴△ABD ≌△ACD ( )19. (8分)如图,已知△≌△ 是对应角. (1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN 和HG 的长度.第15题图 A B C D E第16题图(第18题)D C B A20.(10分)⊿ABC中,∠ABC、∠ACB的平分线相交于点O。
山东省夏津县实验中学2015-2016学年八年级上分班考试数学试题

- 1 - / 7山东省夏津实验中学2015年初二分班考试数学试题201508 1、 本试题共120分。
考试时间为120分钟。
2、 答卷前务必将姓名、班级写在答题纸上。
所有试题的答案都写在答题纸上,考试结束,试题和答题纸一并收回。
一.选择题(本题共有12小题,每小题3分,共36分)2、不等式组30240x x +>⎧⎨-≤⎩的解集在数轴上表示为( )3、已知x =2,y=-3是二元一次方程5x +my +2=0的解, 则m 的值为( ) (A )4 (B )-4 (C )38 (D )-384、如图,下列条件中不能判定AB∥CD 的是( )(A )∠3=∠4 (B )∠1=∠5 (C )∠1+∠4=180° (D )∠3=∠55、要反映本县一周内每天的最高气温的变化情况,宜采用 ( ) (A )条形统计图 (B )扇形统计图 (C )折线统计图(D )频数分布直方图6.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )A .4B .-4C .8D .-8- 2 - / 77.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( )A .代入法B .加减法C .换元法D .三种方法都一样8.若二元一次方程2x +y =3,3x -y =2和2x -my =-1有公共解,则m 取值为( ) A .-2 B .-1 C .3 D .49.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A .3∶1B .2∶1C .1∶1D .5∶211.不等式260x ->的解集在数轴上表示正确的是( )12.不等式2(1)3x x +<的解集在数轴上表示出来应为( )二、填空题(本题共有6小题,每小题4分,共24分) 13、16的平方根是14、将方程532=-y x 变形为用x 的代数式表示y 的形式是 . 15、用不等式表示“a 与5的差不是正数”: . 16、X ≥2的最小值是a,X ≤-6的最大值是b,a+b= .17、从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.18.已知(3x +2y -5)2与│5x +3y -8│互为相反数,则x =______,y =________.3-03A .3-03B .3-03C .3-03D .- 3 - / 7三.解答题19.(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x20、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.平行四边形B.矩形C.正三角形D.等腰梯形【答案】B.考点:中心对称图形;轴对称图形.2.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( ) A.60°B.90°C.120°D.180°【答案】D.【解析】试题分析:∵左视图是等边三角形,∴底面直径=圆锥的母线.故设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=2180n rπ⋅,所以n=180°.故选D.考点:圆锥的计算.3.如图,把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125°B.120°C.140°D.130°【答案】D.【解析】试题分析:根据直角三角形两锐角互余求出∠3=90°﹣∠1=90°﹣40°=50°,,再根据邻补角定义求出∠4=180°﹣50°=130°,然后根据两直线平行,同位角相等∴∠2=∠4=130°.故选D.考点:平行线的性质;三角形的外角性质.4.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是( )A.16B.14C.13D.112【答案】A【解析】试题分析:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是:21 126.故选:A考点:概率公式;利用轴对称设计图案.5.将一副三角板如图叠放,则△AOB与△DOC的面积比是( )AB.12C.13D.14【答案】C.考点:相似三角形的判定与性质;解直角三角形.6.如图,直线l和双曲线y=kx(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE 面积是S3,则( )A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【答案】D.【解析】试题分析:由于点A在y=kx上,可知S△AOC=12k,又由于点P在双曲线的上方,可知S△POE>12k,而点B在y=kx上,可知S△BOD=12k,进而可比较三个三角形面积的大小.∴S1=S2<S3.故选;D.考点:反比例函数系数k的几何意义.7.如图所示,G为△ABC重心(即AD,BE,CF分别为各边的中线),若已知S△EFG=1,则S△ABC为( )A.2 B.4 C.8 D.12【答案】D.【解析】试题分析:∵AD,BE,CF分别为各边的中线,∴EF∥BC,△EFG∽△BCG,EF=12 BC,∴S△BCG=4S△EFG=4,又∵G为△ABC重心,∴AG=2GD,∴S△ABG+S△ACG=2S△BCG=8,∴S △ABC =12.故选D .考点:相似三角形的判定与性质;三角形的重心.8.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9【答案】D .考点:等腰三角形的判定与性质;平行线的性质.二.填空题9.把两块含有30°的相同的直角三角尺按如图所示摆放,使点C 、B 、E 在同一直线上,连接CD ,若AC=6cm ,则△BCD 的面积是______.【答案】27.【解析】试题分析:∵两块三角尺是有30°的相同的直角三角尺,∠ABC=∠EBD=30°,∴AC AB =12,cos ∠ABC=cos30°=BC AB ∴AB=BE=2AC=2DE=2×6=12,××∴,过D 作DF ⊥BE ,在Rt △BDF 中,∠DBE=30°,∴DFBD 12,,∴S △BCD =12BC •DF=12×=27cm 2. 故答案为:27.考点:勾股定理;含30度角的直角三角形.10.△ABC中,AB=6cm,∠B=50°,∠C=70°,△DEF≌△ABC,EF=BC,∠E=50°,则DE的长和∠D的度数为______.【答案】6cm,60°.【解析】试题分析:∵∠B=50°,∠C=70°,∴∠A=180°﹣50°﹣70°=60°,∵△DEF≌△ABC,根据三角形全等的性质AB=DE=6cm,∠D=∠A=60°,故答案为:6cm,60°.考点:全等三角形的性质.11.如图,已知线段a,c(a<c),画一个Rt△ABC,使∠C=90°,一直角边CB=a,斜边AB=c.【答案】见试题解析考点:作图—复杂作图.12.如图,AB=AC,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,则DE=______.【答案】DF.【解析】试题分析:∵AB=AC,AD⊥BC,根据等腰三角形三线合一得到∠BAD=∠CAD,又DE⊥AB,DF⊥AC,∴DE=DF.故答案为:DF.考点:角平分线的性质;等腰三角形的性质.三.解答题13.已知:如图,AD=CB,AB=DC,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:(1)△ABC≌△CDA;(2)BE=DF.【答案】见试题解析【解析】试题分析:(1)根据全等三角形的边边边判定定理证明即可;(2)根据三角形面积公式计算即可.试题解析:证明:(1)在△ABC和△CDA中,,△ABC≌△CDA.(2)∵△ABC≌△CDA,∴S△ABC=S△CDA,∵S△ABC=AC×BE,S△CDA=AC×DF,∴BE=DF.考点:全等三角形的判定与性质.14.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.【答案】见试题解析考点:等边三角形的性质;勾股定理;平移的性质.15.如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.(1)直线FC与⊙O有何位置关系?并说明理由;(2)若OB=BG=2,求CD的长.【答案】直线FC与⊙O相切.理由见试题解析(2).【解析】试题分析:(1)相切.连接OC,证OC⊥FG即可.根据题意AF⊥FG,证∠FAC=∠ACO可得OC∥AF,从而OC ⊥FG,得证;(2)根据垂径定理可求CE后求解.在Rt△OCG中,根据三角函数可得∠COG=60°.结合OC=2求CE,从而得解.试题解析:(1)直线FC与⊙O相切.理由如下:连接OC.∵OA=OC,∴∠1=∠2.由翻折得,∠1=∠3,∠F=∠AEC=90°.∴∠2=∠3,∴OC∥AF.∴∠OCG=∠F=90°.∴直线FC与⊙O相切.(2)在Rt△OCG中,,∴∠COG=60°.在Rt△OCE中,.∵直径AB垂直于弦CD,∴.考点:切线的判定;解直角三角形.16.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.【答案】(1)该抛物线的解析式为y=x2+x﹣4.(2)当x=﹣1时,S△PCE的最大值为3.(3)点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).试题解析:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△BAC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2 =x2﹣x+=﹣(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);考点:二次函数综合题.高考一轮复习:。