七年级数学上册1.4有理数的乘除法1.4.1有理数的乘法2教案新版新人教版

合集下载

人教版七年级数学上册1.4.1有理数的乘法(教案)

人教版七年级数学上册1.4.1有理数的乘法(教案)
此外,我在课堂上观察到学生在小组讨论中的表现。他们能够积极参与,提出自己的观点,但在交流过程中,有些学生显得不够自信,这可能影响了他们的思考。在今后的教学中,我会更加关注这部分学生,鼓励他们大胆表达自己的想法,增强自信心。
在课程总结时,我强调了有理数乘法在实际生活中的应用,希望学生能够将所学知识运用到生活中。但从学生的提问来看,他们对于这个知识点在实际应用中的理解还不够深入。因此,我计划在下一节课中增加一些实际案例的分析,让学生更加明确有理数乘法在实际生活中的应用。
五、教学反思
在今天的有理数乘法教学中,我尝试了多种教学方法,希望能让学生更好地理解和掌握这个概念。从学生的反馈来看,我发现他们在理解有理数乘法法则上还存在一些困难,尤其是在处理负数乘法时。在今后的教学中,我需要更加关注这部分内容,用更直观的方式帮助学生理解。
在讲授过程中,我尽量结合生活实例,让学生感受到数学与生活的紧密联系。他们对于将实际问题转化为有理数乘法问题的环节表现出较大兴趣,这也说明数学建模能力的培养是很有必要的。但在实践活动和小组讨论中,我发现部分学生在运用有理数乘法解决问题时仍显得不够熟练,这可能是因为他们在计算过程中对符号处理不够熟练。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

七年级数学上册1.4《有理数的乘除法》教案新人教版

七年级数学上册1.4《有理数的乘除法》教案新人教版

有理数的乘法教学目标1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力.3.情感态度:经历探索有理数乘法法则及运算律的过程.重点:有理数的乘法法则.难点:有理数的乘法法则的理解及应用.教学准备本节课采用多媒体教学,能引起学生的兴趣,产生“要学的强烈愿望.教学设计的思路清晰、符合教学规律,学生在乐趣中学会了有理数的乘法.本节课采用这种教学设计对学生理解和消化当堂课的知识点,起到了良好的教学效果.通过观察、实验、比较、概括,对提高学生分析问题和解决问题的能力有很大的突破.促进了学生自主学习的良好习惯和不断探究的思维空间.运用现代化的教学手段,把图形的“静”变“动”,增强了直观性,初步培养想象能力,同时提高课堂教学的效率.这里,数形结合这一重要数学思想方法的应用起到变抽象为直观和化难为易的作用,对今后的数学学习有深远的影响.教学过程:一.情景导入、提出问题.问题1:森林里住着一只小甲虫豆豆,每天它都要离开家去寻找食物.这一天早晨豆豆以每分钟3米的速度向东爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢?相距多少米?(动画演示)问题2:第二天,豆豆又以每分钟3米的速度向西爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢 ?相距多少米?(动画演示)2×3是小学学过的乘法,(-2)×3如何计算呢?这就是将要学习的有理数的乘法.二.分析探索、问题解决比较3×2=6,(-3)×2=-6这两个算式,有什么发现?把一个因数换成它的相反数,所得的积是原来的积的相反数.观察算式找规律3×2 = 6 ; 3×(-2)= -6 ;(-3)×(-2)=6 ;(-3)×2= -6 ;同学们觉得两个有理数相乘的结果有没有规律呢?你能通过思考发它们的规律吗?学生活动:同桌之间,前后桌之间互相讨论.(学生不可能很圆满的把法则总结全面,此时应尽可能的让学生互相补充,相互修正让学生自己来完成.教师引导学生思考 5×0,-5×0, 0×(-2)的结果是多少?三.知识理顺、得出结论.教师出示有理数乘法法则(板书):两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.师:在进行有理数乘法运算时,要注意两个方面的问题:一.确定积的符号,二.积的绝对值是两个因数绝对值的积.教法说明:教师提出尝试性问题,引导学生思考----有理数乘法的运算规律,学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结能力和口头表达能力,又使学生法则记得牢,领会的深刻.四.应用反思、拓展创新练习:1.确定下列两数的积的符号:(1)5×(-3);(2)(-4)×6 ;(3)(-7)×(-9);(4)0.5×0.7 .2.计算:(1)6×(-9);(2)(-6)×(-9);(3)(-6)×9 ;(4) 6×(-9);(5)(-6)×0 ;(6) 0×(-6).教法说明:有理数的乘法,关键是确定积的符号.为此,先编排1题进行练习,2题的目的是巩固有理数的乘法法则.例1 计算:(1)(-1/2)×1/4;(2)(-0.3)×10/7;(3)3/2×(-2/3).教法说明师生共同完成例题,教师板书再做示范,从总培养学生良好的学习习惯和严谨的作风.同学们自己编两道有理数乘法的题目,同桌交换解答.教法说明自编题活跃了课堂气氛,以便掌握学生获取知识的反馈信息,对存在问题及时补救.此外,通过自编题,来培养学生的发展思维能力,以及独立思考勇于创新的良好习惯.五、回顾交流、纳入体系学生交流总结以后,教师提出以下问题:想一想:(1)三个或三个以上不等于零的有理数相乘时,积的符号如何决定?(2)在有理数运算中,乘法的交换律、结合率以及分配率还成立吗?做一做:课本47页(做一做)、课本48页(随堂练习).六、布置作业:课本48页习题2.11.。

新人教版七上1.4《有理数的乘除法》教案

新人教版七上1.4《有理数的乘除法》教案

1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。

人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)

人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
一、教学内容
人教版七年级上册第一章《有理数》1.4有理数的乘除法。本节课将围绕以下内容展开:
1.有理数的乘法法则:同号得正,异号得负,并将绝对值相乘。
2.有理数的除法法则:同号得正,异号得负,并将绝对值相除。
3.乘除混合运算的顺序:先乘除后加减,同级从左到右。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或分享物品的情况?”(如:分水果、计算购物折扣等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘除法的奥秘。
五、教学反思
在今天的课堂中,我们探讨了有理数的乘除法。我发现学生们在理解乘除法则和应用它们解决实际问题时,普遍存在一些挑战。首先,乘除法则的规律对于一些学生来说还不够清晰,尤其是负数乘以负数得正数的概念。我尝试通过举例和图示来解释这一点,但感觉还需要更多的练习来巩固这个概念。
我注意到,当涉及到混合运算时,学生往往会忽略运算的优先级,导致计算错误。这提醒我,在未来的课程中,需要更多地强调和练习运算顺序,确保学生们能够熟练掌握。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

七年级数学上册 1.4 有理数的乘除教学设计 新版新人教版

七年级数学上册 1.4 有理数的乘除教学设计 新版新人教版

1.4 有理数的乘除1.4.1有理数的乘法教学目标:知识与技能:掌握有理数的乘法法则,会根据有理数乘法法则进行有理数乘法的运算过程与方法:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

情感态度与价值观:培养学生观察、归纳、概括及运算能力。

教学重难点:重点:有理数乘法的运算。

难点:有理数乘法中的符号法则。

教学准备:设置探究问题教学方法:引导探究法教学过程:一、复习引入:有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题) (负数问题,符号的确定)二、探究新知:思考1:观察下面的乘法算式,你能发现什么规律吗?3×3=9 3×2=6 3×1=3 3×0=0上述算式有什么规律?随着后一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍成立,那么应有3×(-1)=-33×(-2)=-63×(-3)=-9思考2:观察下面的算式,你又能发现什么规律吗?3×3=9 2×3=6 1×3=3 0×3=0上述算式有什么规律?随着前一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍成立,那么应有(-1)×3=-3(-2)×3=-6(-3)×3=-9从符号和绝对值两个角度观察,可归纳积的特点:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积为负数;积的绝对值等于各乘数绝对值的积.思考3:利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×3=-9 (-3)×2=-6(-3)×1=-3 (-3)×0=0上述算式有什么规律?随着后一乘数逐次递减1,积逐次增加3.利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×(-1)=3(-3)×(-2)=6(-3)×(-3)=9归纳结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.综合上面各种情况,引导学生自己归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0例如:再如:(-5)×(-3)···········同号两数相乘 (-6)×4··············异号两数相乘 (-5)×(-3)=+( )············得正 (-6)×4=-( )················得负 5×3=15·············把绝对值相乘 6×4=24··············把绝对值相乘 所以 (-5)×(-3)=15。

七年级数学上册 1.4 有理数的乘除法教学设计 (新版)新人教版

七年级数学上册 1.4 有理数的乘除法教学设计 (新版)新人教版

1.4 有理数的乘除法第1课时有理数的乘法(一)教学目标1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.教学重点两个有理数相乘的符号法则.教学难点从不同角度概括算式的规律.教学设计(设计者:)教学过程设计一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标探究点一有理数的乘法法则活动一:阅读教材第28至29页,思考: 1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论? 3.有理数乘法法则分几种情况进行归纳的? 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的? 【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.【针对训练】见“学生用书”. 探究点二 有理数乘法的运用 活动二:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每攀登1 km 气温的变化量为-6℃,攀登3 km 时气温有什么变化?【展示点评】根据实际问题列出乘法算式(-6)×3,计算解答. 【小组讨论】例2是如何体现正数、负数的实际意义的? 反思小结:“-18℃”即下降18℃的意思. 【针对训练】见“学生用书”.探究点三 多个有理数相乘的符号法则活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.【展示点评】先确定积的符号,再按小学所学的正数间的乘法计算. 【小组讨论】多个不是0的数相乘,先做哪一步,再做哪一步?【反思小结】多个不是0的有理数相乘应注意:首先要确定积的符号,然后再按法则运算.几个有理数相乘,如果其中有因数为0,那么积为0.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数乘法. 2.步骤:有理数乘法.有理数的乘法⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫法则―→倒数运算步骤―→实际运用 五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__;(-54)×32=__-158__. 4.写出下列各数的倒数: 1,-1,13,-123,-34,0.45.解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127).解:(1)-2 (2)-1 (3)92 (4)157六、布置作业 巩固目标 课后作业 见“学生用书”. 第2课时 有理数的乘法(二)错误!错误! (设计者: )教学过程设计一、创设情景 明确目标1.说一说有理数的乘法法则; 2.多个有理数相乘又该如何计算. 二、自主学习 指向目标自学教材第31至33页,完成下列问题: 1.计算:(1)5×(-6)=__-30__;(-6)×5=__-30__;(2)⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-109=__23__;⎝ ⎛⎭⎪⎫-109×⎝ ⎛⎭⎪⎫-35=__23__; (3)[3×(-4)]×(-5)=__60__;3×[(-4)×(-5)]=__60__;(4)2×[3+(-5)]=__-4__;2×3+2×(-5)=__-4__.2.观察上面每组中的两个式子及结果,看看它们存在什么联系与区别?你能发现有理数乘法有哪些运算律吗?解:乘法的交换律、结合律和分配律 3.(1)乘法交换律__ab =ba __; (2)乘法结合律__(ab )c =a (bc )__; (3)乘法分配律__a (b +c )=ab +ac __. 三、合作探究 达成目标探究点一 乘法的交换律和结合律的运用活动一:计算:(1)(-25)×39×(-4); (2)125×25×(-4)×(-8).【展示点评】第(1)题可以将(-25)与(-4)结合在一起;第(2)题可以将125与(-8),25与(-4)各自结合在一起.【小组讨论】在什么情况下使用乘法的交换律和结合律?三个或三个以上的数相乘,任意交换因数的位置,或者任意先把其中几个数相乘,积会怎样?【反思小结】乘法交换律和乘法结合律要注意灵活、综合地运用,不能分开.运用乘法交换律和结合律的目的是把容易计算(积为整百、整千、可以约分等等)的几个因数先进行计算,它只改变运算顺序,而不改变结果.【针对训练】见“学生用书”. 探究点二 乘法的分配律活动二:用两种方法计算(14+16-12)×12.【展示点评】可以先计算括号里面的加减法,再进行乘法运算,也可以运用乘法的分配律展开计算.【小组讨论】比较上面两种解法,它们在运算顺序上有什么区别?计算中用了什么运算律使计算更简便?【反思小结】乘法运算律是用来简化有理数乘法运算的依据,根据算式的特点应用乘法分配律可以打破“先算括号”的计算习惯,大大简化乘法与加法的运算;也可以应用转化数学思想,把一个数拆为几个数的和或差,然后运用乘法分配律进行巧妙计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:多个有理数相乘. 2.步骤:多个有理数相乘.多个有理数相乘⎩⎪⎨⎪⎧符号规律运算步骤五、达标检测 反思目标1.五个数相乘,积为负,那么其中负因数的个数是( D ) A .1 B .3 C .5 D .1或3或5 2.下列运算结果错误的是( B ) A .(-2)×(-3)×(-1)=-6 B .(-12)×(-6)×0.25=-34C .(-5)×(-2)×(-1)=-10D .(-3)×(-8)×(+4)=96 3.填空:6×(-9)×(-23)=__36__;(-114)×(-45)×(-78)×47=__-12__;(-9)×3×(-32)=__812__;(-1)×(-54)×815×0×32=__0__.4.计算:(1)(-35)×(-56)×(-2);(2)(-312)×27×(-65)×(+173);(3)13×(-6)×(-123)×(-35); (4)(-23)×623×(-12)×(-115).解:(1)-1 (2)345 (3)-2 (4)-83六、布置作业 巩固目标 课后作业 见“学生用书”.第3课时 有理数的除法(一)教学目标1.经历有理数除法法则的推导过程,了解有理数除法的意义. 2.掌握有理数除法法则,会进行有理数的除法运算.3.能够运用有理数的除法法则化简分数,能进行有理数的乘除混合运算,体会转化的数学思想.教学重点运用有理数的乘除混合运算. 教学难点有理数除法法则的推导过程. 教学设计 (设计者: )教学过程设计一、创设情景 明确目标(1)小红从家里到学校,每分钟走50 m ,共走了20 min ,问小红家离学校有________ m ,列出的算式为______________.(2)放学时,小红仍然以每分钟50 m 的速度回家,应该走________min ,列出的算式为______________.从上面这个例子你可以发现,有理数除法与乘法之间的关系是____________.(3)你能计算(-10)÷2吗?请根据有理数乘法法则解释你的结果的合理性. 二、自主学习 指向目标自学教材第34至35页,完成下列问题:1.(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a×1b__(b 不等于0);(2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__.2.a (a≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab __>__0.三、合作探究 达成目标 探究点一 有理数的除法法则活动一:阅读教材第34页,相互交流下面的问题: 1.可以得出什么结论?2.换其他的数进行类似讨论,是否仍有除以a (a≠0)可以转化为乘1a ?3.用字母如何表示有理数除法法则?4.你能类比有理数的乘法法则,说出有理数的除法法则的另一种表述方法吗? 例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______; (3)(-14)÷(-12)=(-14)×______=______;(4)0÷(-1212)=______;0÷2012=______.【展示点评】观察、分析、并与小学里学习的乘除法进行类比与对比,得出有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数,用字母表示为a ÷b =a·1b(b≠0).另外,有两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【小组讨论】①法则(1)中为什么要强调除以一个不等于“0”的数?运用法则(1)要注意什么?②从法则(2)中,可以看出有理数的除法运算的步骤有哪些?【反思小结】根据以上问题的解决,可体会到在进行有理数除法运算时可以转化为有理数的乘法运算,再一次体会转化思想,另外通过对比有理数的乘法法则,感受类比的数学思想.【针对训练】见“学生用书”. 探究点二 有理数的除法运算活动二:例2 计算:(1)(-36)÷9; (2)(-1225)÷(-35).【展示点评】(1)(-36)÷9=-(36÷9)=-4;(2)(-1225)÷(-35)=1225÷35=1225×53=45.【小组讨论】有理数除法的一般步骤是什么?用到了什么数学思想方法?【反思小结】进行有理数的除法运算时,先确定结果的符号,并把除法运算转化成乘法运算,再计算出结果.用到了数学的转化思想.活动三:例3 化简下列分数:(1)-123;(2)-45-12.【展示点评】将它们转化成除法运算即可. 【小组讨论】:分数与除法之间有什么关系?如何转化?【反思小结】化简分数时,可以把分数线理解为除法运算,然后再根据除法法则进行除法运算.【针对训练】见“学生用书”. 探究点三 有理数的乘除法运算活动四:例4 计算: (1)-12557÷(-5);(2)(-2.5)÷58×(-14).【展示点评】(1)中带分数要转化成假分数;(2)中小数需转化成分数.【小组讨论】在有理数乘、除法同级运算中,运算的顺序是怎样的?【反思小结】乘除是同级运算,应该从左到右进行运算,先确定结果的符号,再将它们的绝对值相乘除,若化为乘法运算可以利用乘法交换律进行简便计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数的除法.2.关系:有理数的除法与乘法之间. 3.数学思想:转化. 有理数的除法―→有理数的乘法 五、达标检测 反思目标1.下列等式中,成立的是( D ) A .100÷13×(-3)=100×3×3B .100÷13×(-3)=100÷(13×3)C .100÷13×(-3)=100×13×(-3)D .100÷13×(-3)=100×3×(-3)2.化简:(1)54-8; (2)-18-72; (3)-63-7. 解:(1)-274 (2)14(3)93.在学习了有理数的除法之后,王老师想考查同学们综合运用有理数乘除法法则进行计算的能力,出了一道计算题:-2.5÷58×(-4)小明的解题过程是:-2.5÷58×(-4)=-52÷(-52)=1小华的解题过程是:-2.5÷58×(-4)=-52×85×4=-16小军的解题过程是:-2.5÷58×(-4)=52×85×4=16这三位同学的解题过程对吗?如果不对,请说明他们各错在哪里?解:小明和小华的解题过程错误,小军的解题过程正确,小明错在运算顺序没有按照从左到右的顺序进行,小华错在积的符号确定错误.4.计算:(1)-56÷78÷(-113);(2)(-214)÷(-45)×(-23);(3)1÷(-227)×513;(4)312÷(-1415)×(-323).解:(1)48 (2)-158 (3)-73 (4)554六、布置作业 巩固目标 课后作业 见“学生用书”.第4课时 有理数的除法(二)教学目标1.熟练掌握有理数的混合运算,并会用运算律简化运算. 2.能运用有理数的混合运算解决实际问题. 教学重点有理数的加减乘除的混合运算. 教学难点有理数的乘除的混合运算顺序. 教学设计 (设计者: )教学过程设计一、创设情境 明确目标1.说一说以前学习的四则混合运算的运算顺序.2.已知高度每上升1000 m ,气温大约下降6℃,光明中学地理兴趣小组的同学们想估计某座山的高度,他们测得山顶的温度是1℃,山下地面的温度是13℃,你能帮助他们估算一下这座山的高度吗?二、自主学习 指向目标自学教材第36页,完成下列问题:1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算. 4.计算:(1)-3÷4×14=__-316__;(2)-313÷213÷(-2)=__57__.三、合作探究 达成目标探究点一 有理数的混合运算的顺序及运用运算律和简便运算 活动一:例1 计算:42×(-23)+(-134)÷(-0.25).【展示点评】在这个式子中包含加、乘、除法几种运算.本题的运算顺序是先乘除后加减.式子中的带分数和小数需要先转化成分数.【小组讨论】进行有理数的混合运算需要注意哪些问题?【反思小结】有理数加减乘除混合运算时:1.注意运算顺序;2.先将除法转化为乘法;3.要注意符号的变化;4.若出现带分数可以化为假分数,小数可化为分数计算.活动二:例2 计算:(79+56-1112)×36.【展示点评】可以先计算括号里面的,也可以运用乘法的分配律展开运算. 【小组讨论】例2与例1有什么不同?此题有哪些解法?【反思小结】有理数加减乘除混合运算时:1.有括号,要先算括号里面的;2.能用运算律的尽量运用运算律简化运算.【针对训练】见“学生用书”. 探究点二 有理数混合运算的应用 活动三:例3 某个体商店经营季节性较强的商品,去年由于受到市场的影响,1到3月份平均每月亏损1.5万元,4到6月份平均每月盈利2万元,7到10月份平均每月盈利1.7万元,11到12月份平均每月亏损2.05万元.这个商店去年一年总的盈亏情况如何?【展示点评】从数学的角度思考,亏损用负数表示,盈利用正数表示. 【小组讨论】:说说你对运用有理数混合运算解决实际问题的看法. 【反思小结】在生活中经常用正负数来表示意义相反的两个量,要习惯从数学的角度看生活中的实际问题,建立相应的数学模型去解决问题.【针对训练】见“学生用书”. 四、总结梳理 内化目标1.顺序:有理数加减乘除混合运算. 2.注意的问题.实际问题―→数学问题―→构建模型―→计算求解⎩⎪⎨⎪⎧运算顺序运算法则运算律五、达标检测 反思目标1.下列运算正确的是( B )A.⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-12=4 B .0-2=-2 C.34×⎝ ⎛⎭⎪⎫-43=1 D .(-2)÷(-4)=2 2.计算:(1)18-6÷(-2)×(-13);(2)214×(-76)÷(12-2).解:(1)17 (2)743.运用运算律计算: (1)5÷(-34)+43×8;(2)-25+(58-16+712)×(-2.4). 解:(1)4 (2)-2.94.已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy-3)-2(m +n). 解:∵m ,n 互为相反数,x ,y 互为倒数,∴m +n =0,xy =1.∴原式=[4(m +n )-24]÷5-2(m +n )=(0-24)÷5-0=-245六、布置作业 巩固目标课后作业 见“学生用书”.。

七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法(二)导学案新版新人教版

1.4.1 有理数的乘法(二)1.探索多个有理数相乘的符号确定法则;2.会进行有理数的乘法运算;3.通过对问题的探索,培养观察、分析和概括的能力.重点:多个有理数相乘运算符号的确定;难点:正确进行多个有理数的乘法运算.一、温故知新1.有理数乘法法则:2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-4)+(-6)C .0×(-2)D .(-7)-(-10)3.计算:(1)(-114)×(-45); 解:原式=+(54×45)=1; (2)(-213)×(-6); 解:原式=73×6=14; (3)-320×56. 解:原式=-(320×56)=-18. 二、自主学习1.观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(-3)×(-4)×(-5);(-2)×(-3)×(-4)×(-5). 思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 2.新知应用例题3(P31)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?先确定符号,再算绝对值.你能看出下列式子的结果吗?如果能,理由几个数相乘,如果其中有因数为0,那么积等于0.7.8×(-8.1)×0×(-19.6).1.计算:(课本P32练习1,2)1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,积等于0.一、选择题1.若干个不等于0的有理数相乘,积的符号( C )A .由因数的个数决定B .由正因数的个数决定C .由负因数的个数决定D .由负因数和正因数个数的差决定2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15) 3.下列运算错误的是( B )A .(-2)×(-3)=6B .(-12)×(+6)=3 C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24二、计算:(1)(-2)×54×(-910)×(-23); 解:原式=-32; (2)(-6)×5×(-76)×27; 解:原式=10;(3)(-4)×7×(-1)×(-0.25);解:原式=-7;(4)(-524)×815×(-32)×14; 解:原式=124; (5)(-112)×(-113)×(-114)×(-115)×(-116)×(-117). 解:原式=32×43×54×65×76×87=4.。

七级数学上册1.4有理数的乘除法1.4.2有理数的除法(2)教案(新版)新人教版

课题: 1.4.2 有理数的除法 (2)教课目的:1. 掌握有理数加、减、乘、除运算的法例,运算次序,可以娴熟运算.2.能运用法例解决实质问题 .要点:如何按有理数的运算次序,正确而合理地进行计算.难点:如何按有理数的运算次序,正确而合理地进行计算.教课流程:一、知识回首问题 1:有理数除法法例:答案:除以一个不等于0 的数,等于乘这个数的倒数.即: a÷ b= a·1( b≠0)b或:两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于 0 的数,都得 0.问题 2:化简以下分数 .(1)72320_____; (2)_____; (3)_____. 86516答案:- 9;;0二、研究1例 1计算: (1)( 125 5) ( 5) 7追问:如何计算简易呢?答案:运用分派律简化运算.5解:( 125) ( 5)7(125 5)1 7 51251 51 5 75251 72517练习 1:下边是小明和小红达成的同一道除法计算题:74691671小明: ( - 4211) ÷7=-11×7=-11=-611;77117111小红: ( - 4211) ÷7= ( -42-11) ×7=- 42×7-11×7=- 6-11=- 611.(1) 你以为的方法简易;6(2)依据简易方法计算 ( -48 ) ÷( - 6). 13答案:小红66116111解: (2)( -48 ) ÷( - 6)=(48+) ×=48×+×=8+= 81313661361313三、研究 2例 1计算: (2) 2.5 5 ( 1 )84解: 2.5 5 ( 1 )845812541追问:乘除混淆运算,应如何进行计算呢?答案:先将除法转变为乘法;而后确立积的符号;最后求出结果.练习 2:1. 以下计算不正确的选项是( )1A.12×( -3) ÷( - 4) = 9B.( -6) ÷2×( -2) =6C.( -5) ÷( -1) ×5= 125D.( -2) ÷( -10) ×( - 31)=-2533答案: B2. 填空:(1)( -48) ×3÷( -6) ÷( - 8) = ______.(2)( -6) ×( -5) ×0÷( - 30) = ______.答案:- 3; 03. 计算:(1)5( 4)(1) ;(2)2 (2)(4)( 44) 4775解:(1)5(4) (1)4 54480(2)2( 2 )(4)( 4 4 )7752745 272456四、研究 3例 2计算: (1)-8+4÷( - 2) ;(2)( -7) ×( - 5) -90÷( - 15)追问:有理数的加减乘除混淆运算该如何进行呢?答案:先乘除,后加减.解:(1) -8+4÷( - 2)=- 8+( -2)=- 10(2)( -7) ×( - 5) -90÷( - 15)=35-( -6)=35+ 6=41练习 3:1. 计算 3-2×( - 1) 等于 ( )A.5B.1C.- 1D.6答案: A112. 计算6×( -6) ÷( -6) ×6- 6 等于 ()A. -5B.-36C.30D.- 6答案: C3. 计算: (1)60 ÷( - 15) -6×( - 5) ; 2 - 152+(- 3) 0.12534解:(1)60 ÷( - 15) -6×( - 5) =- 4-( -30) =- 4+ 30 = 262152(3) 0.1253410 (3)8 410 ( 6)16五、应用提升1. 某班举行数学知识比赛,共分5 个小组,此中 4 个小组的成绩以下表所示:小组 第一组第二组 第三组 第四组人数15 13 14 12 小组均匀分与全班均匀分的差值4-3- 21(1) 这四个小组的总均匀分比全班均匀分高仍是低?为何?(2) 依据 (1) 你能判断第五组的均匀分比全班均匀分高,仍是低?解: (1) 高.∵ 4×15+ ( -3) ×13+ ( -2) ×14+1×12= 5又∵5>0∴这四个小组的总均匀分比全班均匀分高.(2) 由(1) 可知,前四个小组的总均匀分比全班均匀分高,因此第五组的均匀分要比全班均匀分低.2. 某企业昨年 1~ 3 月均匀每个月损失 1.5 万元, 4~ 6 月均匀每个月盈余 2 万元, 7~10 月均匀每个月盈余 1.7 万元, 11~ 12 月均匀每个月损失 2.3 万元,这个企业昨年总的盈亏状况如何?解:设盈余额为正数,损失额为负数.则企业昨年整年盈亏额( 单位:万元 ) 为:( -1.5) ×3+2×3+1.7 ×4+ ( -2.3) ×2=- 4.5 + 6+ 6.8 -4.6= 3.7答:这个企业昨年整年盈余 3.7追问:你会用科学计算器计算“万元.( -1.5)×3+2×3+1.7 ×4+( -2.3)×2”这个式子吗?科学计算器指出:是符号键式子 ( -1.5)×3+2×3+1.7 ×4+( -2.3)×2 的按键次序:六、体查收获今日我们学习了哪些知识?1.有理数乘除混淆运算应如何计算?2.如何进行有理数的加减乘除混淆运算?七、达标测评11. 计算 1÷( -9) ×( - 9) 的结果是 ()A.1B.-1C.81D.- 81答案: C2.以下计算正确的选项是 ( )4 31A. -1÷ 3× 4=- 1B.-8×[ - ( - 4)]= 2C.2-2×5= 01 51D.- 8- 8÷ 3=- 2答案: D3.两个不一样的有理数 a, b 在数轴上的对应点到原点的距离相等,则以下结论错误的选项是( )aA. ab = 0B. a + b = 0C. b =- 1D.| a | = | b |答案: A4. 如图, A , B 两点在数轴上表示的数分别为a ,b ,以下式子建立的是 ( )aB. a - b > 0C.a ( b - 1) < 0D.( b - 1)( a + 1) < 0A. b > 0答案: C5. 计算下边各题 .(1)6 ( 12) ( 3); (2)3 ( 4)( 28)7;(3)(48) 8 ( 25)( 6); (4)42 ( 2) (3) ( 0.25).34答案: 2;- 16;- 156;- 256. 填在下边各正方形中的四个数之间都有同样的规律,依据这类规律,m 的值是_______.答案: 158八、部署作业教材 38 页习题 1.4 第 7(4)(5)(6)、8(1)(2)题.。

七年级数学上册人教版1.4有理数的乘除法教学设计

3.创设悬念:教师提出一个与乘除法相关的问题,如“为什么负数乘以负数会得到正数?”激发学生的好奇心和求知欲,为讲授新知做好铺垫。
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。

七年级数学上册 1.4 有理数的乘除法 1.4.2 有理数的除

教学反思:
五、总结升华、反思提升
同学们,请你回想一下,这节课你有什么收获?
1.掌握有理数的加减乘除混合运算,注意运算顺序。
2.会Байду номын сангаас据时间需要进行简便计算。
板书设计:
有理数的除法(2)
复习巩固例1:例2:巩固提高
学生板书用
作业设计
奥必做题:教科书第38~39页习题1.4第8、10、11题。
选做题:
最佳解决方案

生:
【教师引导学生应用有理数解决实际问题,体会有理数运算的简介、方便。】
例2:用计算器计算:
师:计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算快捷的多,哪位同学想展示一下?
生:展示
四、巩固训练、深化提高
2.观察下面两位同学的解法正确吗?若不正确,你能发现下面解法的问题出在哪里吗?
三、释疑解难、精讲点拨
例1:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元。这个公司去年总的盈亏情况如何?
师:有的月份亏损,有的月份盈利,我们如何表示?
生:用正数表示盈利,用负数表示亏损
师:求全年的盈亏情况,就应该把12个月的全加起来,那有没有简单的方法呢?
【学生观察、讨论,得出结论:①不正确,②正确。】
【学生观察、讨论,得出结论:①不正确,②正确。】
3.中国民航规定:乘坐飞机经济舱的旅客,一人最多可免费携带20千克行李,超过部分每千克按飞机票的1.5%购买行李票.一位乘坐经济舱的旅客付了120元的行李票,他所乘航班的机票为800元,这个旅客携带了多少千克的行李?
重点、难点:
教学重点:有理数混合运算顺序的确定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.4.1有理数的乘法(2)教学目标:1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点:了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.难点:运用运算律简化乘法运算.教学流程:一、知识回顾问题1:有理数乘法法则:答案:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.问题2:填空:2×(-3)=______(-6) ×(-4)=______24×(-5)=______答案:-6;24;-120问题引入:想一想:2×(-3)×(-4)×(-5)该如何计算呢?二、探究1问题1:观察下面各式,它们的积是正的还是负的?2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)答案:依次为正数;负数;负数;正数追问:几个不等于0的数相乘,积的符号与负因数的个数之间有什么关系?归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.例:计算591(1)(3)()()654-⨯⨯-⨯-;41(2)(5)6()54-⨯⨯-⨯解:591(1)(3)()()654591365498-⨯⨯-⨯-⨯⨯⨯=--=41(2)(5)6()544156546-⨯⨯-⨯=⨯⨯⨯= 追问:多个不是0的数相乘,先做哪一步,再做哪一步?强调:先确定积的符号,再把各个乘数的绝对值相乘,作为积的绝对值. 练习1:1.若五个有理数的积为负数,那么这五个数中负因数的个数是( )A.1B.3C.5D.1或3或5答案:D 2.计算:(1)(5)8(7)(0.25)-⨯⨯-⨯-;5812(2)()()121523-⨯⨯⨯- 解:(1)(5)8(7)(0.25)1587470-⨯⨯-⨯-=-⨯⨯⨯=-5812(2)()()1215235812121523227-⨯⨯⨯-=⨯⨯⨯= 三、探究2问题2:你能看出下式的结果吗?如果能,请说明理由.7.8(8.1)0(19.6)⨯-⨯⨯-归纳:几个数相乘,如果其中有因数为0,积等于0. 练习2:判断下列各式乘积的符号: ①(-3)×(-4)×(+5.5); ②4×(-2)×(-3.1)×(-7); ③(-201)×0×7×(-2);④(-3.7)×(-6)×10×(-5.3)×(-1),其中积为正数的有________,积为负数的有____________,积为0的是_______________.(只填写序号)答案:①④;②;③四、探究3问题3:计算:5×(-6) (-6)×5(-4)×(-3) (-3)×(-4)(-2)×7 7×(-2)追问:两次所得的积相同吗?答案:相等归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba强调:a×b也可以写成a·b或ab,当用字母表示乘数时,“×”可以写为“·”或省略.问题4:计算:[3×(-4)]×(-5) 3×[(-4)×(-5)]解:[3×(-4)]×(-5) 3×[(-4)×(-5)]=(-12)×(-5) =3×20=60 =60追问:你能得出什么结论呢?归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc)问题5:计算:5×[3+(-7)] 5×3+5×(-7)解:5×[3+(-7)] 5×3+5×(-7)=5×(-4) =15+(-35)=-20 =-20追问:你能得出什么结论呢?归纳:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律:a(b+c)=ab+ac练习3:1.运用运算律填空:(1)[(-4)×5]×(-15)=(-4)×[ ____ ×( ________ )];(2)(-0.25)×21×(-8)×(-17)=[(-0.25)×( ____ )]×[ ____ ×(-17)].答案:5,-15;-8,212.观察下面的计算过程:(13-315+25)×3×5=(13-315+25)×15=5-3+6=8 在上面的计算过程中运用的运算律是( )A.乘法交换律及结合律B.乘法交换律及分配律C.加法结合律及分配律D.乘法结合律及分配律答案:D 五、应用提高例:用两种方法计算:111()12462+-⨯ 解法1:解法2:111()12462326()12121212112121+-⨯=+-⨯=-⨯=-111()124621111212124623261+-⨯=⨯+⨯-⨯=+-=- 练习3: 计算:(1)(85)(25)(4);-⨯-⨯-91(2)()30;1015-⨯71(3)()15(1);87-⨯⨯-62617(4)()()()()5353-⨯-+-⨯+解:(1)(85)(25)(4)85(254)851008500-⨯-⨯-=-⨯⨯=-⨯=-91(2)()301015913030101527225-⨯=⨯-⨯=-= 71(3)()15(1)8771()(1)158711515-⨯⨯-=-⨯-⨯=⨯=62617(4)()()()()53536217()[()()]5336()556-⨯-+-⨯+=-⨯-++=-⨯=-六、体验收获今天我们学习了哪些知识? 1.我们学习了哪些乘法运算律?2.进行有理数的乘法运算时,哪些情况下考虑使用乘法运算律呢? 七、达标测评1.下列计算正确的是( )A.(-9)×5×(-4)×0=9×5×4=180B.-5×(-4)×(-2)×(-2)=5×4×2×2=80C.(-12)×(23-14-1)=-8-3-1=-12 D.-2×5-2×(-1)-(-2)×2=-2×(5+1-2)=-8 答案:B2.用简便方法计算:(-23)×25-6×25+18×25+25,逆用分配律正确的是( )A.25×(-23-6+18)B.25×(-23-6+18+1)C.-25×(23+6+18)D.-25×(23+6-18+1)答案:B3. 计算1357×316,最简便的方法是( )A.(13+57)×316B.(14-27)×316C.(10+357)×316D.(16-227)×316答案:D4. 在等式4×□-2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是________.答案:5 5.计算:(1) (-4)×(-72)×(-0.25)×(-136); (2)(-712-56+1)×(-36);(3) 9992425×(-5). 解:(1) (-4)×(-72)×(-0.25)×(-136) =[(-4)×(-0.25)]×[(-72)×(-136)] =1×2 =2(2)(-712-56+1)×(-36)=(-712)×(-36)-56×(-36)+1×(-36)=21+30-36 =1524(3)999(5)251(1000)(5)2511000(5)(5)25150005449995⨯-=-⨯-=⨯--⨯-=-+=-八、布置作业教材38页习题1.4第7(1)(2)(3)题.。

相关文档
最新文档