泰勒公式开题报告
数学课题开题报告

数学课题开题报告数学课题开题报告(精选7篇)在生活中,大家逐渐认识到报告的重要性,不同种类的报告具有不同的用途。
我们应当如何写报告呢?以下是小编整理的数学课题开题报告(精选7篇),仅供参考,希望能够帮助到大家。
数学课题开题报告篇1一、研究实验的课题总课题:课本导读教学模式的探讨与研究子课题:A、如何阅读概念、定理、公式、例题、应用题。
例子:两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种不考虑物品价格的升降,每次购买这种物品所花的钱数一定,哪种购物方式比较经济?能把所得结论作一些推广吗?设第一次和第二次购物时的价格分别为p1,p2,按第一种策略,每次购nkg,按这种策略购物时,两次平均价格是:B、课本习题的变式的方法与途径的研究。
C、在课本导读教学模式下学生自主学习能力的探讨研究。
二、课题的意义与目的教学艺术永远是一门遗憾的艺术,课题研究是它永恒的主题。
吹尽黄沙始现金,让我们以没有最好,只有更好的理念来不断改进我们的教学方式,实现真正意义的与时俱进,发展学生的数学素质和创新能力也就有了载体。
高中数学新课程标准指出:学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。
高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。
中国有句古话叫“授人以鱼不如授人以渔”,我们想通过课本导读法的教学使学生具备自主学习的能力,有利于学生终身学习有效的数学学习方式。
三、课本研究的理念依据数学教学要以人为本、注重人的可持续发展,变“学会”为“会学”的今天,还学生“读书”的权力,多让学生读书,使学生形成阅读数学教材的习惯,掌握数学阅读的方法,已越来越重要。
课题开题报告15篇

课题开题报告15篇课题开题报告1论文题目:关于泰勒公式的应用课题研究意义在初等函数中,多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述主要内容Taylor公式的应用Taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。
满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。
如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。
如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。
证明思路:(1)写出比最高阶导数低一阶的Taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
(整理)数学论文泰勒公式

本科生毕业论文题目: 泰勒公式及其应用研究专业代码: 070101作者姓名: 范文朝学号: 2008200665单位: 2008级1班指导教师: 刘保政2012年5 月20 日精品文档原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明。
本人承担本声明的相应责任。
学位论文作者签名: 日期指导教师签名: 日期目录摘要 (Ⅰ)Abstract (Ⅱ)1.引言 (1)2.泰勒公式的形式........................................... (1)2.1 带有佩亚诺型余项的泰勒公式.............................. .. (1)2.2 具有拉格朗日余项的泰勒公式 (2)2.3 带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (2)3.泰勒公式的应用...... ....................... . (2)3.1利用泰勒公式求不定式的极限 (3)3.2利用泰勒公式估算误差 (5)3.3用泰勒公式判断级数的敛散性....................... . (9)3.3.1数项级数的敛散性判断............. .............. ........ ..93.3.2函数项级数的敛散性判断............... .............. .. (10)3.4利用泰勒公式证明中值问题.............. ............. (12)3.5利用泰勒公式证明不等式和等式............. .............. .. (13)3.5.1利用泰勒公式证明积分不等式或积分等式................ .. (13)3.5.2利用泰勒公式证明导数不等式.............. ............. (15)3.5.3利用泰勒公式证明代数不等式............... . (16)结束语 (19)参考文献 (20)致谢 (21)摘要泰勒公式是数学分析中重要的公式,它的基本思想是用多项式来逼近已知函数,而这个多项式的系数由给定函数的各阶导数确定.阐述了泰勒公式的定义及其各种形式,着重对泰勒公式在极限计算、误差估计、敛散性的判断、中值问题以及等式与不等式的证明这五个方面中的应用进行了研究论述.泰勒公式在多方面的应用可以提高我们对泰勒公式的认识,有利于把泰勒公式的研究推向更深处.关键词:泰勒公式; 不定式的极限;误差估计; 级数的敛散性;不等式证明AbstractTaylor formula is a important formula in the mathematical analysis. Its basic idea is that the known function with a polynomial approximation determines the coefficients of the polynomial by the first derivative of the given function. The definition and its various forms of the Taylor formula are elaborated. The applications of Taylor formula in five aspects are studied and discussed, such as the limit calculation, error estimation, the judgment of convergence and divergence, median problems, as well as equality and inequality proof. Taylor formula in many applications can improve our understanding of the Taylor formula , and it benefit to push the research of Taylor formula to deeper.Key words:Taylor formula; the infinitive limits; error estimates; convergence and divergence of the series; Proof of Inequality泰勒公式及其应用研究1. 引言泰勒公式是数学分析中一个非常重要的内容,几个微分中值定理中一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式的研究

1.2 泰勒公式的研究意义
泰勒公式是微积分中的一个基本理念,不但在理论上占重要地位,同时泰勒公式在极限计算、近似计算、级数及积分敛散性的判断、证明等式不等式等方面也有重要应用,并且还是研究分析数学的不可或缺的工具。我们必须掌握它,以便更方便更好的解决数学实际问题、研究一些复杂的函数。
泰勒公式是一个应用价值非常大的数学公式。将此公式作进一步剖析,归纳总结它的各类余项,将会有更多收获。这个公式结构对称和谐,无论是在代数,还是几何中都可以应用,它在解决一些实际问题或推导一些数学结论上非常有用,在初等数学和高等数学中应用都比较广泛。因此,对泰勒公式的探究是有益的。近年来,以泰勒公式为背景的试题已悄然在考研试卷和国内外的数学竞赛题中出现。在解题过程中,灵活巧妙地应用泰勒公式,从不同角度考虑问题,有助于拓宽解题思路,提升解题技巧,并可以使一些比的各种变形使得较困难的问题得以比较简捷地解决,说明泰勒公式与它的推广的使用方法和技巧,从而揭示了泰勒公式在数学领域中的广泛应用。
泰勒公式开题报告

泰勒公式开题报告泰勒公式开题报告一、引言泰勒公式是数学中的一项重要工具,它用于近似计算函数在某点的值。
该公式的提出者是英国数学家布鲁克·泰勒,他在1715年的《方法论》一书中首次描述了这一公式。
泰勒公式的应用范围广泛,涉及到物理学、工程学、计算机科学等众多领域,因此对其进行深入研究具有重要意义。
二、泰勒公式的基本原理泰勒公式是利用函数在某点的导数来逼近函数在该点附近的值。
设函数f(x)在点a处具有n阶导数,则泰勒公式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中,f'(a)表示函数f(x)在点a处的一阶导数,f''(a)表示二阶导数,以此类推。
Rn(x)表示剩余项,用于表示泰勒公式的近似程度。
三、泰勒公式的应用1. 近似计算泰勒公式可以用于近似计算函数在某点的值。
通过取不同阶数的导数,可以得到不同精度的近似结果。
在实际应用中,我们可以根据需要选择适当的阶数,以获得满足要求的近似值。
2. 函数图像的绘制利用泰勒公式,我们可以在不知道函数解析表达式的情况下,通过计算函数在某点的导数,来绘制函数的图像。
这在计算机图形学中具有重要意义,可以用于生成曲线、曲面等复杂图形。
3. 数值计算泰勒公式的应用不仅限于函数的近似计算,还可以用于数值计算中。
例如,在数值微分和数值积分中,我们可以利用泰勒公式来构造数值算法,以提高计算的精度和稳定性。
四、泰勒公式的改进尽管泰勒公式在近似计算中具有广泛应用,但它也存在一些限制。
首先,泰勒公式要求函数在某点的导数存在,这在某些情况下可能不成立。
其次,随着阶数的增加,剩余项Rn(x)的影响逐渐增大,导致近似结果的误差也随之增大。
为了克服这些限制,人们提出了一系列改进的泰勒公式,如拉格朗日余项、佩亚诺余项等。
泰勒公式的应用开题报告

泰勒公式的应用开题报告一、选题意义在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。
除此之外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题便的简单易解。
二、论文综述国内同类课题研究现状及发展趋势:泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,研究的方向大部分的是通过典型例题说明泰勒公式在求解极限、判定级数及广义积分敛散性方面、计算行列式、对某些定积分进行近似计算,求某些微分方程的通解等。
例如:湖南科技学院数学系的唐仁献在文章《泰勒公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了泰勒公式,哈尔滨职业技术学院郭鑫、林卓在《浅议泰勒公式应用》中着重论述了泰勒公式在近似计算、极限运算、级数与广义积分的敛散性判断等方面的具体应用方法。
在很多文章中,提到泰勒公式时,马上就是介绍泰勒公式的定义以及定性表示形式和各种形式的余项,如在我们学习的课本《数学分析》(上)中就是这样介绍的,这部分内容对于一个数学专业的学习者来说是比较基础的一部分内容,这对于以后的发展学习是很重要的.而我认为要深入研究这部分内容的话,还必须了解为此做出贡献的数学家—泰勒,因为了解一个数学家,就可以了解他创作时的数学思想,以及他的思维方式,在《世界著名科学家传记》中就对这位伟大的英年早逝的科学家进行了详细介绍.在许多书籍和论文里也都会提到泰勒公式及其应用,可见这一部分知识的重要性,尤其对于高校学生和一些应用型研究学者来说,这部分知识的学习总结是不容忽视的.由于很多课本对这些内容只是简单描述,没有系统、详细的进行总结,为了更好的了解和认识泰勒公式及其它的应用,笔者通过翻阅大量的文献和参考资料,并对泰勒公式应用的方方面面进行了认真的思考,同时总结了其他学者在这方面研究所做的贡献.三、主要内容我的论文将先对泰勒公式进行简单的介绍,对余项进行讨论,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,并配有相应的例题。
泰勒公式的作用范文

泰勒公式的作用范文泰勒公式是一种用于求解函数在一些点的近似值的方法。
它的作用范围非常广泛,可以应用在数学、物理、工程等许多领域中。
下面将详细介绍泰勒公式的作用范围。
首先,泰勒公式在数学中起到了非常重要的作用。
数学中的许多函数无法精确地表示成有限次幂级数表达式,而泰勒公式可以将这些函数近似为无穷级数。
通过泰勒公式,我们可以用有限次幂级数来近似表示复杂函数,这对于研究函数的性质和求解方程都非常有帮助。
例如,在微积分中,我们可以利用泰勒公式来求解复杂函数的导数,从而简化计算过程。
其次,泰勒公式在物理中也有广泛的应用。
物理学中的很多现象可以通过数学函数进行描述,而泰勒公式可以帮助我们近似求解这些函数。
例如,在运动学中,我们可以利用泰勒公式来确定时刻速度和位移的近似值。
在力学中,我们可以应用泰勒公式来计算物体在受力下的运动轨迹。
这些应用使得泰勒公式成为解决物理问题的有力工具。
此外,泰勒公式在工程领域也得到了广泛应用。
在工程设计中,我们常常需要对复杂的函数进行近似计算。
泰勒公式可以帮助工程师们通过有限次幂级数来逼近原函数,从而简化计算过程。
例如,在电路设计中,我们可以通过泰勒公式来近似求解电流和电压的关系。
在机械工程中,我们可以利用泰勒公式来计算物体在力的作用下的变形。
这些应用使得泰勒公式成为工程实践中的重要工具。
此外,在金融领域,泰勒公式也有着广泛的应用。
金融学中的许多模型可以通过数学函数进行描述,而泰勒公式可以帮助金融学家们近似求解这些函数。
例如,在期权定价模型中,我们可以利用泰勒公式来近似计算期权价格。
在风险管理中,我们可以应用泰勒公式来估计资产的价值变动。
这些应用使得泰勒公式成为金融学研究和实践中的重要工具。
总之,泰勒公式在数学、物理、工程和金融等领域都有着广泛的应用。
它可以帮助我们近似求解复杂函数,从而简化计算过程和问题求解。
无论是在理论研究还是在实践应用中,泰勒公式都起到了重要的作用。
对于研究者和工程师们来说,了解和掌握泰勒公式的方法和技巧是非常重要的。
泰勒中值定理与泰勒公式计算思路与典型题分析

泰勒中值定理与泰勒公式计算思路与典型题分析泰勒(Brook Taylor)英国数学家,主要以泰勒公式和泰勒级数出名。
一、泰勒多项式与麦克劳林多项式设函数f(x)在x0某邻域内有定义,并且在x0处有n阶导数,则称为函数f(x)在x0处的n阶(次)泰勒多项式. 其中系数称为f(x)在x0处的泰勒系数.特别,如果x0=0时,称为函数f(x)的n阶麦克劳林多项式.二、泰勒中值定理与泰勒公式定理(泰勒中值定理)如果函数f(x)在x0的某个邻域内具有直到n+1阶导数,则对邻域内任一点x,至少存在介于x0与x之间的一点ξ,使得该公式也称为带拉格朗日余项的泰勒公式,其中ξ也可以表示成三、带皮亚诺余项的泰勒公式如果函数f(x)在x0处具有直到n阶导数,则存在x0的一个邻域,对于该邻域内任一x,有此公式称为带皮亚诺余项的n阶泰勒公式.【注】以上两个公式当x0=0时,分别称为n阶带拉格朗日余项的麦克劳林公式和带皮亚诺余项的麦克劳林公式,即有四、泰勒公式的意义及使用原则泰勒公式解决了用微分近似计算函数值或函数值增量精度不高问题;提供了误差的估计公式,并可实现对误差的有效控制.【注1】函数f(x)在x=x0的n阶导数存在,则可以写出该函数在x=x0处的n次泰勒多项式,但是泰勒多项式不一定会随着n的增加逐渐逼近函数在x处的函数值.【注2】只要存在常数C>0使当x∈(a,b)时,恒有|f(n+1)(x)|≤C(n=0,1,2,…)则用n次泰勒多项式P n(x)来近似代替f(x)时,余项的绝对误差|R n(x)|(x∈(a,b))随n的增大可变得任意小. 对于初等函数而言,在任意定义区间上一般都满足这个条件,所以对应的泰勒多项式可以满足这个要求.【注3】记住几个基本初等函数的带拉格朗日余项的泰勒公式和麦克劳林公式,其他的常见初等函数的在任意点的泰勒公式,一般都可以基于等式恒等,公式唯一的间接法来获得相应的泰勒公式.五、常用的几个麦克劳林公式带拉格朗日余项的麦克劳林公式带皮亚诺余项的麦克劳林公式【注1】一般在应用中都使用麦克劳林公式,因为一般位置的泰勒公式通过平移变换可以转换为麦克劳林公式描述.【注2】借助泰勒公式,可以计算函数在指定点的任意阶导数,即有六、计算函数泰勒公式的方法与典型题1. 直接法(1)计算n阶带拉格朗日余项的泰勒公式,直接求函数在x0的1~n+1阶导数,然后由公式代入各阶导数值,直接写出泰勒公式.(2)计算n阶带皮亚诺余项的泰勒公式,直接求函数在x0的1~n阶导数,然后由公式代入各阶导数值,直接写出泰勒公式.【注】计算麦克劳林公式即为x0=0处的泰勒公式. 该方法适合于所求阶数较低,函数不方便描述为具有以上几个已知泰勒公式的初等函数结构,或者函数求导结果具有一定规律的问题,比如上面几个基本初等函数的麦克劳林公式的计算.例1 求f(x)=secx的三阶带皮亚诺余项的麦克劳林公式.【分析】该函数不好直接描述为以上五个函数,即sinx, cosx, e x, ln(1+x), (1+x)a的结构,所以使用直接法计算系数来获取相应的麦克劳林公式,由于要计算三阶带皮亚诺余项的麦克劳林公式,所以要求x0=0处的函数值及三阶导数值,于是有所以有【注1】由于secx是偶函数,所以在计算导数的过程中也只需要计算偶数阶导数,奇数阶导数肯定为0.【注2】对于抽象函数一般使用直接法.例2(1996年数学一(199607)) 设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a, |f’’(x)|≤b.其中a,b都是非负常数,c是(0,1)内任意一点.(1)写出f(x)在点x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明|f’(x)|≤2a+b/2.【分析】首先,这是一个抽象函数的泰勒公式计算问题,并且在x=c处各阶导数都无法直接计算出,所以只能用抽象函数的导数描述形式描述,于是直接由泰勒公式定义形式,有其中ξ=c+θ(x-c),0<θ<1. 这就是该考题第(1)的结果.对于第二问,考虑的是f’(x),由于c为任意点,所以就相当于考察泰勒公式中的f’(c),所以希望将它用有相关已知条件的函数与二阶导数来描述,如果直接用一阶泰勒公式表示,则分母中出现x-c,无法获取最小下界. 因此,按照常规的泰勒公式的应用于证明题的思路,写出在某点的泰勒公式后,分别求其它已知点,或者中点、端点的函数值,然后借助两个泰勒公式消去一些不好讨论的项,得出能够讨论出结果的表达式.比如这里,除了c,就只有两个相关端点了,于是对一阶泰勒公式求x=0,x=1的值,有两式相减,则可以将f’(c)的变量系数消去,从而有而有绝对值不等式,有由于g(c)=(1-c)2+c2的导数为g’(c)=4c-2,所以驻点只有一个,即c=1/2,比较函数g(c)在0,1/2,1的值,即1,1/2,1,所以有1/2<g(c)<1,从而有结论成立.2. 间接法该方法基于函数表达式恒等变换与泰勒公式的唯一性.(1)将函数的变量描述为x-x0的函数形式,x变量不再以其它形式存在于函数表达式中;(2)将函数描述为已知麦克劳林公式的基本初等函数的结构,即sinx,cosx, e x, ln(1+x), (1+x)a,其中x可以是任意的表达式,如果将其替换为x-x0,则得函数在x=x0处的泰勒公式.【注】变换思路可以考虑两个方向,求麦克劳林公式则从考虑变换函数结构出发,求非零点的泰勒公式,则先考虑变量结构,在考虑函数结构.(3)写出构成函数的各基本初等函数的泰勒公式,合并化简系数,写出最终泰勒公式例2 分别求x2/(4+x)的n阶带皮亚诺余项的麦克劳林公式和x=2处的n阶带皮亚诺余项的泰勒公式.【分析】(1)求带皮亚诺余项的麦克劳林公式,它从变换函数结构出发:具有x2/(4+x)结构的,已知泰勒公式的初等函数为于是有或者(2)求带皮亚诺余项的x=2泰勒公式,首先从变量出发,把变量都变为x-2,则有例3 求f(x)=e sinx的三阶带皮亚诺余项的麦克劳林公式.【分析】:直接法:该函数不具有直接的以上五个函数结构,所以考虑直接法,于是有所以有间接法:于是有例4(2000数学二):求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(3≤n).【解题分析】由于是求x=0处的n阶导数,所以由麦克劳林公式,有于是由ln(1+x)的麦克劳林公式:可得【另解】由于这是一个幂函数与对数函数的乘积,所以它的导数也可以由莱布尼兹计算公式来求,其中公式为:如果令则由于有所以有因此当x=0时,代入上式,则有相关推荐•柯西中值定理证明中值命题的基本思路与典型例题分析•拉格朗日中值定理证明中值命题的基本概念、基本步骤与典型题思路分析•罗尔定理证明中值命题的基本概念、步骤与典型题思路分析关于泰勒公式、泰勒中值定理的应用实例思路探索与分析可以参见全国大学生数学竞赛初赛非数学解析视频课堂,主要视频有:•第二届第2题:基于对数函数法和麦克劳林公式计算函数极限(1个视频片段)•第三届第1题:函数极限计算的三类重要方法及应用实例分析(3个视频片段)•第三届第三题:借助带拉格朗日余项的泰勒公式证明中值等式(1个视频片段)•第四届第三题:借助麦克劳林公式探索方程近似解(1个视频片段)•第六届第三题:用泰勒公式解题的一般思路与步骤及实例分析(2个视频片段)•第八届第1题:函数极限计算的一般思路与方法(3个视频片段)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究内容:
泰勒公式是大学数学的一个热点,而泰勒公式及其应用将会为一些学习泰勒公式的人提供一个快捷的方式去学习、理解、掌握泰勒公式及其应用,本文就其进行一下几点的研究:
1.介绍泰勒公式和证明泰勒公式;
2.利用泰勒公式求函数极限、求函数的导数、证明函数的敛散性以及求函数的近似值和初等函数的展开式等;
(5)—反复修改论文,最终定稿。
指导教师意见
指导教师(签名):年月日
全日制本科生毕业论文开题报告
姓名
xxx
学号
xxxxxx
ห้องสมุดไป่ตู้专业
数学与应用数学
题目
泰勒公式及其应用
研究背景与目的
研究背景:
泰勒公式在大学内容中有着不可替代的作用,是数学学习的基础,而越来越多的学生对由于刚刚开始接触到泰勒公式,对泰勒公式的应用不甚了解。掌握题型和解题方法,识别模式,熟练运用,是理解解决泰勒公式及解决有关泰勒公式问题的有效途径。
研究目的:
泰勒公式在数学研究中具有重大的意义,在微积分的各个领域中都有广泛的应用,它是解决一系列微积分问题的依据。
在大学的《数学分析》中,泰勒公式作为其主要内容之一,对研究函数的求极限、求函数的导数、判断函数的敛散性和求函数的近似值等方面有着无可替代的作用,是非常重要的数学工具。通过对题型归类,构造解题模型,使学生能够有效理解泰勒公式,在解题的准确性和答题的速度方面都会大大提高。
3.总结对泰勒公式及其应用中问题解决方法和模式。
研究方法:
本文主要采用文献综合法、数学归纳法、个案研究法、分析法、逻辑推理法等研究方法。
研究进度计划
(1)—查阅资料,拟定论文题目;
(2)—整理资料,准备开题报告;
(3) —整理资料,完成论文初稿交给指导老师审阅、修改;
(4)—修改论文,完成二稿交给指导老师审阅、修改;