交流异步电动机变频调速设计
起重机交流异步电动机变频调速系统的设计

优 点 ,笔 者 使 用 J 5 3 N 1 9模 块 进行 Zg e 技 术 的开 i e B
~ … …
…
21 ̄ 3 01 月 总口 , 分 别 是 J A v p v nH n l , J A vtc Z _ A p E e t a de r Z — Sak
E e t Z _ P r hrl vn ,J A A K p0 jc, vn,J A v e p ea E e t Z — f v be t i b
机 械 工 业 出 版 社 ,0 3 2 0 ( 任 编辑 责 李 洋 )
系统 中采 用 了转 速徽 分 负 反馈 技 术 ,而这 一 功
能 仍 利 用 A R 来 完 成 。 带 d /t 反 馈 的 A R 电 S nd 负 S
( 文 部 分 下转 第 9 英 2页 ) 科撞 创葡与生产力 {
图 2 交 直 交 变 频 器 电 路
核 心 的单 片机 应 用 系统 。笔者 通过 软 硬 件相 结 合 实 现 起重 机异 步 电动 机 S WM 变频 调 速 ,不 仅使 硬件 P 简 单 降低 了产 品成本 ,而且 软 件代 码 较 少 ,从 而大 大 缩短 了开 发 时 间。
参考文献 :
图 3 ASR 电 路 图
路 ,改 变 微分 反 馈 环 节 参 数 C x d便 可 按 要 求 抑 dR
制 突 加给 定启 动 时转 速 的超 调 量 .经 调试 微 分 时 间
常 数取 值 = . 01 S 2.
S WM 调 制波 的 载波 比越 高 。所 含 的低 次 谐 波 P 的 分 量越 小 、5 z 波 所 占的 份 额越 大 .逆 变 器 0H 基 的效 率 就提 高 、同时 逆变 器 所需 的滤 波器 的尺 寸也
交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告一、引言异步电动机在工业生产中具有广泛的应用,通过变频调速系统可以实现对异步电动机的精确控制,提高生产效率和控制精度。
本文将详细介绍异步电动机变频调速系统设计的原理和过程。
二、系统设计原理异步电动机通过变频器驱动,实现调速功能。
变频器将交流电源转换为直流电源,通过PWM技术将直流电转换为交流电,进而控制电机的转速。
变频器的主要组成部分包括整流器、中间环节直流母线、逆变器和控制电路。
整流器将交流电源转换为直流电源,并通过滤波电路削波,保持直流电的稳定性。
中间环节直流母线存储电能,为逆变器提供稳定的电源。
逆变器将直流电源转换为交流电源,并通过PWM调制技术调整交流电的频率和幅值,从而控制电机的转速。
控制电路通过传感器采集电机的运行状态,并通过对逆变器的控制信号实现控制目标。
三、系统设计步骤1.确定系统需求:根据应用场景和任务要求,确定对异步电动机的调速要求,包括速度范围、控制精度等。
2.选择电机和变频器:根据系统需求,选择适合的异步电动机和变频器,确保其参数和性能满足需求。
3.设计电路连接:根据电机和变频器的技术规格,设计电机与变频器的连线方式和电路连接,确保信号传输畅通。
4.设计控制系统:根据系统需求,设计控制系统包括传感器、控制电路和控制算法等,确保对电机的精确控制。
5.实施系统调试:将设计好的电路和控制系统进行组装和调试,确保系统能够正常工作。
6.测试系统性能:对系统进行性能测试,包括速度响应、负载变化等测试,验证系统的设计目标是否达到。
7.优化系统性能:根据测试结果,对系统进行调整和优化,提高系统的性能和稳定性。
8.编写设计报告:整理系统设计过程、实施步骤和测试结果,撰写设计报告。
四、系统设计考虑因素1.变频器和电机的匹配性:选择变频器时需要考虑其输出能力是否足够满足电机的需求,包括最大输出功率、额定电流等。
2.控制系统的精确性:设计控制系统时需要考虑传感器的精度、控制器的计算性能等因素,确保控制系统能够精确控制电机的转速。
三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
交流异步电动机的调速方法及特点

交流异步电动机的调速方法及特点
交流异步电动机是一种常见的电动机械设备,它的转速可以通过改变电流和电压等参数来控制。
在调速过程中,交流异步电动机通常采用以下几种方法:
1. 调速手柄或调速螺丝
这是最常见的调速方法之一,可以通过旋转调速手柄或调速螺丝来改变电动机的转速。
调速手柄或调速螺丝通常由螺纹连接,可以通过改变它们的拧紧程度来改变电动机的转速。
这种方法简单易懂,但需要注意的是,在调速过程中要注意力度和方向,避免对电动机和连接部件造成损害。
2. 软启动器
软启动器是一种电子控制器,它可以调节电流和电压,从而实现电动机的软启动。
软启动器可以通过改变电流和电压的大小来控制电动机的启动时间和速度,从而提高生产效率。
在调速过程中,软启动器可以通过控制电流和电压的大小来调节电动机的转速。
3. 变频器
变频器是一种通过改变电压和频率来调节电流的电子设备。
变频器可以通过控制电机的电压和频率来实现快速调速,并且具有精度高、稳定性好、适应性强等优点。
在调速过程中,变频器可以根据电机的负载情况和工作频率来自动调整电压和频率,从而调节电动机的转速。
交流异步电动机的调速方法有多种,其中调速手柄或调速螺丝是最常见的方法,软启动器也是常用的方法之一。
变频器则是目前最常用的调速方法之一,它具有精度高、稳定性好、适应性强等优点,可以满足不同场合的需求。
此外,交流异步电动机还可以通过改变电机的结构和材料来优化电机的调速性能,提高调速效
率和稳定性。
交流异步电动机变压变频调速系统设计与仿真

交流异步电动机变压变频调速系统设计与仿真异步电动机变压变频调速系统是一种常见的电动机调速系统,可以实现电动机转速的精确控制和调节。
本文将介绍异步电动机变压变频调速系统的设计和仿真。
首先,异步电动机的调速原理简要介绍。
异步电动机是一种常用的交流电动机,其转速通常由额定电压和频率决定。
通过改变电动机的电压和频率,可以实现对电动机的调速。
变压变频调速系统通过调节电压和频率的大小,改变电动机的转速。
在设计异步电动机变压变频调速系统之前,首先要确定电动机的参数。
电动机的参数包括额定功率、额定电压、额定电流等,这些参数可以从电动机的标牌上获取。
另外,还需要确定变压变频器的参数,包括额定电压范围、频率范围等。
这些参数将决定整个系统的性能。
设计异步电动机变压变频调速系统的关键是选取合适的变压变频器。
变压变频器是将电网的交流电转换为可调频率和可调电压的交流电的装置。
根据电动机的额定电压和变压变频器的额定电压范围,选取合适的变压变频器,以满足调速系统的要求。
设计异步电动机变压变频调速系统的下一步是进行系统的电路设计。
电路设计包括电动机的接线和变压变频器的接线。
电动机的接线要根据电动机的型号和相数来进行,确保电机的正常运行。
变压变频器的接线要根据变压变频器的接线图进行,确保变压变频器与电动机的连接正确。
完成电路设计后,还需要进行系统的控制设计。
控制设计包括电机的启动和停止控制、电机的转速控制等。
启动和停止控制一般采用按钮控制或者遥控控制,可以通过按钮或者遥控装置来启动和停止电动机。
转速控制一般采用PID控制器进行,通过调节变压变频器的输出电压和频率,来实现对电动机转速的控制和调节。
完成设计后,可以使用仿真软件进行系统的仿真。
常用的仿真软件有MATLAB/Simulink、PSIM等。
通过仿真可以验证系统的设计是否正确,并进行性能评估。
仿真结果可以用来优化系统的设计,提高系统的性能。
综上所述,异步电动机变压变频调速系统的设计和仿真是一个系统工程,需要从确定电动机和变压变频器的参数开始,进行电路设计和控制设计,最后进行仿真验证。
交流异步电动机变频调速设计

交流异步电动机变频调速设计异步电动机是工业生产过程中广泛使用的一种电机,widely used in industrial production. 它的运转速度受到电源的频率和极数的影响,因此在一些应用场合需要采取变频调速技术,以满足不同负载下的运转需求。
本文将介绍异步电动机变频调速设计的基本原理和具体实现方法。
一、异步电动机变频调速的原理异步电动机通过电源提供的交流电源驱动,其转速 n与电网频率 f 和定子极数 P 相关,公式为:n=60f/P 。
如图1所示,当电网频率为50Hz、极数为4极时,异步电动机的转速为1500 rpm。
当需要在同一台异步电动机下实现不同转速时,可以采用变频调速技术。
变频调速的原理是通过变频器改变电网电源的频率和电压,从而改变异步电动机的转速。
变频器通过将电源中的直流信号转换成相应的交流信号进行调节,例如通过将电源中的50Hz的电信号转换为30~50Hz的交流信号,使得异步电动机的转速得到调节。
二、异步电动机变频调速的实现方法1.输入电源与三相异步电动机连接。
2.将电源中的交流信号转换为直流信号,通过功率恒定的逆变器将直流信号转换为变频输出的交流信号。
3.通过多种控制方法调节电压频率,从而实现异步电动机转速的控制。
通常采用矢量控制和定速控制两种控制方式。
3.1 矢量控制矢量控制是一种高精度、高性能的控制方法,可以使异步电动机在不同的负载下达到相同的速度和扭矩。
矢量控制适用于较高的调速要求,可以在满足较高控制精度的同时,实现更好的动态性能。
3.2 定速控制定速控制是一种简单、常用的变频控制方法。
该方法通过设定电机的运行速度来调节输出频率和电压,使得异步电动机具有稳定的转速和扭矩。
三、结论本文通过介绍异步电动机变频调速的原理和实现方法,可以实现异步电动机在不同负载条件下达到相同的转速和扭矩,提高了运行效率和能源利用率。
异步电动机变频调速技术的应用将得到更加广泛的推广和应用。
交流异步电动机变频调速原理

交流异步电动机变频调速原理在异步电动机调速系统中,调速性能最好、应⽤最⼴的系统是变压变频调速系统。
在这种系统中,要调节电动机的转速,须同时调节定⼦供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很⾼的运⾏效率。
但是,这种系统需要⼀台专⽤的变压变频电源,增加了系统的成本。
近来,由于交流调速⽇益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐⾛低,使得变压变频调速系统的应⽤与⽇俱增。
下⾯⾸先叙述异步电动机的变压变频调速原理。
交流异步电动机变频调速原理:变频器是利⽤电⼒半导体器件的通断作⽤把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
现在使⽤的变频器主要采⽤交—直—交⽅式(VVVF变频或⽮量控制变频),先把⼯频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
交-直部分整流电路:由VD1-VD6六个整流⼆极管组成不可控全波整流桥。
对于380V的额定电源,⼀般⼆极管反向耐压值应选1200V,⼆极管的正向电流为电机额定电流的1.414-2倍。
(⼆)变频器元件作⽤电容C1:是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波,变压器是⼀种常见的电⽓设备,可⽤来把某种数值的交变电压变换为同频率的另⼀数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。
压敏电阻:有三个作⽤,⼀过电压保护,⼆耐雷击要求,三安规测试需要.热敏电阻:过热保护霍尔:安装在UVW的其中⼆相,⽤于检测输出电流值。
选⽤时额定电流约为电机额定电流的2倍左右。
充电电阻:作⽤是防⽌开机上电瞬间电容对地短路,烧坏储能电容开机前电容⼆端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。
如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过⽆穷⼤的电流导致整流桥炸掉。
交流异步电动机变频调速原理及特点

交流异步电动机变频调速原理及特点摘要:在交流异步电动机的各种调速方法中,变频调速因其调速性能好、效率高被公认为是异步电动机的一种比较理想调速方法,也是交流调速系统的主要发展方向。
下面就变频调速的基本原理与基本控制方式,分类与特点谈谈自己的理解.关键词:功率因数;恒转矩负载;恒功率负载;脉冲幅度调制方式;脉冲宽度调制方式一变频调速的基本原理与基本控制方式1.变频调速的基本原理根据异步电动机的转速表达式n=(1-s)60f/p可知,改变异步电动机的供电频率f,可以改变异步电动机的转速n,这就是变频调速的基本原理.由电机理论可知,三相异步电动机定子每相电动势E为:E=4.44fNQ.从该式可知,磁通Q是由E和f共同决定的.在电动机定子供电电压保持不变情况下,只改变频率f,将引起磁通Q的变化,可能出现励磁不足或励磁过强的现象.当频率f降低时,磁通将增加,这会引起磁路饱和,定子励磁电流上升,铁耗急剧增加,造成电动机功率因数和效率下降,这种情况是电机实际运行所不允许的;反之,当频率升高时,则磁通将减小,同样的转子电流下将使电机输出转矩下降,电动机的负载能力下降.因此,在变频调速时,应尽可能使电动机的磁通保持额定值不变,从而得到恒转矩的调速特性.而对于恒功率负载,因为P=Mn=定值,也就是说,对恒功率负载采用变频调速时,若满足电压与频率平方根的比值等定值,则电机的过载能力不变,但气隙磁通将发生变化;若满足电压与频率的比值等定值,则气隙磁通维持不变,但过载能力将发生变化.这说明变频调速特别适用恒转矩负载.2.变频调速的基本控制方式异步电动机的变频调速分为以下两种情况.即额定频率以下的恒磁通变频调速和额定频率以上的弱磁通变频调速.首先额定频率以下的恒磁通变频调速,这是从电机额定频率向下调速的情况.由于磁通与E/f成正比,故调节定子的供电频率f时,按比例调节定子的感应电动势E,即保持E/f=常数,可以实现恒磁通变频调速,这相当于直流电动机调压调速的情况,属于恒转矩调速方式.但是,由于定子感应电动势是无法直接测量和直接控制的,因此,只能直接调节的是外加的定子供电电压U.若忽略定子绕组阻抗压降,则U=E,因此可以采用U/f=常数的恒压比控制方式进行变频调速.在进行恒压比的变频调速时,当f较小时,由于U也较小,因而定子绕组阻抗压降相对较大,故不能保持磁通不变.因此,这种恒压比的变频调速只能保持磁通近似不变,实现近似的恒磁通变频调速,在这种情况下,可以采用专门电路,在低速时人为地适当提高定子电压,以补偿定子阻抗压降的影响,使磁通基本保持不变,实现恒磁通、恒转矩的变频调速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。
因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。
本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。
关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....目录摘要................................ 错误!未定义书签。
第一章前言.......................... 错误!未定义书签。
1.1 设计的目的和意义................. 错误!未定义书签。
1.2变频器调速运行的节能原理......... 错误!未定义书签。
第二章交流异步电动机............... 错误!未定义书签。
2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。
2.2变频变压(VVVF)调速时电动机的机械特性 (6)2.3变压变频运行时机械特性分折 (7)第三章变频技术简介和控制方法 (11)3.1 变频调速技术简介 (11)3.2变频器工作原理及分类 (12)3.3 交流调速的基本控制方法 (18)3.4脉冲宽度调制(PWM)技术 (21)第四章异步电动机变频调速系统设计的仿真和实现 (24)4.1 MATLAB的编程环境 (24)4.2仿真结果 (28)结论 (29)致谢.............................. 错误!未定义书签。
参考文献............................ 错误!未定义书签。
第一章绪论1.1 设计的目的和意义近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
深入了解交流传动与控制技术的走向,具有十分积极的意义.1.2变频器调速运行的节能原理实现变频调速的装置称为变频器。
变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。
首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。
在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。
PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。
采用PWM控制方式的电机转速受到上限转速的限制。
如对压缩机来讲,一般不超过7000r/rain。
而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。
同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。
此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。
采用该控制方式的变频调速技术后,电机定子电流下降64%,电源频率降低30%,出胶压力降低57%。
由电机理论可知,异步电机的转速可表示为:n=60·f 8(1—8)/p第二章交流异步电动机交流异步电动机广泛使用在电梯的电气控制系统中。
实际上交流曳引电动机就是一台交流鼠笼式异步电动机。
由于交流电力传动技术以及其控制理论的发展与提高,同时,大功率半导体器件(GTO、GTR等)技术的日趋完善,以及PLC、微电子、微处理器等技术在电力拖动系统中得以充分地利用,使得结构简单、维护保养方便、价格低廉的交流异步电动机在电梯的电力控制系统中又得以充分发挥其最大的效率。
使用交流鼠笼式电动机变频变压调速拖动系统的电梯(VVVF 交流调速电梯)在目前电梯的电气控制应用中具有领先地位。
2.1交流异步电动机变频调速基本原理从电机及电力拖动中可知,三相交流异步电动机的机械特性可分成两种:①异步电动机的固有机械特性是指异步电动机工作在额定电压UN和额定频率fN 下,按规定的接线方式接线,定子、转子及外接电阻均为0时,讨论转速n与电磁转矩Tem 的关系:n=f(Tem)(见图1)。
②异步电动机的人为机械特性是指人为地改变电动机参数或电源参数而得的机械特性。
电动机参数又可分为三类:1.异步电动机的结构参数2.异步电动机的运行参数3.异步电动机的输入参数U1和f1。
异步电动机调速调节转子电阻、定子端电压、磁极对数时的机械特性见图(2)。
图2.1 交流异步电机机械特性曲线交流异步电动机变频调速时电动机的转速为:式中:f1为电源频率;P为磁极对数;S为转差率。
交流异步电动机定子绕组上的感应电动势:式中:N1为定子绕组匝数;k1为绕组系数;φm为气隙合成磁通。
图2.2 异步电动机S、U、P机械特性曲线忽略电动机定子绕组的阻抗压降,交流异步电动机的端电压:交流异步电动机的电磁转矩:式中:C′T 为电动机的转矩常数;I′2cosφ转子电流有功分量。
从电磁转距公式可知,连续不断地改变送入异步电动机定子端的的供电电源频率f1,则可连续地改变异步电动机的同步转速:。
但是若U1不变,则f1上升将会导致的φm下降增加,这样会出现电动机的转子电流有功分量I′2cosφ的变化;电动机效率η会下降及电动机最大转距Tm会变化等问题,严重的时候会出现电动机的堵转。
或者由于f1的减低会使φm增大,导致电机磁路饱和使I增大,即电动机的铜耗PCu 、和铁耗PFe增大。
因此在电梯电气控制系统中,要求变频的同时,必须同时改变电动机定子端输入的端电压,从而保持气隙合成磁通φm 近似不变。
2.2 变频变压(VVVF)调速时电动机的机械特性根据端电压和频率不同的比例关系,将会有几种不同的变频调速方式。
2.2.1.比例控制方式:根据电压公式,在忽略异步电动机定子绕组的阻抗压降后可近似的得到:,要维持φm 不变的情况下,只要U1和f1成比例的变化即可,从最大转矩公式中可研得知:在低频段时,由于定子绕组中的Xm ,Xδ1,X′δ2以及Lδ1,L′δ2不可忽略,则将会增加使得最大转矩Tm 也将随f1的降低而降低就会将使低频段时异步电动机的起动转矩Tq大大减小。
这在电梯的电力拖动控制系统中是不希望出现的。
2.2.2.恒磁通控制方式要求调速范围大、恒转矩的电梯负载希望在整个调速范围中保持Tem= C不变,按公式进行控制减小时,应适当提高输入定子的端电压U1,以补偿异步电动机定子绕组的阻抗压降。
按Tem=C的恒磁通φem=C控制方式,变频时异步电动机机械特性见图(3)。
这是电梯的电力拖动控制系统要求和希望的。
2.2.3.恒功率控制方式这种控制方式是在变频调速时,保持异步电动机定子绕组的电流为恒定值。
调节器和电流闭环系统调节作用而实现的。
但这种控制方式仅仅适用即通过PI负载变化不大的场合,而不适用于电梯的电力拖动控制系统。
由此可见,按T= C的恒磁通变频的异步电动机的机械特性是电梯电力拖动所em需求的。
2.3变压变频运行时机械特性分折异步电动机的T 型等效电路见图4。
图2.3 异步电动机变频调速机械特性曲线图2.4 异步电动机T型等效电路2.3.1.电压为额定值时改变频率的机械特性电源频率f1的改变,对异步电动机产生两方面的影响:一是改变同步转速n1;二是改变电动机的结构参数。
(1)当f1下降时,由于,所以f1的下降会造成n1上升(2)由于,所以f1下降时, Xδ1,X′δ2,X m均会成正比下降。
又由于P Fe与f 21成正比,所以f1下降时会造成X m下降。
(3)因为励磁电流由于f1的下降,会使I的变化为非线性,在低频段I将急剧上升。
(4)气隙合成磁通φm同是由励磁电流I0所产生的。
磁通大小取决于I的大小以及电动机磁路的状况。
由于电动机的磁路一般设计在接近饱和的状态,故频率f1下降时,φm 会出现过饱和。
这也是I随f1下降急剧上升的原因。
(5)转子电流I′2的大小决定于负载的大小。
在额定负载下,当f1下降时,φm上升,cosφ2上升,所以I′2会下降。
(6)因为定子电流I1=I+(-I′2),因此当f1下降时,I1可能会出现变化。
在低频段重负载下I1上升;在较高频率段轻负载下I1下降。
(7)f1的下降对起动转矩Tq的影响。
因为当f1处于较高频率段时,随着f1的下降Tq会出现急剧上升;在低频段时随着f1的下降Tq的上升将会趋缓。
2.3.2.频率为额定值时改变电压的机械特性改变输入定子电压U1,主要影响电动机的运行参数,并会对运行时的I,I2,φm等产生影响。
(1)I的影响。
因为当U1下降,I也随之下降。
(2)气隙合成磁通φm的影响。
由于电压U1的下降,电机磁路处于非饱和的状态,所以可以认为φm随U1正比下降。
(3)转子电流I′2的影响。
I′2的大小取决于负载的大小,在额定负载时,因为TN =Tem,当U1下降时,I′2上升。
(4)定子电流I1的影响。
当U1下降时,使I′2上升,造成I1的变化,轻负载时I1则下降,重负载时I1则上升。
(5)起动转矩Tq。
因为当U1下降时,Tq 随U21成正比下降。
(6)最大转矩Tm。
因为T m 与U21成正比,电压降低,会使电动机过载能力下降。
第三章变频技术简介和控制方法3.1 变频调速技术简介PWM 控制技术是电气传动自动控制领域研究的一个热点[18]。
PWM 控制技术的原理是通过控制全控型半导体器件动作,把直流电压转换成电压脉冲序列,进而通过控制电压脉冲宽度与周期,最终实现变压、变频的一种控制技术,并且可以消除谐波。
在交流变频系统中,早期使用较多的控制技术是变压变频控制技术,通常把该控制技术分为两种:1.把变压和变频分开完成,即把交流电变为直流电与相控调压同步进行,然后逆变为可调频率的交流电,脉冲幅值随着信号幅度的变化而变化,这种前后分VVVF控制技术称为脉冲幅值调制方式。
2.在逆变器中将变压和变频一起完成,变频器主要由三部分组成:不可控流器、续流二极管、逆变器,由逆变器来完成变频与变压,这种控制技术称为脉冲宽度调制技术。
由于其中的整流器不需要控制,即电路结构得到简化,尤其是相控整流被全波整流所取代,增大了输入端的功率因数,降低了高次谐波对电网的影响。