八年级数学期末复习教学案一
湘教版八年级数学下册第一章章末复习教案

章末复习【知识与技能】1.系统了解本章的知识体系及知识内容.2.在熟练掌握直角三角形相关概念的基础上,进一步熟悉掌握直角三角形性质与判定的应用.3.在掌握角平分线性质及其逆定理的基础上将知识融汇贯通,进行一些提高训练.4.培养对知识综合掌握、综合运用的能力.【过程与方法】复习梳理本章的主要知识点,及应注意的问题.通过典型例题讲解和对应练习,使学生对本章知识达标.【情感态度】主动参与、积极探索、合作交流,发挥学习中主人翁意识,感受成功的乐趣,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力.【教学重点】勾股定理及其逆定理,直角三角形的性质和判定,角平分线性质与判定在解决实际问题中的作用.【教学难点】综合运用直角三角形相关知识解决问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示结构框图,让学生对本章所学知识有个系统地把握.教学时,可以边回顾边建立结构图,逐步加深印象.二、释疑解惑,加深理解1.“斜边、直角边定理”是判定两个直角三角形全等所独有的,在运用该判定定理时,要注意全等的前提条件是两个直角三角形.2.本章的互逆定理:直角三角形的性质和判定定理,勾股定理及其逆定理,角平分线的性质定理及其逆定理等,注意它们之间的区别与联系.3.数形结合的思想:勾股定理体现了由形到数,而勾股定理的逆定理体现了由数到形.三、典例精析,复习新知例1 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,图中与∠A互余的角有()A.0个B.1个C.2个D.3个【分析】由“直角三角形的两锐角互余”,可找出与∠A互余的角.∵∠ACB=90°,CD是AB边上的高,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角2个,故选C.例2 如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,如图所示,这棵树在折断前的高度是()A.10mB.15mC.5mD.20m.【分析】根据题意可以得直角三角形中,较短的直角边是5,再根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度为10+5=15(m).故选B.例3 如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为_______.【分析】∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC是直角三角形,∵BD是AC边上的中线,∴BD=12AC=6.5cm.例4 一架长5米的梯子AB,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,论证你的结论.【分析】由勾股定理求得AC=4(米),由题意得CD=AC-AD=4-1=3(米),再由勾股定理可求得CE的长,进而求出BE的长.解:是,理由如下:在Rt△ACB中,BC=3,AB=5,AC2+BC2=AB2,∴AC=4,DC=4-1=3,在Rt△DCE中,DC=3,DE=5,CE2+DC2=DE2,∴CE=4,∴BE=CE-CB=1,即梯子底端也滑动了1米.【教学说明】典型例题的分析解答,对学生解题有着非常重要的指导作用,教师在讲评的过程中,让学生明确本章的重点有哪些,难点在哪里,需要注意哪些,容易忽略什么,逐步加深印象,达到全面掌握.四、复习训练,巩固提高1.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于()A.6B.4C.3D.22.如图,由四个全等的直角三角形拼成“赵爽弦图”。
八年级数学第一学期期末复习教学案(10)

八年级数学期末复习教学案(7) -----------平行四边形一、知识点:1、平行四边形的定义:叫做平行四边形。
记作:□ABCD ,读作平行四边形ABCD.平行四边形是中心对称图形,对角线的交点是它的对称中心。
2、平行四边形的性质:①平行四边形的对边 ;②平行四边形的对边 ; ③平行四边形的对角 ;④平行四边形的对角线 。
3、平行四边形的判定:① 的四边形是平行四边形; ② 的四边形是平行四边形; ③ 的四边形是平行四边形; ④ 的四边形是平行四边形; ⑤ 的四边形是平行四边形。
1、矩形的定义: 的平行四边形叫做矩形,通常也叫长方形。
2、矩形的性质:①矩形是特殊的平行四边形,它具有平行四边形的一切性质;②矩形既是 图形也是 图形,对称轴是对边中点连线所在直线,有两条,对称中心是对角线的交点。
③矩形的对角线 ;④矩形的四个角都是 。
3、矩形的判定: ① 的平行四边形是矩形; ② 的平行四边形是矩形; ③ 的四边形是矩形。
4、菱形的定义: 的平行四边形叫做菱形。
5、菱形的性质:①菱形是特殊的平行四边形,它具有平行四边形的一切性质; ②菱形既是轴对称图形也是中心对称图形,对称轴是两条对角线④菱形的对角线互相 ,并且每一条对角线平分一组对角。
6、菱形的判定:①的平行四边形是菱形;DC8、正方形的定义: 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
9、正方形的性质:①正方形具有矩形的性质,同时又具有菱形的性质。
②正方形既是轴对称图形也是中心对称图形,对称轴有四条,对称中心是对角线的交点。
10、正方形的判定:①有一组邻边相等并且有一个角是直角的平行四边形是正方形;②有一组邻边相等矩形形是正方形; ③有一个角是直角的菱形是正方形。
11、平行四边形、矩形、菱形、正方形之间的关系:1、三角形的中位线:⑴连结 的线段叫做三角形的中位线. 区别三角形的中位线与三角形的中线。
⑵三角形中位线的性质三角形的中位线 第三边并且等于它的 . 2、梯形的中位线:⑴连结梯形 的线段叫做梯形的中位线。
第五章期末复习学案

一、要点梳理:1.一般地,设在一个变化的过程中有两个 x 和y.如果对于变量x 的每一个值,变量y 都有 的值与它对应,我们称y 是x 的 .其中,x是 ,y 是 .2.函数y=_______(k 、b 为常数,k______)叫做一次函数.当b_____时,函数y=____(k____)叫做正比例函数.3.正比例函数y=kx (k ≠0)的性质:⑴当k>0时,图象过______象限;y 随x 的增大而____.⑵当k<0时,图象过______象限;y 随x 的增大而____.4.一次函数y=kx+b(k ≠ 0)的性质:⑴当k>0时,y 随x 的增大而_________.⑵当k<0时,y 随x 的增大而_________.5.图像经过的象限与k 、b 的关系(1)一次函数的图像经过一、二、三象限,则k_________,b________(2)一次函数的图像经过一、二、四象限,则k_________,b________(3)一次函数的图像经过一、三、四象限,则k_________,b________(4)一次函数的图像经过二、三、四象限,则k_________,b________二、例题讲解例1:若一次函数y=kx+b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是 ( )A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<例2:一次函数y =kx +b ,当0≤x ≤2时,对应的函数值y 的取值范围是-2≤y ≤4,则kb 的值为 ( )A. 12B. -6C. -6或-12D. 6或12例3:如图,已知矩形ABCD ,AD 在y 轴上,AB =2,BC =3,点A 的坐标为(0,1),在AB 边上有一点E (2,1),过点E的直线与CD 交于点F .若EF 平分矩形ABCD 的面积,则直线EF 的解析式为例4:在直角坐标系xOy 中,直线l 过(1,3)和(3,1)两点,且与x 轴,y 轴分别交于A ,B 两点.(1)求直线l 的函数关系式;(2)求△AOB 的面积.例5:已知y 与z 成正比例,z +1与x 成正比例,且当x=1时y=1,当x=0时y=-3,求y 与x 的函数关系式.例6:如图,在平面直角坐标系中,直线4:43l y x =-+分别交x 轴、y 轴于点A B 、,将AOB △绕点O 顺时针旋转90°后得到A OB ''△.(1)求直线A B ''的解析式;(2)若直线A B ''与直线l 相交于点C ,求A BC '△的面积.三、当堂训练1. 如图,过点Q (0,3.5)的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 ( )A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 2. 一次函数y =-3x -2的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限3. 若一次函数y kx b =+,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A .增加4 B .减小4C .增加2D .减小2 CA y x O l A 'B '4. 直线y = 2x +6与两坐标轴围成的三角形面积是 .5.如图,直线y=2x+3与x 轴相交于点A ,与y 轴相交于点B.⑴ 求A ,B 两点的坐标;⑵ 过B 点作直线BP 与x 轴相交于P ,且使OP=2OA , 求ΔABP的面积.6. 在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x 、 y 轴分别交于点A 、B , 则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16,求此三角形面积.四、课后作业1. 一次函数y =-3x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知函数y=kx 的函数值随x 的增大而增大,则函数的图像经过( )A .第一、二象限B . 第一、三象限C .第二、三象限D .第二、四象限3. 已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: . 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为__________________。
苏教版八年级数学下册复习-全册教案

x<1 x<0
x<3 x>0
x<1 x>4
1
典型例题分析:
例1. 已知 a<b,用<、>或=填空: 1+a 1+b a-2 b-2 3-a 3-b 4a 4b 例 2.解下列不等式(组),并将结果在数轴上表示出来:
a
b
2 2
(1). 3 x 1 4x 3
2
6
(2).
11. 将一堆苹果分给几个孩子,如果每人分 3 个,那么多 8 个;如果前面每人分 5 个,那 么最后一人得到的苹果不足 3 个。问:有几个孩子?有多少个苹果?
12.中国第三届京剧艺术节在南京举行,某场京剧演出的票价由 2 元到 100 元多种,某团 体须购买票价为 6 元和 10 元的票共 140 张,其中票价为 10 元的票数不少于票价为 6 元的 票数的 2 倍。问这两种票各购买多少张所需的钱最少?最少需要多少钱?
13. 某地举办乒乓球比赛的费用 y(元)包括两部分:一部分是租用比赛场地等固定不变 的费用 b(元),另一部分费用与参加比赛的人数 x(人)成正比。当 x=20 时,y=1600; 当 x=30 时,y=2000. (1)求 y 与 x 之间的函数关系式; (2)如果承办此次比赛的组委会共筹集到经费 6250 元,那么这次比赛最多可邀请多少名 运动员参赛?
①a-3
b-3 ②6a
6b ③-a
-b ④a-b 0
3. 当 x a 0 时, x2 与 ax 的大小关系是
4.
1
如果
x 1,则 2x 1x 1 _______0
2
5. 3x 6 的解集是___________, 1 x ≤-8 的解集是___________。 4
人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.
八年级数学复习教案范文3篇

八年级数学复习教案范文3篇教案是课堂教学呈现和传承的重要手段,以下是我要与大家共享的:八年级数学复习教案范文,供大家参考!八年级数学复习教案范文一一、复习内容:第一章二次根式其次章一元二次方程第三章频数及其分布第四章命题与证明第五章平行四边形第六章特别平行四边形和梯形二、复习目标:初二数学本学期内容多,导致本次复习时间较短,只有三个周的复习时间。
依据实际状况,特作打算如下:(一)、整理本学期学过的学问与方法:1.第一、二章主要是计算,老师提前先把概念、性质、方法综合复习,参加适当的练习,在练习计算。
课堂上逐一对易错题的讲解,多强调解题方法的针对性。
最终针对平常练习中存在的问题,查漏补缺。
2.第三、四章主要是概念的教学,对这两章的考试题型学生可能都不熟识,所以要以与课本同步的训练题型为主,要列表或作图的,让学生踊跃动手操作,并得出结论,课堂上老师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。
3.第五、六章是几何局部。
这两张的重点是平行四边形和特别平行四边形的性质及其判定定理。
所以记住性质是关键,学会判定是重点。
要学会判定方法的选择,不同图形之间的区分和联系要特别熟识,形成一个有机整体。
对常见的证明题要多练多总结。
(二)、在自己经验过的解决问题活动中,选择一个最具有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克制困难的方法与过程及所获得的体会,并选择这个问题的缘由。
(三)、通过本学期的数学学习,让同学总结自己有哪些收获?有哪些须要改良的地方。
三、复习方法:1、强化训练这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。
特殊是一元二次方程,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。
还有几何证明题,要通过针对性练习力争到达少失分,到达证明简练又严谨的效果。
2、加强管理严格要求依据每个学生自身状况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必需做到学一点会一点,对承受实力差的学生课后要加强辅导,刚好订正出现的错误,平常多小测多检查。
2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。
人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。
2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。
三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。
菱形定义:有一组邻边相等的平行四边形叫做菱形。
【强调】菱形(1)是平行四边形;(2)一组邻边相等。
让学生举一些日常生活中所见到过的菱形的例子。
四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。
∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。
2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。
3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。
湘教版八年级数学下册教案及反思

湘教版八年级数学下册教案及反思全文共5篇示例,供读者参考湘教版八年级数学下册教案及反思篇1一、指导思想坚持教育科学的发展观,积极贯彻执行教育局和学校提出的具体目标和要求,全面贯彻落实教育方针,以学生为本,以学生的终身发展为目标,全面深入贯彻和落实素质教育,构建高效课堂。
配合学校达成“安全校园”和“家长满意学校”的办学愿望。
积极深入探索“分组合作”学习方式,关爱学生,平等对待学生,放眼于学生终身能力培养,把学生培养成适应未来社会发展的有用的栋梁之材。
通过数学课的教学,使学生学习现代科技所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,合作探究能力,以及分析问题和解决问题的能力。
二、教材分析本学期的教学内容共计五章:第十二章数的开方由平方根和立方根开始,进而学习实数的相关知识。
第十三章整式的整除主要介绍了幂运算、整式的乘法和除法、乘法公式、因式分解几个基本的运算,主要培养和提高学生的运算能力。
第十四章勾股定理主要探索勾股定理及其应用,以培养学生的形象思维、模型的建立为主。
第十五章平移与旋转主要介绍了图形的基本变换,让学生在实际操作中探索总结规律。
第十六章平行四边形的认识介绍了平行四边形的性质特征以及几类特殊的平行四边形,使学生对几何学有了初步的认识。
三、教学目标落实通过三维目标(知识与技能目标、过程与方法(数学思考与解决问题)目标、情感与态度目标)的落实最终实现能力的培养。
钻研教材,突破重点、难点,抓住关键,深入了解学生,激发学生积极性,因人而宜,制定课堂上有效的辅导、教学方案,使课堂教学更生动有趣,使学生参与到数学活动中来。
四、教学常规落实严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结协作。
精心备课,备教材备学生,密切生活实际和学生实际,整合教学资源,运用好多媒体教学,利用一切可以利用的有利因素,为教学服务。
上好每一节课,根据学生实际合理利用教学资源,上好每一节课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末复习教学案一复习内容:第七章 一元一次不等式 知识梳理:(1)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。
基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1;(2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数 2. 已知a <b,用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是4. 如果121<<x ,则()()112--x x _______0 5. 63->x 的解集是___________,x 41-≤-8的解集是___________。
6. 函数xxy 21-=中自变量x 的取值范围是( ) A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠0 7. 三个连续自然数的和小于15,这样的自然数组共有( ) A 、6组 B 、5组 C 、4组 D 、3组8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.5 典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来: (1). 634123+≤-+x x (2). ⎪⎪⎩⎪⎪⎨⎧-<--+≤--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。
例3.已知关于x 、y 的方程组⎩⎨⎧=-=+my x y x 212.(1)求这个方程组的解;(2)当m 取何值时,这个方程组的解中,x 大于1且y 不小于-1.例4. 若()2320x x y m -+--=中y 为非负数,求m 的范围.例5. 宁启铁路泰州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A 、B 两种型号的车厢将这批货物运至北京.已知每节A 型货厢的运费是0.5万元,每节B 型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少?八年级数学期末复习作业(1)1.(2006²湖州市)不等式1030xx->⎧⎨-<⎩的解集是()A.x>1B.x<3C.1<x<3D.无解2. (2006²潍坊市)不等式组2425x ax b+>⎧⎨-<⎩的解是02x<<,那么a b+的值等于.3.(2006²中山市)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围,并将取值范围在数轴上表示出来.4. (2006²诸暨市)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?5.(2006²深圳市)初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人6.(2006²湖州市)已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是()A.x<0B.x>0C.x<1D.x>1⎪⎩⎪⎨⎧-+≥-12312152>x ,x x 的解集是____ 7.(2006²长春市)不等式组__.112x x a-≤≤⎧⎨<⎩有解,那么a 必须满8。
(2006²诸暨市)若不等式组足 . 9.(2006²日照市)日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少? 10.(2006²鸡西市) 基公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO 万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.11.(2006²衡阳市)市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%. (1)若购买树苗共用了28000元,求甲、乙两种树苗各多少株? (2)若购买树苗的钱不超过34000元,应如何选购树苗?(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗?八年级数学期末复习教学案(2)复习内容: 第八章 分式 知识梳理:(1)分式的意义及分式的基本性质,用分式的基本性质进行约分和通分;(2)加、减、乘、除运算;(3)可化为一元一次方程的分式方程的解法及应用。
基础知识练习: 1、下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法确定 3、如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变 4. 如果解分式方程14132=+--+x x x 出现了增根,那么增根可能是( ) A 、-2 B 、3 C 、3或-4 D 、-4 5. 当x 时,分式31-+x x 有意义,当x 时,分式32-x x无意义。
6.xyzx y xy 61,4,13-的最简公分母是 。
7. 一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙合作 小时完成。
8. 若分式方程21=++ax x 的一个解是1=x ,则=a 。
典型例题分析: 例1:计算:(1).y x a xy 26512÷ (2).xy x y 2211-+-(3).212293m m --- (4).22424422x x xx x x x ⎛⎫---÷⎪-++-⎝⎭例2:解下列方程: (1).512552x x x +=-- (2). 253+=x x (3).2113x x x +=- (4). 21.1x x x-=-例3:已知12,4-=-=+xy y x ,求1111+++++y x x y 的值。
例4:列分式方程解应用题:(1)A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度。
(2)为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
问原来规定修好这条公路需多长时间?八年级数学期末复习作业(2)1.(2006²湖州市)分式方程121x x =+的解是x=_________. 2.(2006²攀枝花市) 分式方程11112-=-x x 的解是: . 3.(2006²益阳市)解分式方程4223=-+-xxx 时,去分母后得 4.(2006²嘉兴市)有两块面积相同的小麦试验田,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,若设第一块试验田每公顷的产量为xkg ,根据题意,可得方程( )A.xx 1500030009000=+ B.3000150009000-=x x C.3000150009000+=x x D.xx 1500030009000=- 5.(2006²深圳市)(1)解方程:21133x x x -=--- (2)3215122=-+-xx x .6.(2006年怀化市)•怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.7。
华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?8。
计算:先化简,再请你用喜爱的数代入求值 (x x x 222-+-4412+--x x x )÷2324x x x --9。
(2005年贵州省)为迎接“2005.中国贵州黄果树瀑布节”,•园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花奔搭配A 、B 两种园艺造型共50个,•摆放在迎宾大道两侧,搭配每个造型所需要花奔情况如下表所示: (1)符合题意的搭配方案有哪几种? (2)若搭配一个A 种造型的成本为1000元,搭配一个B 种造型的成本为1200元,•试说明选用(1)中哪种方案成本最低?10。