2017天津九年级数学知识点总结

合集下载

九年级数学全册知识点总结

九年级数学全册知识点总结

九年级数学全册知识点总结总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

那么我们该怎么去写总结呢?以下是小编精心整理的九年级数学全册知识点总结,希望能够帮助到大家。

第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

天津中考数学必考知识点

天津中考数学必考知识点

天津中考数学必考知识点
天津中考数学必考知识点包括以下几个方面:
1.有理数:有理数及其分类、数轴、相反数、绝对值、倒数等概念。

2.代数式:单项式、多项式、整式等基本概念,以及整式的加减法
运算。

3.方程与不等式:一元一次方程、一元二次方程、不等式等基本概
念,以及解一元一次方程和不等式的方法。

4.函数:函数的概念、一次函数、反比例函数、正比例函数等基本
概念,以及函数的图象和性质。

5.三角形:三角形的基本性质、全等三角形、相似三角形等基本概
念,以及解三角形的方法。

6.四边形:四边形的基本性质、平行四边形、矩形、菱形、梯形等
基本概念,以及四边形的面积计算。

7.圆:圆的基本性质、圆的周长和面积等基本概念,以及圆的有关
计算。

8.概率初步知识:概率的概念、概率的计算方法等基本概念。

需要注意的是,以上知识点只是其中的一部分,具体考试范围和难度可能会根据年份和地区有所不同,建议考生仔细阅读考试大纲,了解考试的具体要求和难度。

天津九年级数学知识点总结

天津九年级数学知识点总结

一、代数与函数1.整式与单位-整式的概念及整式的相加、相减、相乘的性质-单位之间的换算及问题的解法2.平方根与次方运算-平方根的概念及平方根的性质、计算方法-次方运算的概念及次方运算的性质、运算规则3.算式与方程-解一元一次方程及利用一元一次方程解决实际问题-利用公式解三元一次方程组-利用一元一次方程和二元一次方程解决实际问题4.平面直角坐标系与图形的性质-平面直角坐标系及点、线、面在直角坐标系中的表示与性质-图形鉴别的方法与判断的准则5.函数的概念与函数初步-函数的相关概念及函数的定义域和值域-函数的特殊符号表示及函数的图象和它的性质-判断函数的奇偶性及分析函数的图象以及根据函数图象解决实际问题二、几何与变换1.角与三角形-角的概念、度量、画角及其性质-三角形的分类、构造、性质及判定方法-利用二等分线、垂直线、平行线解决问题2.相似与全等三角形-两角相等与两角和相等定理-相似三角形和全等三角形的判定方法及性质-利用相似和全等解决实际问题3.平行线与比例-平行线间的夹角与同位角-平行线分线段成一比例定理与其逆定理-平行线两组垂直定理及证明4.圆与圆的性质-圆的定义与常见性质-弧与正弦、余弦、切线的关系-圆内接四边形、圆外接四边形的性质5.图形的认识-平行四边形的性质及应用-正方形、菱形、矩形的性质及应用-圆锥、圆柱、圆台、球的性质及应用三、数据分析与统计1.数据的收集、整理与展示-数据的搜集及样本调查和普查的区别-统计表与统计图的制作及图像的分析2.数据的分析与统计-表、图的读取与分析-频数、频率的概念与计算-数据的中心和离散程度3.概率的初步认识-随机事件及其四种关系-频率与概率的关系-使用列举、画图等方法估算概率四、解决问题的方法与过程1.数学问题解决方法与策略-分析问题、设立数学模型-选择合适的解决方法-验证答案、评价解决方法的合理性2.数据的整理、分析及统计-整理数据的方法与技巧-利用统计图、统计表分析数据以上是天津九年级数学的知识点总结,希望能帮助你更好地复习和掌握数学知识。

天津九年级数学知识点总结

天津九年级数学知识点总结

天津九年级数学知识点总结数学,是一门既抽象又具体的学科,又是一门用逻辑和推理解决实际问题的学科。

在九年级,数学知识点的学习进一步扩展和深化,接触到更多更复杂的概念和技巧。

本文将对天津九年级数学的主要知识点进行总结。

一、代数与函数代数是数学中的重要分支,它研究数与符号之间的关系与运算。

九年级的代数知识主要包括多项式的加减乘除、分式的加减乘除、一元二次方程以及一元一次不等式等。

在多项式的加减乘除中,我们要掌握常见的整式和分式的运算法则,并注意因式分解及未知数消去的技巧。

对于一元二次方程,我们需要熟练掌握配方法、因式分解法和公式法解题的步骤和技巧。

而一元一次不等式就要求我们掌握解不等式和绘制不等式解集的方法。

二、几何几何是研究图形、空间及其相互关系的学科。

九年级几何知识的学习主要包括几何构造、几何关系和几何证明。

在几何构造中,我们要掌握用直尺和圆规等工具进行线段、角和三角形等的构造方法,并能灵活运用这些方法解决实际问题。

对于几何关系,我们要掌握线段相等、角平分线的性质、垂直、平行线段等关系的判定和性质。

在几何证明方面,我们要了解几何定理及其证明方法,能够根据已知条件进行证明。

三、概率与统计概率与统计是数学中的实用分支,通过对随机事件的研究和概率统计的方法,可以帮助我们更好地理解和解决实际问题。

九年级的概率与统计知识主要包括事件的概率计算、统计图表的制作和解读、抽样调查以及数据的分析与解释等。

在概率计算中,我们需要了解事件的概念、随机事件和必然事件的概率计算方法,以及基本事件和复合事件的计算方法。

在统计图表的制作和解读中,我们要能够掌握条形图、折线图、扇形图、统计表等图表的制作和解读方法。

同时,我们还要了解抽样调查的方法和数据的收集、整理、总结与分析的技巧。

四、数与四则运算数与四则运算是数学的基础,也是其他数学分支的重要基石。

在九年级,我们要进一步巩固和扩展数的认识与运算能力。

我们要理解实数的概念及其性质,能够进行实数的加减乘除运算,掌握有理数和无理数的性质和运算法则。

怎么总结初三数学的知识点

怎么总结初三数学的知识点

怎么总结初三数学的知识点
一、代数
1. 一元一次方程
一元一次方程是初中代数中一个非常基础的知识点,最简单的形式为ax+b=0。

可以通过
移项、去括号、去分母等各种方法求解,是非常基础的代数运算。

2. 二元一次方程
二元一次方程是由两个未知数的一次方程组成的方程。

解法包括代入法、消元法等,是初
中代数中比较难一点的知识点。

3. 因式分解
因式分解是将一个多项式按照公式进行分解,是初中代数中比较基础的知识点,也是很重
要的一点。

二、几何
1. 直角三角形
直角三角形的知识点包括勾股定理,正弦余弦定理等,是初中数学中的重要知识点,也是
数学在实际生活中的常用知识。

2. 圆的性质
包括圆的周长、面积等,是初中数学中的重要知识点,也是数学在几何中的一个基础知识。

三、统计
1. 图表分析
包括直方图、折线图、饼图等的分析和应用,是初中数学中的基础统计知识点,也是数学
在实际生活中的常用知识。

2. 概率
包括频率概率、古典概率等的应用,是初中数学中的重要知识点,也是数学在实际生活中
的常用知识。

以上就是初三数学知识点的总结,这些知识点是学生在初中学习数学中的重要知识点,在
今后的学习中能够起到非常重要的作用。

希望同学们能够认真对待这些知识点,加强练习,打好初中数学知识的基础,为高中数学学习和今后的数学学习打下坚实的基础。

2017年初中数学知识点中考总复习总结归纳

2017年初中数学知识点中考总复习总结归纳

2017年中考数学总复习资料第一章 数与式考点一、实数的概念及分类 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称, 如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数:如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

(1)一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

(2)正数a 的平方根记做“a ±”。

2、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

天津九年级数学知识点

天津九年级数学知识点

天津九年级数学知识点一、代数与函数1. 一元二次方程- 定义与性质:形如ax²+bx+c=0(其中a≠0)的方程称为一元二次方程,其中a、b、c为已知数,x为未知数。

- 求解方法:配方法、公式法、因式分解法等。

2. 幂与指数- 幂的定义:a的n次幂,记作aⁿ(n为自然数),表示n个a 的乘积。

- 幂的运算法则:幂之间的乘法与幂,幂与数的乘法,幂与幂之间的乘法等。

- 指数函数:y=aˣ(其中a为常数)称为指数函数。

3. 根与系数间关系- 定义:以未知数为指数的数称为根,如平方根、三次方根等。

- 根与系数的关系:二次根与系数的关系,三次根与系数的关系等。

二、几何与图形1. 直线与角- 直线的特征:无限延伸,没有弯曲。

- 角的定义:由两条射线共同起点组成的图形,射线称为角的边,共同起点称为角的顶点。

- 角的分类:锐角、直角、钝角等。

2. 三角形- 定义:三条边组成的图形。

- 三角形的分类:按边长分类(等边三角形、等腰三角形、普通三角形),按角度分类(锐角三角形、直角三角形、钝角三角形)。

3. 四边形与多边形- 四边形的分类:平行四边形、矩形、正方形、菱形等。

- 多边形的特征:由多条边和多个角组成的图形。

- 多边形的分类:三角形、四边形、五边形、六边形等。

三、概率与统计1. 概率- 定义:根据事件出现的可能性大小来判断事件发生的可能性,用0到1之间的一个数表示。

- 加法原理:若两个事件A和B是互斥事件,则它们发生的概率之和等于事件A或事件B发生的概率。

- 乘法原理:若两个事件A和B相互独立,则事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

2. 统计- 数据的收集和整理:调查、实验等方法收集数据,通过表格、图表等形式整理和展示数据。

- 数据的分析和解读:利用统计方法对数据进行分析,得出结论并解读数据。

四、函数与图像1. 函数的定义与性质- 函数的定义:对应关系中,每一个自变量只有唯一的因变量与之对应。

九年级全册知识点总结数学

九年级全册知识点总结数学

九年级全册知识点总结数学九年级数学,从初中开始迈入了更深入的数学学习阶段。

在这一阶段,我们将学习更多的数学知识,包括代数、几何、概率、统计等等。

以下是九年级数学知识点的总结:一、代数1. 代数基础- 整式的加减乘除- 一元二次方程- 一元二次不等式- 分式的加减乘除- 根式的化简和运算2. 函数与方程- 一次函数与二次函数- 函数的图像和性质- 函数关系与方程- 方程与不等式的解法- 函数的应用问题3. 比例与变化- 比例的性质和运用- 质合与分解- 倒数的概念和应用- 百分数与倍数- 利率、利息和折扣二、几何1. 图形的性质- 三角形、四边形和多边形的性质- 圆的性质和应用- 射影和相似2. 空间与立体图形- 立体图形的性质- 空间的位置关系- 空间几何解法3. 三角函数基础- 角度的概念- 三角函数的基本概念和性质- 三角函数的定义和计算三、概率与统计1. 概率基础- 随机事件和概率的基本概念- 试验和样本空间- 概率的计算和性质- 抽样与估计2. 统计方法- 数据的收集和整理- 数据的表示方法- 中心位置的指标- 离散程度的指标- 直方图、频数分布表和频率分布表综上所述,九年级数学知识点涵盖了代数、几何、概率、统计等多个方面。

在学习过程中,我们需要理解并掌握这些知识点,同时要注重数学的实际应用,以便更好地解决实际问题。

希望大家在学习数学的过程中,能够充分发挥自己的思维能力,不断提升自己的数学水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

1a x +)(b ±,a x -=2有2x ±3x 系数为4的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于ac,也可以表示为x 1+x 2=-a b ,x 1 x 2=ac。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

考点三、一元二次方程根的判别式根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别I 当△II 当△IIIX 轴一元二次方程易错题一、选择题1、若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0有一个根为0,则m 的值等于( ) A .1 B . 2 C . 1或2 D . 02、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为( )A 223A 45、已知)A 6A 7、2xA 8、关于22)x 的A 9A . 10、设A .2006B .2007C .2008D .200911、对于一元二次方程ax 2+bx+c=0(a≠0),下列说法: ①若a+c=0,方程ax 2+bx+c=0必有实数根; ②若b 2+4ac<0,则方程ax 2+bx+c=0一定有实数根; ③若a-b+c=0,则方程ax 2+bx+c=0一定有两个不等实数根;④若方程ax2+bx+c=0有两个实数根,则方程cx2+bx+a=0一定有两个实数根.其中正确的是( )A.①②B.①③C.②③D.①③④二、填空题1、若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b= .3456则k7人教版九年级数学下二次函数最全的中考知识点总结✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2y ax bx c =++的结构特征:其中k ;)、与. .数2ax c =+✧二次函数()2y a x h=-的性质:✧✧.,)2aa4顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.✧抛物线c=2中,cbx+y+ax,与函数图像的关系ba,二次项系数a二次函数2a≠.y ax bx c=++中,a作为二次项系数,显然0⑴当0a>时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;⑵当0a<时,抛物线开口向下,a越小,开口越小,反之a的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;总结: ✧ ✧ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,G 有G 没 点为AB =✧y y y y y y y y y 因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规✧ 1析式。

2 12 121Q ,直线y 2 3 1x-h)2+k,2 12物线的解析式。

对称轴式。

1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。

2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=43OC ,求此抛物线的解析式。

对称式。

1,平行四边形ABCD对角线AC在x轴上,且A(-10,0),AC=16,D(2,6)。

AD交y 轴于E,的位置,求经过A,B,E三点的抛物线的解析式。

将三角形ABC沿x 轴折叠,点B到B12,求与抛物线y=x2+4x+3关于y轴(或x轴)对称的抛物线的解析式。

切点式。

1,已知直线y=ax-a2(a≠0) 与抛物线y=mx2有唯一公共点,求抛物线的解析式。

2,直线y=x+a 与抛物线y=ax2 +k 的唯一公共点A(2,1),求抛物线的解析式。

判别式式。

1、已知关于X的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x2+(m+1)x+3解析式。

2、已知抛物线y=(a+2)x2-(a+1)x+2a的顶点在x轴上,求抛物线的解析式。

3、已知抛物线y=(m+1)x2+(m+2)x+1与x轴有唯一公共点,求抛物线的解析式。

23章旋转在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。

我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。

知识点二旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。

(3)图形的大小和形状都没有发生改变,只改变了图形的位置。

知识点三利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。

步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。

23.2 中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。

知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。

最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。

知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。

知识点四中心对称图形的定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

知识点五关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r图1推论13个 ①AB 中任意推论2即:①③OC OF =;④ 弧BA =弧BD七、圆周角定理图21、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1推论2推论3三角形。

相关文档
最新文档