光的衍射圆孔(2014)

合集下载

圆孔的夫朗和费衍射

圆孔的夫朗和费衍射

圆孔的夫朗和费衍射1、圆孔的夫朗和费衍射:根据几何光学,平行光经过球面凸透镜后将会聚于透镜焦平面上一点。

但实际上,由于光的波动性,平行光经过小圆孔后也会产生衍射现象,称为圆孔的夫朗和费衍射。

圆孔的夫朗和费衍射图样为一个圆形的亮斑(称为爱里斑),在爱里斑的周围还有一组明暗相间的同心圆环。

由于光学仪器中所用的孔径光阑、透镜的边框等都相当于一个透光的圆孔,所以圆孔的夫朗和费衍射对光学系统的成像质量有直接影响。

爱里斑光强约占总光强的84% 。

而其1级暗环的角宽度(即爱里斑半角宽度)满足D 22.1R610.0sin 1λλθ==式中R 、D 为小圆孔的半径和直径。

2、光学仪器的分辨本领:由于圆孔衍射现象的限制,光学仪器的分辨能力有一个最高的极限。

下面通过光学仪器分辨本领的讨论,说明为什么有一个分辨极限,并给出分辨极限的大小。

当两个物点S 1、S 2很靠近时(设S 1、S 2光强相等),两个爱里斑将互相重叠而无法分辨。

对一个光学仪器来说,若一个点光源产生的爱里斑的中央刚好与另一个点光源产生的爱里斑瑞的1级暗环相重合,这时两个爱里斑重合部分的光强约为单个爱里斑中央光强的80%左右,一般人眼刚好能分辨出这是两个光点的像。

因此,满足上述条件的两个点光源恰好能被该光学仪器所分辨。

这一条件称为瑞利分辨判据。

(见下图)恰能分辨时两光源发出的光线对透镜光心的夹角Δθ 称为最小分辨角,用δθ表示。

由上讨论可知,最小分辨角δθ等于爱里斑的半角宽度θ1:)D 22.1arcsin(1λθδθ==尤其当θ1 ~ 0D 22.1λδθ≈(或称分辨率),用R 表示:λδθ22.1D 1R ==讨论:⑴ 增大透镜的直径D 可提高镜头的分辨率。

光学天文望远镜的镜头孔径可达数米! ⑵ 设r 、d 为爱里斑的半径和直径,则:f 2d f r D 22.1===λδθ即:D f44.2d λ=f D称为镜头的相对孔径(越大越好)。

如照相机镜头上所标示的502:1字样,即表示镜头的焦距mm 50f =,而镜头的孔径mm 25D =。

光的衍射

光的衍射

C:变宽,不移动;
D:变窄,同时向上移动;
E:变窄,不移动。

xk明 f a
[A]
例4.在单缝夫琅和费衍射中,将单缝沿透镜光 轴方向平移,则屏幕上的衍射条纹。 A:间距变大; B:间距变小; C:不发生变化; D:间距不变,但明暗条纹的位置交替变化。
S
L1
L2
P
解: αsinθ=kλ 光程差与 l 无关 [C]
1. 衍射暗纹、明纹条件
• asin 2 此时缝分为两个“半波带”, P 为暗纹。 2
B
半波带
D
半波带
A

1 2 1 2
asin
B
asin
A
暗纹条件 a sin 2k k,k 1,2,3…
2
• asin 3 此时缝分成三个“半波带”, P 为明纹。 2 B
单缝衍射 第一级极 小值位置
光栅衍射 第三级极 大值位置
缺级
k=-6 k=-4
k=-2 k=0
k=2
k=4
k=6
k=-5 k=-3
a(sinφ sinθ )
对于暗纹有 k
asinθ A
则 a(sinφ sinθ ) k sinφ k sinθ
a (k 1,2,3,)
φ θ
B asinφ
例2.波长为 500nm 的单色光垂直照射到宽度a=0.25mm
的单缝上,单缝后放一凸透镜,在焦平面上放一屏,用以观测衍射 条纹,今测得屏上中央明纹一侧第三个暗条纹和另一侧第三个暗条 纹之间距离为d,d=12mm,则焦距f为多少?

ds

E0(
p)
cos

第二章光的衍射

第二章光的衍射

用振动矢量叠加法
K为奇数
K为偶数
说明:
1.圆孔中露出半波带数目(k不是很大)
K为奇数,
A
=
1 2
(a1
+
ak
)

a1
P为亮点
K为偶数,
A
=
1 2
(a1
− ak )

0
P为暗点
∞ 2.k
无障碍物(自由传播)
ak → 0
AP
=
a1 2
IP
=
a12 4
三. 计算露出半波带数目k
Rh2k = rk2 − (r0 + h)2 = rk2 − r02 − 2r0h − h2 ≈ rk2 − r02 − 2r0h
把每一个半波带进一步划分,分割为m个更窄的环 带!如何来分析?
2、观察点P不在轴线上时,振幅如何计算?
§2.3 、菲涅耳衍射(圆孔和圆屏)
一. 圆孔衍射 圆孔衍射的特点
(1)、Ak 取决于 k ,当 λ, R, Rhk一定时,k 取决于 r0 ,
即P的点位置 ⎩⎨⎧rr00小大,,kk大小
k 偶数时轴上点是暗点,奇数时是亮点。
6)、缺点:(1)f ′ 与 λ 有关,色差很大。激光
的出现使波片的应用成为可能;
(2)除
f′
外,尚有1 3f Nhomakorabea′,
1 5
f
′L
多个焦距的存
在,对给定物点,波片可给出多个象点。
菲涅耳直边衍射的矢量分析:
四、直线传播和衍射的关系
即使是直线传播,也要按惠——菲原理的方式进行,此 原理主要指同一波面上所有点所发次波在某一给定观察点 的相干迭加。衍射现象是光的波动特性最基本的表现,直 线传播不过是衍射现象的极限表现而已。

圆孔衍射_实验报告

圆孔衍射_实验报告

一、实验目的1. 理解光的衍射现象及其基本原理。

2. 掌握衍射光路的组装与调整,使用不同结构衍射屏实现夫琅禾费衍射现象。

3. 研究不同结构衍射屏的衍射光强分布,加深对衍射理论的理解。

二、实验原理圆孔衍射是光波通过圆形孔径后,由于波的波动性,光在孔径边缘发生弯曲,从而在远场屏上形成衍射图样。

实验基于惠更斯-菲涅尔原理,即每一个波前上的点都可以看作是一个次波源,这些次波源发出的波在空间中相互干涉,形成衍射图样。

夫琅禾费衍射是圆孔衍射的一种特殊形式,发生在远场区域,即孔径与观察屏之间的距离远大于孔径本身。

在这种情况下,光波经过圆孔后,衍射图样呈现出明暗相间的同心圆环,称为夫琅禾费衍射图样。

三、实验仪器1. He-Ne激光器2. 单缝及二维调节架3. 光电探测器及移动装置4. 数字式万用表5. 钢卷尺6. 圆孔衍射屏四、实验步骤1. 组装光路:将He-Ne激光器发出的激光束照射到圆孔衍射屏上,调节衍射屏与激光器之间的距离,使其满足夫琅禾费衍射条件。

2. 调整观察屏:将观察屏放置在衍射屏后,调节观察屏与衍射屏之间的距离,使其满足夫琅禾费衍射条件。

3. 测量光强分布:使用光电探测器测量不同位置的光强,记录数据。

4. 计算衍射图样:根据测量数据,绘制光强分布曲线,分析衍射图样的特征。

五、实验结果与分析1. 衍射图样:观察屏上出现了明暗相间的同心圆环,即夫琅禾费衍射图样。

图样的中央是一个亮斑,称为艾里斑,其大小与圆孔半径有关。

2. 光强分布:根据测量数据,绘制光强分布曲线。

曲线呈现出明暗相间的特征,中央亮斑的光强最大,随着距离的增加,光强逐渐减小。

3. 理论分析:将实验结果与理论计算结果进行对比,发现两者吻合良好。

六、实验结论1. 光的衍射现象是光的波动性的一种表现,通过实验验证了惠更斯-菲涅尔原理。

2. 夫琅禾费衍射是圆孔衍射的一种特殊形式,在远场区域出现明暗相间的同心圆环。

3. 通过实验,加深了对衍射理论的理解,掌握了衍射光路的组装与调整方法。

第讲圆孔衍射,分辨率,x射线衍射

第讲圆孔衍射,分辨率,x射线衍射
(1)人眼的最小分辨角有多大?
(2)若物体放在距人眼25cm(明视距离)处,则 两物点间距为多大时才能被分辨?
解(1) min
1.22
D
1.22 5.5107 m 3 103 m
2.2104 rad
(2) d lmin 25cm 2.2 104
0.0055cm 0.055mm
精品文档
min
1.22
D
精品文档
光学仪器分辨率
R 1
min
D
1.22
D, 1
光学仪器的最小分辨(fēnbiàn)角越小,分辨(fēnbiàn) 率就越高。
精品文档
提高(tí gāo)光学仪器分辨本领的两条基本途径: 对望远镜, 不变,尽量增大透镜孔径 D,以提高 分辨率。 一般天文望远镜的口径都很大,世界上最大的天文 望远镜在智利,直径(zhíjìng)16米,由4片透镜组成。 对显微镜,主要通过减小波长来提高分辨率。电子 显微镜用加速的电子束代替光束,其波长约 0.1nm,用 它来观察分子结构。 荣获 1986 年诺贝尔物理学奖的扫描隧道显微镜最小 分辨距离已达 0.01 Å,能观察到单个原子的运动图像。
1953年英国的威尔金斯、沃森和克 里克利用X 射线的结构分析,得到了遗 传基因脱氧核糖核酸(DNA) 的双螺旋 结构,荣获了1962 年度诺贝尔生物和医 学奖。
精品文档
DNA 分子的 双螺旋结构
第17讲 圆孔,x射线(shèxiàn) 衍射
圆孔衍射 (yǎnshè), 光学仪器分辨 率, x射线衍射 (yǎnshè)
精品文档
圆孔衍射
一、圆孔夫琅禾费衍射 平行光通过圆孔经透镜会聚(huìjù),照射在焦平面
处的屏幕上,也会形成衍射图样。

光的衍射(共27张PPT)

光的衍射(共27张PPT)

例题1
在一次观察光的衍射的实验中,观察到如图所示 的清晰的明暗相间的图样,那么障碍物应是(黑 线为暗线)( D ) A.很小的不透明的圆板 B.很大的中间有大圆孔的不透明的圆板 C.很大的不透明的圆板 D.很大的中间有小圆孔的不透明的圆板
二、双缝干涉与单缝衍射的比较
观察右图,并讨论单缝衍射与双缝干涉有何 不同点与相同点?讨论后完成下表:
思考与讨论
1.白光的单缝衍射条纹(形状、颜色分布)
有何特点?
2.由以上的几个实验,能否总结出光的衍
射条纹的宽度、亮度以及条纹间距与单缝 的宽度、光的波长的定性关系? 3.为何缝越窄,条纹的亮度越低?
单缝衍射图样特征
1.白光单缝衍射条纹为中央为白色亮纹,两侧 为彩色条纹,且外侧呈红色,靠近中央的内 侧为紫色。

障碍物时,光没有沿直线传播,而是绕
到障碍物后面去,形成明暗相间的条纹 的现象就叫做光的衍射现象。
思考与讨论
d=1.0 mm
d=0.6 mm
1.单色光圆孔衍射图样的条纹(形状、宽度、 亮度、间距)有何特征? 2.圆孔衍射图样的条纹(宽度、亮度、间距) 与圆孔的大小有何关系?
圆孔衍射图样特征
d=1.0 mm
d=0.6 mm
1.条纹为圆形,中心亮纹大而亮,旁边 亮纹迅速的减弱减小。 2.圆孔越小,条纹越宽,间距越大,衍 射现象越明显,但亮度变低。
2.单缝衍射
【实验探究二】 利用单缝衍射观察片观察讲台桌上的红 光灯与蓝光灯的衍射现象,并讨论以下问题: 1.单色光的单缝衍射条纹(形状、宽度、亮 度、间距)有何特点? 2.同一单缝的红光衍射条纹与蓝光衍射条纹 有何区别? 3.同一种色光,单缝宽度不同衍射条纹(宽 度、亮度、间距)有何区别?

第二章 光的衍射

第二章    光的衍射

· Q
θ
r
面元dS发出的各次波的 面元dS发出的各次波的 和位相满足: dE(p) 和位相满足:
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
· p
1. S上各面元位相相同; 上各面元位相相同 上各面元位相相同;
S(波前 波前) 波前 设初相为零
2. 次波在 点引起的振动的振幅 次波在P点引起的振动的 点引起的振动的振幅 成反比; 与r成反比; 成反比 3. 次波在 点的位相由光程 决定。 次波在P点的位相由光程∆决定 点的位相由光程 决定。
b 2 b b b sinu , 由 I = I0 可得到以下结果: 可得到以下结果: u
1.主最大(中央明纹中心)位置: 1.主最大(中央明纹中心)位置: 主最大 单缝衍射 sin u = 1 →I = I0 = Imax θ = 0处 u = 0 → , u 即为几何光学像点位置
1. 波面在 点产生的振动 波面在P点产生的振动
A(Q) dE( p) ∝ K(θ) cos(ω −kr) dS t r A(Q)取决于波面上Q点处的强度。 点处的强度。 ( )
K(θ):方向因子
θ ≥ 90o,K = 0
θ ↑→ θ )↓ ↑→K( ↓
θ = 0, K=Kmax ,
( K(θ)A Q) dE( p) = C dS ⋅ cos(ωt −kr) r ( K(θ) A Q) cos(ω −kr)dS t EP = ∫∫ dE = C∫∫ S S r ——菲涅耳衍射积分 菲涅耳衍射积分
圆孔的衍射图样: 圆孔的衍射图样:
屏上 图形: 图形:
孔的投影 菲涅耳衍射 夫琅禾费衍射
二、圆屏衍射
P点合振幅为: 点合振幅为: 点合振幅为 A = ak+1 −ak+2 +ak+3 −ak+4 +... P

4_1光的衍射

4_1光的衍射

2.
没有民主的形式,就没有民主的内涵
费曼《科学的价值》:
“古往今来,人们一直都在试图测度人生的意义。他们想,如有某种 方向或意义指导行动,人类定会释放出巨大的力量。于是乎,很多很 多的答案应运而生。可是,这些答案彼此太不同了,一种答案的倡导 者,会把信奉另一种答案的行动者视为洪水猛兽。他们很可怕,因为, 换一个角度看,那就是人类的所有潜能都被引入一条狭隘 的死胡同。 历史告诉我们,虚妄信仰产生巨大恶行。
一、惠更斯原理
Optics 任何时刻波面上的每一点都可作为次波的波源,各 自发出球面波;在以后的任何时刻,所有这些次波波面 的包络面形成整个波在该时刻的新波面。
ut
平 面 波 球 面 波
R1
O
R2
直线传播规律 Optics
成功之处
较好的解释光的
反射折射规律
双折射现象
定性的解释光的干涉、衍射现象
不涉及波的空间周期特性-波长、振幅和相位
没有爱因斯坦的相对论也许是可惜的,或者有爱因斯 坦的相对论是必然的,这都不重要,重要的科学的范 式引导着人们前赴后继,创造出了如此丰富的科学技 术。
每一个领域什么样的问题都有人深入研究,真是太美 妙了!这是科学的范式带给我们的,其美妙程度远远 超过某一个理论的美妙。
Education is what remains after one has forgotten what one has learned in school. 所以作为要教导学生科学精神,关键不是要他们学 会哪些具体知识,或者掌握什么具体技能,没有哪 一个科学知识或者技术会是独门绝技,祖传秘方, 是学生学会之后就可以安身立命的。即使背完了整 本百科全书,你也不能成为科学家。 关键是学会怎样由未知到已知的、科学的求知方法; 或者通过尝试和纠错,学会一种有普遍意义的自由 探索和创造精神……也就是对科学的范式的理解和 掌握。 当然,我们需要通过知识的学习和技能的训练来达 到这一目的,但是如果我们不能达到这一目的,这 些知识和技能还有什么用处呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ES1 Βιβλιοθήκη 2恰能分辨爱里斑A2 A1
E
S1 S2
不能分辨
A2 A1
E
S1 S2

能分辨
A2 A1
满足瑞利判据的两物点间的距离,就是光学 仪器所能分辨的最小距离。对透镜中心所张的角 称为最小分辨角。 爱里斑
s1 * s2 *
D
光学仪器的分辨率
s1 * s2 *

D
θ0
r0
f
最小分辨角为: 分辨率:
例:在正常的照度下,设人眼瞳孔的直径为3mm,而 在可见光中,人眼最灵敏的是波长为550nm的绿光, 求(1)人眼的最小分辨角; (2)若物体放在明视距离25cm处,则它们能被分 辨的最小距离。
作业 119页:5.8、5.9、5.10 5.12
S

D
Airy Disk (爱里斑)

84%
1
I/ I0
相对 光强 曲线
sin
衍射孔

L
观察屏

爱里斑
第1暗环相对透镜中心角半径 满足:
D
爱里斑变小
角半径
sin 1.22

D
点光源经过光学仪器的透镜后,由于 衍射的影响,所成的象不是一个点而 是一个明暗相间的圆形光斑。
望远镜: 但 D R 不可选择,

世界上最大的光学望远镜: D=8m 建在了夏威夷山顶。 ▲世界上最大的射电望远镜: D = 305 m 建在了波多黎各
Arecibo,能探测射到整个
地球表面功率仅1012W的 电磁波,也可探测引力波。
哈勃太空望远镜: 在大气层外 615km 凹面物镜
几何光学 : 物点 象点

波动光学 : 物点 象斑



若两物点有一定距离 可以被分辨.
S1 S2
若两物点靠的很近 不能被分辨.
S1 S2
非相干重叠.
瑞利判据
对于两个强度相等的不相干的点光源,如果一 个点光源的衍射图象的中央最亮处刚好与另一个点 光源的衍射图象第一个最暗处相重合,认为这两个 点光源恰好能为这一光学仪器所分辨。
D = 2.4 m
δθ 0.1
"
可观察距离:
130亿光年 已发现:
500 亿个星系
地面观测
用哈勃望远镜观测
显微镜: D不会很大, 但 R
所以电子显微镜分辨本领很高,可观察物质 的结构。
(10 -2 10 -1 nm) 电子 :0.1A 1A
电子显微镜 拍摄的分子 照片
相关文档
最新文档