山东省济南市商河县2018届九年级数学上学期期中试题

合集下载

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。

2018-2019学年山东省济南市商河县九年级(上)期中数学试卷

2018-2019学年山东省济南市商河县九年级(上)期中数学试卷

2018-2019学年山东省济南市商河县九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.93.(4分)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=4.(4分)若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1B.C.D.5.(4分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5706.(4分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k 的取值范围是()A.k≤2B.k≤0C.k<2D.k<07.(4分)方程3x(x﹣1)=4(x﹣1)的根是()A.B.1C.和1D.和﹣18.(4分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别为﹣2,﹣1,0,1.卡片除数字不同外其他都相同,从中随机抽取两张卡片,其数字之和为负数的概率为()A.B.C.D.9.(4分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.10.(4分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.11.(4分)如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2512.(4分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM的长为()A.2B.2C.4﹣D.8﹣4二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.14.(4分)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.15.(4分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.16.(4分)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.17.(4分)如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是.18.(4分)如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为.三、解答题(本大题共9小题,共78分)19.(6分)解方程:3x2﹣2x﹣2=0.20.(6分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.21.(6分)如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm,他准备了一支长为20cm的蜡烛,想要得到高度为5cm的像,蜡烛应放在距离纸筒多远的地方?22.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.23.(8分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(10分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.25.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.26.(12分)如图,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动,点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果点P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)当PB=2厘米时,求点P移动多少秒?(2)t为何值时,△P AQ为等腰直角三角形?(3)求四边形QAPC的面积,并探究一个与计算结果有关的结论.27.(12分)(1)【操作发现】:如图一,在矩形ABCD中,E是BC的中点,将△ABE沿AE 折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC的数量关系是.(2)【类比探究】:如图二,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.(3)【应用】:如图三,将(1)中的矩形ABCD改为正方形,边长AB=4,其它条件不变,求线段GC的长.2018-2019学年山东省济南市商河县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.【解答】解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.2.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.3.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.4.【解答】解:把2﹣代入方程x2﹣4x+c=0,得(2﹣)2﹣4(2﹣)+c=0,解得c=1;故选:A.5.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.6.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.7.【解答】解:原方程变形整理后得:(x﹣1)(3x﹣4)=0,x﹣1=0或3x﹣4=0,解得:x1=1,x2=,故选:C.8.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之和为负数的结果有8种,所以数字之和为负数的概率为=,故选:B.9.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.10.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.11.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.12.【解答】解:过点M作MF⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠F AM=45°,∴BM=FM=AM•sin∠F AM=AM.又∵AM+BM=4,∴AM+AM=4,解得:AM=8﹣4.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.14.【解答】解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为:2.15.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.16.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.17.【解答】解:过C作CE⊥y轴于E,∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴==,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=,∴CE=OD=2,DE=OA=1,∴OE=7,∴C(2,7),故答案为(2,7).18.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴=,∴=,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG===2,故答案为2.三、解答题(本大题共9小题,共78分)19.【解答】解:=即,∴原方程的解为,20.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DF A中∵∴△ABE≌△DF A,∴AB=DF.21.【解答】解:如图,AB=20cm,OF=15cm,CD=4cm,∵AB∥CD,EF⊥AB∴EF⊥CD,∴△OAB∽△ODC,∴=,即=,解得OE=60cm.答:蜡烛应放在距离纸筒60cm的地方.22.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.23.【解答】解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.24.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.25.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EF A,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.26.【解答】解:(1)∵AB=12cm,P A=2tcm,∴PB=12﹣2t,∵PB=2,∴12﹣2t=2,解得t=5,答:当PB=2厘米时,求点P移动5秒.(2)若△QAP为等腰直角三角形,则只需AQ=AP,根据题干条件知AQ=6﹣t,AP=2t,列等式得6﹣t=2t,解得t=2秒,即当t=2时,△QAP为等腰直角三角形;(3)四边形QAPC的面积=矩形ABCD的面积﹣三角形CDQ的面积﹣三角形PBC的面积,设DQ=x.根据题干条件可得四边形QAPC的面积=72﹣x•12﹣×6×(12﹣2x)=72﹣36=36,故可得结论四边形QAPC的面积是矩形ABCD面积的一半.27.【解答】解:(1)点E在BC的中点时,能使GF=GC,证明:如图一,连接EG,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵EG=EG,∠C=∠EFG=90°,∴△ECG≌△EFG(HL),∴FG=CG,故答案为:FG=CG;(2)(1)中的结论仍然成立.证明:如图二,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立;(3)设GF=GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,(4+x)2=(4﹣x)2+42,解得:x=1,即CG=1.。

山东省济南市九年级上学期数学期中考试试卷

山东省济南市九年级上学期数学期中考试试卷

山东省济南市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共6分)1. (1分)(2018·河南模拟) 某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量(千瓦时)20304050户数10403020则4月份这100户节电量的平均数、中位数、众数分别是()A . 35、35、30B . 25、30、20C . 36、35、30D . 36、30、302. (1分)如果函数y=mxm﹣2+x是关于x的二次函数,那么m的值一定是()A . ﹣3B . ﹣4C . 4D . 33. (1分)(2019·资阳) 在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A . 4个B . 5个C . 不足4个D . 6个或6个以上4. (1分)(2018·台湾) 如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A . 174B . 176C . 178D . 1805. (1分) (2016九上·苍南月考) 对于函数使得y随x的增大而增大的x的取值范围是()A . x≥-1B . x≤-1C . x≥0D . x≤06. (1分) (2020九上·兰陵期末) 如图,⊙O是△ABC的外接圆,BC=3,∠BAC=30°,则劣弧的长等于()A .B . πC .D . π二、填空题 (共10题;共10分)7. (1分)(2019·秀洲模拟) 抛掷一枚硬币,反面朝上的概率是________。

8. (1分)若一组数据x1 , x2 ,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是________,方差是________.9. (1分)若二次函数( a 、 b 为常数)的图象如图,则的值为________.10. (1分) (2016九上·扬州期末) 某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为________.11. (1分) (2018九上·柯桥期末) 如图,AB、BC是的弦,,OD、OE分别垂直AB,BC 于点D、E,若,,则的半径长为________.12. (1分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为________.13. (1分)(2019·嘉定模拟) 将抛物线向右平移两个单位后,所得抛物线的表达式为________14. (1分) (2017九上·平房期末) 若扇形的弧长为6πcm,面积为15πcm2 ,则这个扇形所对的圆心角的度数为________.15. (1分)(2016·扬州) 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为________.16. (1分) (2017八下·福清期末) 如图,在平行四边形ABCD中,△ABD是等边三角形,BD=10,且两个顶点B、D分别在x轴,y轴上滑动,连接OC,则OC的最小值是________。

2018九年级数学上期中试题(含答案)

2018九年级数学上期中试题(含答案)

一、选择题(每小题3分,共计24分)1.方程x2-4x+3=0中二次项系数、一次项系数和常数项分别是()A.1,4,3 B.2,-4,3 C.1,-4,3 D.2,-4,32.二次函数y=x2-2x+1与x轴的交点个数是()A.0 B.1 C.2D.33.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A.70° B.50° C.40° D.35°4.到三角形三条边距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点第3题图C.三条高的交点 D.三边的垂直平分线的交点5.某型号的手机连续两次降阶,每台手机售价由原来的3600元降到2500元,设平均每次降价的百分率为x,则列出方程正确的是()A.2500(1+x)2=3600 B.3600(1-x)2=2500C.3600 (1-2x) = 2500 D.3600(1-x2)=25006.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c,为常数)的一个解x的范围是()5.1 5.2 5.3 5.4A.5.1<x<5.2 B.5.2<x<5.3 C.5.3<x<5.4 D.5.4<x<5.57.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10 B.5 C.4 D.38.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.第II卷主观题部分二、填空题(每小题3分,共计30分)9.当m=_______时,关于x的方程2xm-2 =5是一元二次方程.10.函数y=6(x+1)2+3的顶点坐标是___________.11.关于x的一元二次方程x2+mx-6=0的一个根的值为3,则另一个根的值是_____.12.已知关于x的一元二次方程x2﹣2 x+k=0有两个相等的实数根,则k值为_____.13.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CAD=_______°.第13题图第14题图第18题图14.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5 cm,小圆的半径为3 cm,则弦AB的长为_______cm.15.在平面直角坐标系中,将二次函数y=2x2的图像向右平移1个单位长度,再向上平移3个单位长度,所得图像的函数关系式是____________________.16.已知抛物线y=ax2+bx+c=0(a≠0)与x轴交于A,B两点,若点A的坐标为(-1,0),抛物线的对称轴为直线x=2,则线段AB的长为__________.17.圆锥的侧面展开图的面积为,母线长为6,则圆锥的底面半径为________.18.如图,将边长为()cm的正方形绕其中心旋转45°,则两个正方形公共部分(图中阴影部分)的面积为___________cm2.三、解答题(共计86分)19.解方程(本题满分10分)(1) (x+1)2-9=0 (2)(x-4)2+2(x-4)=020.(本题满分8分)已知关于x的方程x2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a的取值范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.21.(本题满分6分)如图,AB是半圆的直径,点D是AC︵的中点,∠ABC=50°,求∠BAD 的度数.22.(本题满分8分)已知:如图,AB是⊙O的直径,M、N分别为AO、BO的中点,CM⊥AB,DN⊥AB,垂足分别为M、N,连接OC、OD.求证:AC=BD.23. (本题满分8分)已知二次函数y1=x2-2x-3的图像与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点D的坐标,并在下面直角坐标系中画出该二次函数的大致图像;(2)设一次函数y2=kx+b(k≠0)的图像经过B、D两点,请直接写出满足y1≤y2的x的取值范围.24.(本题满分8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?25.(本题满分8分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE,连接OC.(1)求证:DE是⊙O的切线;(2)若⊙O半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).26.(本题满分8分)如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽AB 不能超过2米. 为使透进的光线最多,则窗子的长、宽应各为多少米?27.(本题满分10分)如图,抛物线与x轴交于A、B(A在B左侧)两点,一次函数y=-x+4与坐标轴分别交于点C、D,与抛物线交于点M、N,其中点M的横坐标是 .(1)求出点C、D的坐标;(2)求抛物线的表达式以及点A、B的坐标;(3)在平面内存在动点P(P不与A,B重合),满足∠APB为直角,动点P到直线CD的距离是否有最小值,如果有,请直接写出这个最小值的结果;如果没有,请说明理由。

2017-2018年山东省济南市商河县九年级上学期期中数学试卷及参考答案

2017-2018年山东省济南市商河县九年级上学期期中数学试卷及参考答案

2017-2018学年山东省济南市商河县九年级(上)期中数学试卷一、选择题(共15小题,每小题3分,满分45分)1.(3分)下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+22.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.(3分)菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直4.(3分)如果2是方程x2﹣3x+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣25.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对6.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个7.(3分)如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达H点的概率是()A.B.C.D.8.(3分)某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()A.x(x﹣11)=180 B.2x+2(x﹣11)=180 C.x(x+11)=180 D.2x+2(x+11)=1809.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.10.(3分)如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A.(﹣3,﹣4)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣4,﹣3)11.(3分)如图,在△ABC中,看DE∥BC,,DE=6cm,则BC的长是()A.10cm B.11cm C.12cm D.15cm12.(3分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋中摸出2个球,其中2个球颜色不相同的概率是()A.B.C.D.13.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为()A.4 B.6 C.8 D.1014.(3分)如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°15.(3分)一张矩形纸片,剪下一个正方形,剩下一个矩形,成为第一次操作:在剩下的矩形纸片中再剪下一个正方形,称为第二次操作;…;若在第n次操作后,剩下的图形为正方形,则称原图形为n阶奇异长方形.如图1,长方形ABCD 中,若AB=2,BC=6,则称形ABCD为2阶奇异长方形.如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?()A.不是B.是2阶奇异矩形C.是3阶奇异矩形 D.是4阶奇异矩形二、填空题(共6小题,每小题3分,满分18分)16.(3分)一元二次方程x2+x=0的根是.17.(3分)已知线段a、b,满足2a=3b,则.18.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1米,BP=2米,PD=10米,那么该古城墙的高度CD是米.19.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE ⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.20.(3分)对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.21.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.三、解答题(共7小题,满分57分)22.(8分)用适当的方法解方程:(1)x2﹣4x+3=0(2)(x﹣2)(2x﹣5)=1.23.(8分)四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.24.(6分)已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.25.(8分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.26.(9分)如图,矩形ABCD中,AB=4,BC=m(m>0).P为边BC上一动点(不与B,C重合)过P点作PE⊥AP交直线CD于E.(1)求证:△ABP∽△PCE;(2)当P为BC中点时,E恰好为CD的中点,求m的值.27.(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?28.(9分)已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?2017-2018学年山东省济南市商河县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(3分)下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+2【解答】解:A、a=0时是一元一次方程,故A错误;B、是分式方程,故B错误;C、是一元一次方程,故C错误;D、是一元二次方程,故D正确;故选:D.2.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.3.(3分)菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直【解答】解:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选:D.4.(3分)如果2是方程x2﹣3x+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣2【解答】解:∵2是方程x2﹣3x+c=0的一个根,∴将x=2代入方程得:22﹣3×2+c=0,解得:c=2.故选:C.5.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.6.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.7.(3分)如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达H点的概率是()A.B.C.D.【解答】解:共有4种等可能的结果数,其中小球最终到达H点的结果数为1,所以小球最终到达H点的概率=.故选:B.8.(3分)某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()A.x(x﹣11)=180 B.2x+2(x﹣11)=180 C.x(x+11)=180 D.2x+2(x+11)=180【解答】解:设宽为x米,则长为(x+11)米,根据题意得:x(x+11)=180,故选:C.9.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.【解答】解:由勾股定理得:AB==,BC=2,AC==,∴AC:BC:AB=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比:1::,图中的三角形(阴影部分)与△ABC相似;C、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:B.10.(3分)如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A.(﹣3,﹣4)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣4,﹣3)【解答】解:∵△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以P点为位似中心的位似图形,根据位似图形的性质,对应点的坐标相交于一点,连接AA1,BB1,CC1,交点即是P点坐标,∴如图所示,P点的坐标为:(﹣4,﹣3).故选:D.11.(3分)如图,在△ABC中,看DE∥BC,,DE=6cm,则BC的长是()A.10cm B.11cm C.12cm D.15cm【解答】解:∵,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE=6cm,∴BC=10cm.故选:A.12.(3分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋中摸出2个球,其中2个球颜色不相同的概率是()A.B.C.D.【解答】解:画树形图得:∵共有20种等可能的结果,其中2个球的颜色不相同的有12种情况,∴其中2个球的颜色不相同的概率是=;故选:D.13.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为()A.4 B.6 C.8 D.10【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选:C.14.(3分)如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°【解答】解:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,设∠B=x,则∠BAD=180°﹣x,∠B=∠AEB=∠D=∠AFD=x,∴∠BAE=∠DAF=180°﹣2x,即180°﹣2x+180°﹣2x+60°=180°﹣x解得x=80°,故选:C.15.(3分)一张矩形纸片,剪下一个正方形,剩下一个矩形,成为第一次操作:在剩下的矩形纸片中再剪下一个正方形,称为第二次操作;…;若在第n次操作后,剩下的图形为正方形,则称原图形为n阶奇异长方形.如图1,长方形ABCD 中,若AB=2,BC=6,则称形ABCD为2阶奇异长方形.如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?()A.不是B.是2阶奇异矩形C.是3阶奇异矩形 D.是4阶奇异矩形【解答】解:矩形ABCD是3阶奇异矩形,裁剪线的示意图如下:故选:C.二、填空题(共6小题,每小题3分,满分18分)16.(3分)一元二次方程x2+x=0的根是x1=0,x2=﹣1.【解答】解:x2+x=0,x(x+1)=0,x=0,x+1=0,x1=0,x2=﹣1,故答案为:x1=0,x2=﹣1.17.(3分)已知线段a、b,满足2a=3b,则=.【解答】解:两边都除以2b,得=,由合比性质,得=,故答案为:=.18.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1米,BP=2米,PD=10米,那么该古城墙的高度CD是5米.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=1米,BP=2米,PD=10米,∴=,CD=5,故答案为:5.19.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE ⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.20.(3分)对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=3或﹣3.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.21.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.三、解答题(共7小题,满分57分)22.(8分)用适当的方法解方程:(1)x2﹣4x+3=0(2)(x﹣2)(2x﹣5)=1.【解答】解:(1)∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,则x﹣1=0或x﹣3=0,解得:x=1或x=3;(2)原方程整理为一般式可得2x2﹣9x+9=0,则(2x﹣3)(x﹣3)=0,∴2x﹣3=0或x﹣3=0,解得:x=或x=3.23.(8分)四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.【解答】解:(1)P(抽到数字2)=;(2)解法一:列举所有等可能的结果,画树状图:解法二:列举所有等可能的结果,列举如下:共有12种等可能的结果,其中抽到的数字之和为5的占4种,∴P(抽到的数字之和为5)==.24.(6分)已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.【解答】证明:∵AB=2,BD=AB,∴BD=1.∵BD⊥AB于点B,∴AD==,∴AE=AD﹣DE=﹣1,∴AC=AE=﹣1,∴AC=AB,∴点C就是线段AB的黄金分割点.25.(8分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∴△AOE为等边三角形,∴AO=4,故AC=8.26.(9分)如图,矩形ABCD中,AB=4,BC=m(m>0).P为边BC上一动点(不与B,C重合)过P点作PE⊥AP交直线CD于E.(1)求证:△ABP∽△PCE;(2)当P为BC中点时,E恰好为CD的中点,求m的值.【解答】解:(1)∵矩形ABCD中,∠B=90°,PE⊥AP,∴∠BAP+∠APB=90°,∠CPE+∠APB=90°,∴∠BAP=∠CPE,又∵∠B=∠C=90°,∴△ABP∽△PCE;(2)当P为BC中点时,E恰好为CD的中点时,BP=CP=m,CE=2,∵△ABP∽△PCE,∴,∴,解得:m1=4,m2=﹣4(舍去),∴m的值为4;27.(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【解答】解:(1)80﹣x,200+10x,800﹣200﹣(200+10x)(2)根据题意,得200×(80﹣50)+(200+10x)×(80﹣x﹣50)+(400﹣10x)(40﹣50)=9000整理得10x2﹣200x+1000=0,即x2﹣20x+100=0,解得x1=x2=10当x=10时,80﹣x=70>50答:第二个月的单价应是70元.28.(9分)已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2018九年级上数学期中考试试卷(含答案)

2018九年级上数学期中考试试卷(含答案)

一、选择题(本大题共12小题,每小题3分,共36分)
1.下列各图中,不是中心对称图形的是()
A.①③ B.②④ C.②③ D.①④
2.方程x2﹣4=0的解为()
A.2 B.﹣2 C.±2 D.4
3.若x=1是方程ax2+bx+c=0的解,则()
A.a+b+c=1 B.a﹣b+c=0 C.a+b+c=0 D.a﹣b﹣c=0
4.已知点P(b,2)与点Q(3,2a)关于原点对称点,则a,b的值分别是()A.﹣1,3 B.1,﹣3 C.﹣1,﹣3 D.1,3
5.抛物线y=x2﹣3的顶点坐标、对称轴是()
A.(0,3),x=3 B.(0,﹣3),x=0 C.(3,0),x=3 D.(3,0),x=0
6.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()
A.(﹣1,﹣1) B.(1,﹣1) C.(﹣1,1) D.(1,1)
7.关于x的一元二次方程mx2﹣2x+1=0有两个相等实数根,则m的值为()A.﹣1 B.2 C.﹣2 D.1
8.下列描述抛物线y=(1﹣x)(x+2)的开口方向及其最值情况正确的是()A.开口向上,y有最大值 B.开口向上,y有最小值
C.开口向下,y有最大值 D.开口向下,y有最小值
9.用配方法解下列方程时,配方有错误的是()
A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=。

2018年秋季学期九年级数学上期中试题卷加答案

2018年秋季学期九年级数学上期中试题卷加答案

2018年秋季学期九年级数学上期中试题卷加答案数学试题卷一、单选题(共10 题,每题 4 分,共40 分)1.下列说法正确的是( )A.同圆或等圆中弧相等,则它们所对的圆心角也相等B.0°的圆心角所对的弦是直径C.平分弦的直径垂直于这条弦D.三点确定一个圆2.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y ax2 bx .若此炮弹在第7 秒与第14 秒时的高度相等,则在下列哪一个时间的高度是最高的?( )A.第8 秒B.第10 秒C.第12 秒D.第15 秒3.若将函数y 2x2 的图象向上平移5 个单位,再向右平行移动 1 个单位,得到的抛物线是( )A.y 2x 5 2 1C.y 2x 1 2 5B.y 2x 5 2 1D.y 2x 1 2 54.一个布袋里装有 4 个只有颜色不同的球,其中 3 个红球,1 个白球.从布袋里摸出 1 个球,记下颜色后放回,搅匀,再摸出 1 个球,则两次摸到的球都是红球的概率是( )5.已知二次函数y ax2 bx c 的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1.其中正确的结论的个数是( )A.2 个B.3 个C.4 个D.5 个6.如图,AB 是半圆O 的直径,点C 在半圆O 上,把半圆沿弦AC 折叠,AC 恰好经过点O,则BC 与AC 的关系是( )A.BC 1 AC2B.BC 1 AC3C.BC ACD.不能确定7.如图,Rt△ABC 中,∠ACB=90°,CA=CB=2,以AB 的中点 D 为圆心DC 为半径,作圆心角为90°的扇形DEF,则图中阴影部分的面积为( )A. 2 2B. 1 2C.π-2 D.π-18.已知二次函数y=﹣x2+x+6 及一次函数y=﹣x+m,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m 与新图象有4 个交点时,m 的取值范围是( )A.25 m 3 4B.25 m 2 4C.﹣2<m<3 D.﹣6<m<﹣29.已知如图,抛物线y x2 2x 3 交x 轴于A、B 两点,顶点为C,CH⊥AB 交x 轴于H,在CH 右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ 时,此时CP 的长为( )10.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图 1 中C)按某种规律组成的一个大正方形,现有25×25 格式的正方形如图1,角上是三个7×7 的 A 型大黑白相间正方形,中间右下一个5×5 的 B 型黑白相间正方形,除这4 个正方形外,若其他的小正方形白色块数y 与黑色块数x 正好满足如图 2 所示的函数图象,则该25×25 格式的二维码共有多少块黑色的 C 型小正方形( )A.153 B.218 C.100 D.216二、填空题(共 6 题,每题 5 分,共30 分)11..如图,四个函数的图像中,分别对应的是:①y ax2 ;②y bx2 ;③y cx2 ;④y dx2 .则a、b、c、d 的大小关系为.第11 题图第13 题图12.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.13.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为cm2.(结果保留π)14.平行于x 轴的直线l 分别与一次函数y=﹣x+3 和二次函数y=x2﹣2x﹣3 的图象交于A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3,设m=x1+x2+x3,则m 的取值范围是.15.在平面直角坐标系,对于点P(x,y)和Q(x,y′),给出如下定义:若y y x 0,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点( ﹣1 ,3) 的“可控变点”为点( ﹣1 ,﹣3) .点( ﹣5 ,﹣2) 的“可控变点”坐标为;若点P 在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是﹣16≤y′≤16,实数 a 的取值范围为.16.某电商销售一款夏季时装,进价40 元/件,售价110 元/件,每天销售20 件,每销售一件需缴纳电商平台推广费用 a 元(a>0).未来30 天,这款时装将开展“每天降价 1元”的夏令促销活动,即从第 1 天起每天的单价均比前一天降 1 元.通过市场调研发现,该时装单价每降 1 元,每天销量增加 4 件.在这30 天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为.三、解答题(共8 题,共80 分)17.(8 分)某居民小区一处圆柱形的输水管破裂,维修人员为更新管道,需确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求:保留作图痕迹,标出圆心O);(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.18.(8 分)已知抛物线y ax2 bx c 与x 轴交于点A(1,0),B(3,0),且过点C(0,-3) (1)求抛物线的表达式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x 上,并写出平移后抛物线的表达式.19.(8 分)如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上任意一点(不与点A、B 重合),连接CO 并延长CO 交⊙O 于点D,连接AD.(1)弦长AB 等于(结果保留根号);(2)当∠D=20°时,求∠BOD 的度数.20.(10 分)随着通讯技术迅猛发展,人与人之间的沟通方式更加多样、便捷.李老师组织数学兴趣小组的同学们开展了“你最喜欢的沟通方式”问卷调查活动,并在全校范围内随机调查了部分学生(每人必选且只选一种),将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)在扇形统计图中,表示“微信”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)寒假中的某一天,张明和李响都想从“电话”、“微信”、“QQ”三种沟通方式选一种方式与李老师联系,请用列表或画树状图的方法求出张明和李响两名同学恰好选中同一种沟通方式的概率.21.(10 分)已知在△ABC 中,AB=AC,以AB 为直径的⊙O 分别交AC 于D,BC 于E,连接ED.(1)求证:ED=EC;(2)若CD=3,EC 2,求AB 的长.22.(10 分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD 为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O 的内接四边形ABCD 是“奇妙四边形”,若⊙O 的半径为6,∠BCD=60°.“奇妙四边形”ABCD 的面积为;(3)如图3,已知⊙O 的内接四边形ABCD 是“奇妙四边形”作OM⊥BC 于M.请猜测OM 与AD 的数量关系,并证明你的结论.23.(12 分)某商家销售一款商品,进价每件80 元,售价每件145 元,每天销售40 件,每销售一件需支付给商场管理费 5 元,未来一个月(按30 天计算),这款商品将开展“每天降价 1 元”的促销活动,即从第一天开始每天的单价均比前一天降低 1 元,通过市场调查发现,该商品单价每降 1 元,每天销售量增加 2 件,设第x 天(1≤x≤30 且x 为整数)的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?24.(14 分)如图,在平面直角坐标系xOy 中,已知A,B 两点的坐标分别为(-4,0),(4,0),C(m,0)是线段AB 上一点(与A,B 点不重合),抛物线L1:y ax2 b x c(a<0)经过点A,C,顶点为D,抛物线L2:y ax2 b x c (a<0)经过点C,B,顶点为E,AD,BE 的延长线相交于点F.(1)若 a 1 ,m=-1,求抛物线L ,L 的解析式;2 1 2(2)若a=-1,AF⊥BF,求m 的值;(3)是否存在这样的实数a(a<0),无论m 取何值,直线AF 与BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.。

山东省2018-2019学年九年级上学期数学期中考试试卷

山东省2018-2019学年九年级上学期数学期中考试试卷

第1页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………山东省2018-2019学年九年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)10cm ,最短弦长为8cm ,那么OM 的长为( ) A . 3cm B . 6cm C .cm D . 9cm2. 如图,⊙O 是⊙ABC 的内切圆,切点分别是D ,E ,F ,已知⊙A=100°,⊙C=30°,则⊙DFE 的度数是( )A . 55°B . 60°C . 65°D . 70°3. 如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4. 如图,⊙ABC 内接于⊙O ,若么⊙OAB=28°则⊙C 的大小为( )答案第2页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 56°B . 60°C . 62°D . 28°5. 点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是5,那么点P 关于原点的对称点的坐标是( ) A . (-5,4) B . (5,-4) C . (-4,-5) D . (-4,5)6. 若三角形两边长分别为3和4,第三边长是方程x 2-12x+35=0的根,该三角形的周长为( ) A . 14 B . 12 C . 12或14 D . 以上都不对7. 圆心在原点O ,半径为5的⊙O ,则P(-3,4)与⊙O 的位置关系是( ) A . 在⊙O 内 B . 在⊙O 上 C . 在⊙O 外 D . 不能确定8. 抛物线y=x 2+bx+c 的图象向右移2个单位长度,再向下平移3个单位长度,所得图象的解析式为y=x 2-2x -3,则b ,c 的值为( ) A . b=2,c=0 B.b=2,c=-1C . b=-2,c=-1D . b=-3,c=29. 如图,直线AB ,CD 相交于点O ,⊙AOC=30°,半径为1cm 的⊙P 的圆心在射线OA 上,开始时,PO=6cm .如果⊙P 以1cm /秒的速度沿由A 向B 的方向移动,那么当⊙P 的运动时间t(秒)满足条件 时,⊙P 与直线CD 相交( )A.3≤t≤6 B.t≥6 C.t<4 D.4<t<810. 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的长为x ,且0<x≤10,阴影部分的面积为y ,则能反映y 与X 之间函数关系的大致图象是( )第3页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共5题)1. 若a ,b 是一元二次方程x 2-2018x+1=0的两根,则的值是 .2. 一个小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下面函数解析式:h=-5t 2+10t+1,则小球距离地面的最大高度是 m .3. 如图,⊙ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,DF 的最小值是 .答案第4页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊙AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,关于下列结论:①⊙BAD=⊙ABC ;①②GP=GD ;③点P 是⊙ACQ 的外心,其中结论正确的是 (只需填写序号).5. 二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b ;③8a+7b+2c>0;④若点A(一3,y l )、点B(- ,y 2)、点C( ,y 3)在该函数图象上,则y l <y 3<y 2;⑤若方程a(x+1)(x -5)=-3的两根为x 1和x 2 , 且x 1<x 2 , 则x 1<-1<5<x 2 . 其中正确的结论有 (只需填写序号) 评卷人得分二、作图题(共1题)6. 如图,⊙ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)第5页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)①请画出将⊙ABC 向左平移4个单位长度后得到的图形⊙A 1B 1C 1;②请画出⊙ABC 关于原点O 成中心对称的图形⊙A 2B 2C 2;(2)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标. 评卷人 得分三、综合题(共6题)7. 关于x 的一元二次方程x 2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.8. 某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?答案第6页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?9. 如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D 点的位置,并写出D 点坐标为;(2)连接AD 、CD ,求 圆 D 的半径(结果保留根号)及扇形ADC 的圆心角度数;(3)若扇形DAC 是某一个圆锥的侧面展开图,求该圆锥的底面半径(结果保留根号).10. 如图,AB 是⊙O 的直径,⊙BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F .(1)求证:CF 是⊙O 的切线;第7页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)若⊙F=30°,EB=4,求图中阴影部分的面积(结果保留根号和 ).11. 若抛物线L :y=ax 2+bx+c(a ,b ,c 是常数,abc≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的”路线”.若直线y=mx+1与抛物线y=x 2-2x+n 具有“一带一路”关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济南市商河县2018届九年级数学上学期期中试题
九年级上学期期中测试数学试题答案
一、选择题(每小题3分,共45分)
18.8 19.22.5 20.三、解答题
)画树状图: 种等可能的结果,24.(6分)证明:∵AB=2,DB=AB ∴DB=1 ∵BD ⊥AB ∴AD2=AB2+DB2
∴AD=5 则AC=AE=5-1

2
15-=AB AC
∴点C 是线段A B 的黄金分割点…………………6分
25. (8分)(1)证明:∵四边形ABDE 是平行四边形,∴AB=DE , 又∵AB=AC ,∴DE=AC .
∵AB=AC ,D 为BC 中点,∴∠ADC=90°,
又∵D 为BC 中点,∴CD=BD .∴CD ∥AE ,CD=AE . ∴四边形AECD 是平行四边形,
又∴∠ADC=90°,∴四边形ADCE 是矩形.-----------4分 (2)解:∵四边形ADCE 是矩形,∴AO=EO ,
41123
=
∵∠AOE=60°∴△AOE 为等边三角形, ∴AO=4,故AC=8.-----------8分
26.(9分)(1)∵四边形ABCD 是矩形∴∠B=∠C=90°
∵PE ⊥AP ∴∠APB+∠CPE=90° ∵∠CPE+∠CEP=90°∴∠APB=∠CEP ∴△ABP ∽△PCE -----------4分
(2)∵P 为BC 中点时,E 为CD 的中点,且BC=m,CD=4 ∴BP=C P=
m 2
1
,CE=2 ∵△ABP ∽△PCE
∴CE BP PC AB = 即:2212
14
m m =
∴m=24. 即m 的值为 27.(9分)(1)80-x 200+10x 400-10x -----------3分
(2)根据题意,得80×200+(80-x)(200+10x)+40(400-10x)-50×800
=9 000,
整理,得x 2
-20x +100=0. 解得x 1=x 2=10.
当x =10时,80-x =70>50.
答:第二个月的单价应是70元. -----------9分
28.(9分)(1)∵四边形AB CD 是菱形, ∴AB =AD.
又∵Δ=m 2-4(m 2-14)=m 2-2m +1=(m -1)2

当(m -1)2
=0时,即m =1时,四边形ABCD 是菱形.
把m =1代入x 2-mx +m 2-14=0,得x 2
-x +14=0.解得x 1=x 2=12.
∴菱形ABCD 的边长是1
2
.-----------4分
(2)把AB =2代入x 2
-mx +m 2-14=0,得4-2m +m 2-14=0.
解得m =52.把m =52代入x 2-mx +m 2-14=0,得x 2
-52
x +1=0.
解得x 1=2,x 2=1
2.
∴AD =1
2.
∵四边形ABCD 是平行四边形,
∴ ABCD 的周长是2(2+1
2)=5.-----------9分。

相关文档
最新文档