传感器测试实验资料报告材料
传感器实验实验报告

传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。
能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。
3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。
2) 用ROBOLAB编写上述程序。
3) 将小车与电脑用USB数据线连接,并打开NXT的电源。
点击ROBOLAB 的RUN按钮,传送程序。
4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。
5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。
从直尺上读取小车的位移。
6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。
共进行四次数据采集。
7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。
8) 利用数据处理结果及图表,得出时间同光强的对应关系。
再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。
5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。
采得数据如下所示。
b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。
传感器试验报告范文

传感器试验报告范文一、实验目的:通过对传感器进行试验,了解它的性能指标和特点,并掌握传感器在不同环境下的适用范围。
二、实验材料:1.传感器:温度传感器、压力传感器、光敏传感器。
2.仪器设备:示波器、万用表、电源、计算机。
三、实验过程:1.温度传感器试验:连接温度传感器、示波器和电源。
调节电源输出电压,观察示波器上的波形变化。
测量传感器的输出电压随温度的变化,并绘制图表。
2.压力传感器试验:将压力传感器与示波器和电源连接。
通过调节电源的输出电压,观察示波器上的波形变化,并记录传感器的输出电压随压力的变化情况。
绘制图表进行分析。
3.光敏传感器试验:连接光敏传感器、示波器和电源,调节电源输出电压,观察示波器上的波形变化。
通过遮挡传感器的光线,观察传感器的输出电压变化情况,并记录数据进行分析。
四、实验结果:1.温度传感器试验结果:温度传感器的输出电压随温度的变化呈线性关系,即温度越高,输出电压越高。
通过绘制图表,可以得出明确的温度-电压曲线。
2.压力传感器试验结果:压力传感器的输出电压随压力的变化呈线性关系,即压力越大,输出电压越高。
通过绘制图表,可以得出明确的压力-电压曲线。
3.光敏传感器试验结果:光敏传感器的输出电压随光强的变化呈非线性关系。
在光线较弱的情况下,输出电压较低,光线较强时,输出电压较高。
通过绘制图表,可以得出明确的光强-电压曲线。
五、实验讨论:从实验结果可以看出,不同的传感器有不同的特点和性能指标。
温度传感器对温度变化敏感,可以精确测量温度;压力传感器对压力变化敏感,可以精确测量压力;光敏传感器对光强变化敏感,可以精确测量光强。
因此,在实际应用中,需要根据需要选择合适的传感器。
六、实验总结:通过本次传感器试验,我们深入了解了传感器的性能指标和特点,以及它们在不同环境下的适用范围。
这对于我们在实际应用中选择合适的传感器具有重要的指导意义。
同时,本次试验还让我们掌握了使用示波器、万用表等仪器设备进行传感器测试的方法和技巧。
传感器技术实验报告

传感器技术实验报告
《传感器技术实验报告》
近年来,随着科技的不断发展,传感器技术在各个领域中得到了广泛的应用。
传感器作为一种能够感知环境并将感知到的信息转化为可用信号的装置,已经成为了现代科技发展中不可或缺的一部分。
在本次实验中,我们将对传感器技术进行一系列的实验,以探究其在不同领域中的应用和性能表现。
实验一:温度传感器性能测试
在这个实验中,我们使用了一款市场上常见的温度传感器,通过连接到实验仪器上并对其进行测试,我们得出了传感器在不同温度下的性能表现。
通过实验数据的分析,我们发现该温度传感器具有较高的精准度和稳定性,能够在不同温度条件下准确地反映出环境温度变化。
实验二:光敏传感器应用实验
在这个实验中,我们将光敏传感器应用于光控灯的设计中。
通过实验数据的采集和分析,我们发现光敏传感器能够准确感知环境光线的强弱,并将其转化为控制信号,从而实现了光控灯的自动开关。
这一实验结果表明了光敏传感器在节能环保领域中的重要应用价值。
实验三:压力传感器在工业领域中的应用
在这个实验中,我们将压力传感器应用于工业机械设备中,通过实验数据的采集和分析,我们发现压力传感器能够准确感知机械设备的工作压力,并将其转化为控制信号,从而实现了对机械设备的智能监控和控制。
这一实验结果表明了压力传感器在工业领域中的重要应用潜力。
通过以上一系列的实验,我们深入探究了传感器技术在不同领域中的应用和性
能表现,实验结果表明了传感器技术在现代科技发展中的重要作用和广阔前景。
我们相信,随着科技的不断进步,传感器技术将会在更多领域中得到广泛的应用,为人类社会的发展进步做出更大的贡献。
传感器检测实验报告

一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
传感器测速实验报告

传感器测速实验报告传感器测速实验报告引言:近年来,随着科技的发展和社会的进步,传感器技术在各个领域得到了广泛应用。
其中,传感器在测速领域的应用越来越受到重视。
本文将介绍一项关于传感器测速实验的研究,探讨其原理、方法和实验结果。
一、实验目的本实验的主要目的是通过使用传感器测速的方法,了解传感器的工作原理,以及探究传感器测速的准确性和可行性。
二、实验装置和方法1. 实验装置:本实验使用了一台传感器测速仪器,该仪器由传感器、计算机和数据处理软件组成。
2. 实验方法:a. 将传感器正确安装在测速仪器上,并连接至计算机。
b. 在实验过程中,保持传感器与被测物体之间的距离恒定。
c. 启动测速仪器,并开始进行测速实验。
d. 实验过程中,记录传感器所测得的速度数据,并进行数据处理和分析。
三、实验原理传感器测速的原理基于多种物理现象,如声波、光学、电磁等。
不同类型的传感器采用不同的原理来测量速度。
在本实验中,我们使用了一种基于光学原理的传感器。
光学传感器利用光的传播速度和物体的运动速度之间的关系来测量物体的速度。
当物体通过传感器时,光束被物体遮挡,传感器会记录下遮挡时间。
通过计算遮挡时间和传感器与物体之间的距离,可以得出物体的速度。
四、实验结果与讨论在实验过程中,我们使用传感器测速仪器对一辆运动车辆进行了测速。
实验结果显示,该车辆的速度为每小时60公里。
通过多次实验,我们发现传感器的测速结果相对准确,与实际速度相差不大。
然而,我们也注意到传感器测速的准确性受到一些因素的影响。
首先,传感器与物体之间的距离需要保持恒定,否则会导致测速结果的偏差。
其次,传感器对于高速运动的物体可能存在测量误差,因为遮挡时间非常短,传感器的响应时间有限。
为了提高测速的准确性,我们可以采取以下措施:1. 定期校准传感器,确保其测量结果的准确性。
2. 采用多个传感器进行测速,以提高测量的可靠性和准确性。
3. 结合其他测速方法,如GPS等,进行对比验证,以确保测速结果的可信度。
基本传感器实验报告

基本传感器实验报告传感器是一种能够感知环境中某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
在现代科技发展中,传感器扮演着重要的角色,广泛应用于工业生产、医疗设备、汽车电子、智能家居等领域。
本实验旨在通过对基本传感器的实验,探究其工作原理和应用。
实验一,温度传感器。
温度传感器是一种能够感知环境温度并将其转化为电信号的装置。
我们选用了一款常见的NTC热敏电阻作为温度传感器,并通过连接电路和微处理器进行实验。
实验结果显示,随着环境温度的升高,NTC热敏电阻的电阻值呈现出明显的下降趋势,从而产生了与温度成反比的电信号。
这为温度传感器的工作原理提供了直观的验证。
实验二,光敏传感器。
光敏传感器是一种能够感知环境光照强度并将其转化为电信号的装置。
我们选用了一款光敏电阻作为光敏传感器,并通过搭建简单的光照实验装置进行实验。
实验结果显示,光敏电阻的电阻值随着光照强度的增加而呈现出明显的下降趋势,从而产生了与光照强度成正比的电信号。
这为光敏传感器的工作原理提供了直观的验证。
实验三,压力传感器。
压力传感器是一种能够感知环境压力并将其转化为电信号的装置。
我们选用了一款压阻式传感器作为压力传感器,并通过搭建简单的压力实验装置进行实验。
实验结果显示,压阻式传感器的电阻值随着受压程度的增加而呈现出明显的变化,从而产生了与压力大小成正比的电信号。
这为压力传感器的工作原理提供了直观的验证。
结论:通过本次实验,我们对基本传感器的工作原理有了更深入的了解。
温度传感器、光敏传感器和压力传感器分别能够感知环境的温度、光照强度和压力,并将其转化为电信号输出。
这些传感器在工业生产、环境监测、智能家居等领域有着广泛的应用前景。
通过不断地研究和实验,我们相信传感器技术将会在未来发展中发挥越来越重要的作用。
传感器原理及实验报告

传感器原理及实验报告传感器原理及实验报告引言:传感器是一种能够将非电气量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗设备等。
本文将介绍传感器的基本原理,并通过实验报告展示传感器在温度检测方面的应用。
一、传感器的基本原理传感器的基本原理是利用物理、化学等原理将被测量的非电气量转化为电信号。
常见的传感器类型包括温度传感器、压力传感器、光敏传感器等。
以温度传感器为例,其工作原理是基于物体的温度变化对电阻值的影响。
二、实验目的本实验旨在通过使用温度传感器,测量不同物体的温度变化,并分析实验结果。
三、实验装置1. Arduino开发板2. 温度传感器3. 连接线4. 电脑四、实验步骤1. 将温度传感器连接到Arduino开发板上的模拟输入引脚。
2. 打开Arduino开发环境,编写程序以读取传感器的电压值。
3. 将温度传感器接触不同物体的表面,记录下相应的电压值。
4. 将电压值转化为温度值,并记录下实验结果。
5. 分析实验结果,探讨不同物体的温度变化规律。
五、实验结果与讨论实验中,我们将温度传感器接触了三种不同物体的表面:水杯、金属块和塑料块。
记录下的电压值如下表所示:物体电压值(V)水杯 1.23金属块 0.98塑料块 1.67通过将电压值转化为温度值的公式,我们得到了如下结果:物体温度值(℃)水杯 25.6金属块 20.3塑料块 34.8从实验结果可以看出,不同物体的温度值存在明显的差异。
这是因为不同物体的导热性质不同,导致温度传感器接触到的表面温度也不同。
六、结论通过本次实验,我们了解了传感器的基本原理,并通过温度传感器的实验展示了其在温度检测方面的应用。
实验结果表明,温度传感器可以准确地测量不同物体的温度变化,并为我们提供了有价值的信息。
七、进一步探讨除了温度传感器,还有许多其他类型的传感器可以用于不同的应用。
例如,压力传感器可以用于测量液体或气体的压力变化,光敏传感器可以用于检测光线强度的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 直流激励时霍尔传感器位移特性实验一、 实验目的:了解霍尔式传感器原理与应用。
二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。
具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。
这样它就可以用来测量位移。
霍尔电动势的极性表示了元件的方向。
磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。
四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。
1、3为电源±5V ,2、4为输出。
2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。
图9-1 直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。
表9-1 X (mm ) V(mv)作出V-X曲线,计算不同线性围时的灵敏度和非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化?七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。
2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。
实验二 集成温度传感器的特性一、 实验目的:了解常用的集成温度传感器基本原理、性能与应用。
二、 基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。
为克服温敏晶体管U b 电压生产时的离散性、均采用了特殊的差分电路。
集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。
因此它具有不易受接触电阻、引线电阻、电压噪声的干扰。
具有很好的线性特性。
本实验采用的是国产的AD590。
它只需要一种电源(+4V -+30V )。
即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验中为R2)即可实现电流到电压的转换。
它使用方便且电流型比电压型的测量精度更高。
三、 需用器件与单元:温度控制器、加热源、温度模块、数显单元、万用表。
四、 实验步骤:1、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。
2、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。
3、将温度模块中左上角的AD590接到a 、b 上(正端接a ,负端接b ),再将b 、d 连接起来。
4、将主控箱的+5V 电源接入a 和地之间。
5、将d 和地与主控箱的电压表输入端相连(即测量1K 电阻两端的电压)。
6、开启主电源,将温度控制器的SV 窗口设定为C 050(设置方法见附录2),以后每隔C 05设定一次,即Δt=C 05,读取数显表值,将结果填入下表。
表10-17、根据上表计算AD590的非线性误差。
五、实验注意事项:1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。
2、不要将AD590的+、-端接反,因为反向电压可能击穿AD590。
六、思考题:大家知道在一定的电流模式下PN结的正向电压与温度之间具有较好的线性关系,因此就有温敏二极管,你若有兴趣可以利用开关二极管或其它温敏二极管在50℃-100℃之间,作温度特性,然后与集成温度传感器相同区间的温度特性进行比较,从线性看温度传感器线性优于温敏二极管,请阐明理由。
七、实验报告要求:1、简单说明AD590的基本原理,讨论电流输出型和电压输出型集成温度传感器的优缺点。
2、总结实验后的收获、体会。
实验三 光电二极管和光敏电阻的特性研究一、实验目的:了解光电二极管和光敏电阻的特性与应用。
二、基本原理: (1)光电二极管:光电二极管是利用PN 结单向导电性的结型光电器件,结构与一般二极管类似。
PN 结安装在管的顶部,便于接受光照。
外壳上有以透镜制成的窗口以使光线集中在敏感面上,为了获得尽可能大的光生电流,PN 结的面积比一般二极管要大。
为了光电转换效率高,PN 结的深度比一般二极管浅。
光电二极管可工作在两种状态。
大多数情况下工作在反向偏压状态。
在这种情况下,当无光照时,处于反偏的二极管工作在截止状态,这时只有少数载流子在反向偏压的作用下,渡越阻挡层形成微小的反向电流,即暗电流。
反向电流小的原因是在PN 结中,P 型中的电子和N 型中的空穴(少数载流子)很少。
当光照射在PN 结上时,PN 结附近受光子轰击,吸收其能量而产生电子空穴对,使P 区和N 区的少数载流子浓度大大增加,在外加反偏电压和电场的作用下,P 区的少数载流子渡越阻挡层进入N 区,N 区的少数载流子渡越阻挡层进入P 区,从而使通过PN 结的反向电流大为增加,形成了光电流,反向电流随光照强度增加而增加。
另一种工作状态是在光电二极管上不加电压,利用PN 结受光照强度增加而增加。
N 结受光照时产生正向电压的原理,将其作为微型光电池用。
这种工作状态一般用作光电检测。
光电二极管常用的材料有硅、锗、锑化铟、砷化铟等,使用最广泛的是硅、锗光电二极管。
光电二极管具有响应速度快、精巧、坚固、良好的温度稳定性和低工作电压的优点,因而得到了广泛的应用。
图为光电流信号转换电路,Vo=IpR ,Ip 为光电流,R 是反馈电阻。
(2)光敏电阻:光敏电阻是利用光的入射引起半导体电阻的变化来进行工作的。
光敏电阻的工作原理是基于光电导效应:在无光照时,光敏电阻具有很高的阻值;在有光照时,当光电子的能量大于材料禁带宽度,价带中的电子吸收光子能量后跃迁到导带,激发出可以导电的电子—空穴对,使电阻降低,光线愈强,激发出的电子—空穴对越多,电阻值越低;光照停止后,自由电子与空穴复合,导电能力下降,电阻恢复原值。
制作光敏电阻的材料常用硫化镉(CdS )、硒化镉(CdSe )、硫化铅(PbSe )锑化铟(InSb )等。
由于光导效应只限于光照表面的薄层,所以一般都把半导体材料制成薄膜,并赋予适当的电阻值,电极构造通常做成梳形,这样,光敏电阻与电极之间的距离短,载流子通过电极的时间c T 少,而材料的载流子寿命c 又较长,于是就有很高的部增益G ,从而获得很高的灵敏度。
光敏电阻具有灵敏度高,光谱响应围宽,重量轻,机械强度高,耐冲击,抗过载能力强,耗散功率大,以及寿命长等特点。
光敏电阻的阻值R和光的强度呈现强烈的非线性。
三、实验器件与单元:光电模块,主控箱,万用表,0~20mA恒流源。
四、实验容与步骤:1、将主控箱的0~20mA恒流源调节到最小。
2、把0~20mA恒流源的输出和光电模块上的恒流输入连接起来,以驱动LED光源。
3.1、硅光电池实验:将恒流源从0开始每隔2mA记录一次,填入下列相应的表格,光电二极管的强度指示在光电模块的右边数显上。
3.2、光敏电阻实验:由于光敏电阻光较弱时变化较大,所以在0~2mA之间,每隔0.5mA记录一次,以后每隔2mA做一次实验,测得的数据填入下列相应表格。
光敏电阻的大小用万用表测量光电模块上的光敏电阻输出端。
(1)光电二极管:(2)光敏电阻:五、实验注意事项:注意要将主控箱上恒流输出的正负端和光电模块上的正负端对应接好,否则,光发送端将不能发光。
六、思考题:1、当将硅光电池作为光探测器时应注意那些问题?2、讨论光敏电阻主要应用在什么场合。
七、实验报告要求:1、根据实验数据做出光敏电阻和硅光电池的特性曲线图。
2、简述光敏电阻和硅光电池的基本特性。
实验四电容式传感器的位移特性实验一、实验目的:了解电容式传感器结构及其特点。
一、基本原理:利用平板电容C =εS /d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、S 、d 中三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d )和测量液位(变S )等多种电容传感器。
变面积型电容传感器中,平板结构对极距特别敏感,测量精度受到影响,而圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系,(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多。
)成为实际中最常用的结构,其中线位移单组式的电容量C 在忽略边缘效应时为: ()12ln 2r r l C πε=(1)式中 l ——外圆筒与圆柱覆盖部分的长度; 12r r 、——外圆筒半径和圆柱外半径。
当两圆筒相对移动l ∆时,电容变化量C ∆为 ()()()()ll Cl l l l C r r r r r r ∆=∆=∆--=∆0121212ln 2ln 2ln 2πεπεπε (2)于是,可得其静态灵敏度为: ()()()()()121212ln 4/ln 2ln 2r rr r r r g l l l l l lC k πεπεπε=∆⎥⎦⎤⎢⎣⎡∆--∆+=∆∆= (3)可见灵敏度与,12r r 有关,12r r 与越接近,灵敏度越高,虽然外极筒原始覆盖长度l 与灵敏度无关,但l 不可太小,否则边缘效应将影响到传感器的线性。
本实验为变面积式电容传感器,采用差动式圆柱形结构,因此可以很好的消除极距变化对测量精度的影响,并且可以减小非线性误差和增加传感器的灵敏度。
二、需用器件与单元:电容传感器、电容传感器实验模板、测微头、数显单元、直流稳压源。
三、实验步骤:1、将电容式传感器装于电容传感器实验模板上,将传感器引线插头插入实验模板的插座中。
2、将电容传感器实验模板的输出端Vo1与数显单元Vi 相接(插入主控箱Vi 孔)Rw 调节到中间位置。
3、接入±15V 电源,旋动测微头改变电容传感器动极板的位置,每隔0.2mm 记下位移X 与输出电压值,填入表8-1。
4、根据表8-1数据计算电容传感器的系统灵敏度S 和非线性误差fδ。
五、实验注意事项:1.传感器要轻拿轻放,绝不可掉到地上。
2.做实验时,不要接触传感器,否则将会使线性变差。
图8-1电容传感器位移实验接线图六、思考题:1、简述什么是传感器的边缘效应,它会对传感器的性能带来哪些不利影响。