第一章气体的PVT关系
物理化学主要公式

物理化学主要公式第一章 气体的pVT 关系1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5. 德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为德华常数。
01气体的pVT关系

临界温度以上不再有液体存在,
p*=f (T) 曲线终止于临界温度; 临界温度 Tc 时的饱和蒸气压称为临界压力。
临界压力:(critical pressure ,pc)在临界温度下时
的饱和蒸气压。是在临界温度下使气体液化所需要 的最低压力。 临界摩尔体积:(critical molar volume,Vm,c)是在 临界温度和临界压力下物质的摩尔体积。 临界状态:物质处于临界温度、临界压力下的状态。
拐点C; S 型曲线两端有过饱和蒸气和 过热液体的含义。
图1.3.2 真实气体p-Vm等温线示意图
26
用范德华方程计算,在已知T , p,求Vm时,需解一元三次方程
T > Tc 时,Vm有 一个实根,两个虚根,虚根无意义; T = Tc时, 如 p = pc :Vm 有三个相等的实根; 如 p pc : 有一个实根,二个虚根,
对于任何气体混合物,分压为
pB yB p
对于理想气体混合物
p pB
B
pB nB RT / V
适用范围:理想气体混合物和低压下的真实气体混合物。
即理想混合气体的总压等于各组分单独存在于混合气体的T、 V 条件下所产生的压力总和 道尔顿分压定律
4.阿马加分体积定律(Amagat’s law of partial volume)
整理可得如下状态方程:
单位:p Pa TK
pV nRT 或 pVm RT 或 pV m M RT
V m3 n mol R J mol-1 K-1
2.理想气体(perfect gas)模型
吸引力 分子相距较远时,有范德华引力;
排斥力 分子相距较近时,电子云及核产生排斥作用。
7-32第一章 气体的pVT关系

第一章 气体的pVT 关系物质的聚集状态一般可分为三种,即气体、液体和固体。
气体与液体均可流动,统称为流体;液体和固体又统称为凝聚态。
三种状态中,固体虽然结构较复杂,但粒子排步的规律性较强,对它的研究已有了较大的进展;液体的结构最复杂,人们对其认识还很不充分;气体则最为简单,最容易用分子模型进行研究,故对它的研究最多,也最为透彻。
无论物质处于哪一种聚集状态,都有许多宏观性质,如压力p ,体积V ,温度T ,密度ρ,热力学能U 等等。
众多宏观性质中,p , V , T 三者是物理意义非常明确、又易于直接测量的基本性质。
对于一定量的纯物质,只要p , V , T 中任意两个量确定后,第三个量即随之确定,此时就说物质处于一定的状态。
处于一定状态的物质,各种宏观性质都有确定的值和确定的关系①。
联系p , V , T 之间关系的方程称为状态方程。
状态方程的建立常成为研究物质其它性质的基础。
液体和固体两种凝态,其体积随压力和温度的变化均较小,即等温压缩率T T p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ和体膨胀系数pV T V V ⎪⎭⎫ ⎝⎛∂∂=1α都较小,故在通常的物理化学计算中常忽略其体积随压力和温度的变化。
与凝聚态相比,气体具有较大的等温压缩率κT 和体膨胀系数αV ,在改变压力和温度时,体积变化较大。
因此一般的物理化学中只讨论气体的状态方程。
根据讨论的p , T 范围及使用精度的要求,通常把气体分为理想气体和真实气体分别讨论。
§1.1 理想气体状态方程1.理想气体状态方程从17世纪中期,人们开始研究低压下(p <1 MPa )气体的p VT 关系发现了三个对各种气体均适用的经验定律:(1)波义尔(Boyle R)定律 在物质的量和温度恒定的条件下,气体的体积与压力成反比,即p V =常数 (n ,T 一定)(2)盖-吕萨克(Gay J -Lussac J )定律 在物质的量与压力恒定的条件下,气体的体积与热力学温度成正比,即V/T =常数 (n , p 一定)(3)阿伏加德罗(Avogadro A )定律 在相同的温度、压力下,1mol 任何气体占有相同体积,即V / n =常数 (T ,p 一定)将上述三个经验定律相结合,整理可得到如下的状态方程:p V = n RT (1 .1 .1a )上式称为理想气体状态方程。
第一章 气体的pVT性质

30.31× 10−3 kg.mol −1 × 0.201 = 6.29 ≈ 6 1× 10−3 kg.mol −1 ∴ C2 H 6
3. 在生产中 用电石 CaC2 CaC2 分析碳酸氢氨产品中水分的含量 = C2H2 g +Ca OH
2
其反应式如下
s + 2H2O l
现称取 2.000g 碳酸氢氨样品与过量的电石完全作用 在 27 50.0cm3 解 试计算碳酸氢氨样品中水分的质量分数为多少
VB = yBV
VB =
nB RT p
压缩因子的定义
Z=
5 范德华方程
pV nRT
或
Z=
pVm RT
a p + 2 (Vm − b ) = RT Vm 二. 本章练习
(一) 选择题
n2a 或 p + 2 (V − nb ) = nRT V
1 对于实际气体,处于下列哪种情况时,其行为与理想气体相近
n=
2 pV p2V p2V = + RT1 RT1 RT2 2 p1T2 = 57900 Pa = 57.9kPa T2 + T1
p2 =
6. 298.15K 时 在一抽空的烧瓶中充入 2.00g 的 A 气体 此时瓶中压力为 1.00 105Pa 今若再充入 3.00g 的 B 气体 解 发现压力上升为 1.50 105Pa 试求两物质 A B 的摩尔量之比
充入气体质量为
0.3897g 时 解
试计算混合气体中乙烷和丁烷的摩尔分数与分压力
M = y1M 1 + y2 M 2 = =
mRT pV
0.3897 g × 8.314 J .K −1.mol −1 × 293.15 K = 46.87 g .mol −1 −4 3 101.325kPa × 2.00 ×10 m M 1 = 30 g / mol M 2 = 58 g / mol
物理化学主要公式

物理化学主要公式第一章 气体的pVT 关系1.理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2.气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3.道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4.阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5.范德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
第一章气体的pVT关系

世纪末,人们开始普遍地使用现行的理想气体状
态方程:
pV = nRT
2.理想气体模型(model)
(1)分子间力 -兰纳德-琼斯理论(Lennard-Jones theory)
E
Eattra
Erepul
A r6
B r12
E
0
r0 r
(2) 理想气体模型 ①分子之间无相互作用力,E = 0
pV=nRT
➢临界压力 pc ——临界温度下使气体液化所需要
的最低压力,即为临界压力
➢临界摩尔体积Vm,c ——临界温度和临界压力下气
体的摩尔体积,即为临界摩尔体积
➢临界参数——物质临界状态下的Tc、 pc 、Vm,c
统称为物质的临界参数,是物质的特性参数
➢临界点——物质具有Tc、 pc 、Vm,c临 界参数
的临界状态点,称为物质的临界点
p Vm
Tc
0
2 p Vm2
Tc
0
➢超临界流体SCF——
§1 .4 真实气体的状态方程
真
范德华方程 (Van der Waals equation)
实
气
维里方程 (Kammerlingh - Onnes
体
equation)
的 状
R-K 方程 (Redlich – Kwong equation)
p
a Vm2
0
2 p Vm2
Tc
0
p Vm
Tc
RTc (Vm b)2
2a Vm3
0
2 p Vm2
Tc
2RTc (Vm b)3
6a Vm4
0
V m,c 3b
8a Tc 27Rb
pc
第一章气体的pVT关系

mB wB mA
def A
1.2.2
其量纲为 1, wB = 1
(3)体积分数 B ,定义为混合前纯B的体积与各纯组分
体积总和之比
B
def
x V
A
* xBVm ,B * A m, A
1.2.3
(量纲为1) B = 1
2. 理想气体状态方程对理想气体混合物的应用
因理想气体分子间没有相互作用,分子本身又不占 体积,所以理想气体的 pVT 性质与气体的种类无关,因 而一种理想气体的部分分子被另一种理想气体分子置换, 形成的混合理想气体,其 pVT 性质并不改变,只是理想 气体状态方程中的 n 此时为总的物质的量。
以上三式结合 pV = nRT 单位:
理想气体状态方程
p Pa; V m3; T K; n mol ; R 摩尔气体常数 8.3145 10 J mol-1 K-1 理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)。
第一章
低压气体定律:
气体的 pVT 关系
1. 理想气体状态方程
(1)波义尔定律:在物质的量和温度恒定的条件下, 气体的体积与压力成正比,即 pV = 常数 ( n ,T 一定) (2)盖.吕萨克定律:当物质的量和压力恒定时, 气体的体积与热力学温度成正比,即 V / T = 常数 (n , p 一定) (3)阿伏加德罗定律:在相同的温度,压力下,1mol 任何气体占有相同体积,即 V / n = 常数 (T, p 一定)
饱和蒸气压首先由物质的本性决定。对于同一种物质, 它是温度的函数,随温度升高而增大。
饱和蒸气压 = 外压时,液体沸腾,此时的的温度称为 沸点。饱和蒸气压 = 1个大气压时的沸点称为正常沸点。 在沸腾时,液体表面及内部分子同时汽化。
第1章气体的pVt关系

1.4.1 Van der Waals 方程 2 n ( p a 2 )(V nb) nRT V
b为1mol气体分子自身体积的影响。 分子间吸引力正比于(n/V)2 内压力 p′=a(n/V)2 pideal=preal+a(n/V)2 Van der Waals方 1 ( p a )( V b ) RT m 2 种的另一种形式 V
p1 p2 189 186 100% 1.61% p2 186 ’ 3 V 2.00dm3 p1 1.89103 kPa p’ 1 . 59 10 kPa 2
’ ’ 3 p1 p2 (1.89 1.59) 10 100% 18.9% ’ 3 p2 1.59 10
a (p )(Vm b) RT 2 TVm
22
1.5压缩因子与普遍化压缩因子图
1.5.1真实气体的pVm-p图及波义尔温度
pVm/[pVm] C B A pVm/[pVm]
TB
p/[p]
图1.5.1不同气体在同一温度
下的pVm-p等温线
p/[p]
图1.5.2同一种气体在不同温度 下的pVm-p等温线
第1章 气体的p-T-V关系
1.1理想气体状态方程
低压下气体的三个经验定律: 1)Boyle定律:
pV=常数 V/T=常数 V/n=常数
(n、T一定) (n、p一定) (T、p一定) pV= nRT
R—通用气体常数
2)Gay-Lussac定律: 3)Avogadro定律:
精确值:R=(8.314510±0.000070)J· mol-1· K-1
mB wB def mA
A
nB xB (或yB ) def nA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 理想气体混合物
1. 混合物的组成
(1)摩尔分数x或y
xB(或yB) nB nA
A
本书中气体混合物的摩尔分数一般用 y 表示,液体混合物的摩 尔分数一般用 x 表示。
(2)质量分数 ω B
ωB mB
mA
A
(3) 体积分数 B
B
xBVm*B, (
xAVm*A, )
V
* m,
A
A
:一定压力、温度下纯物质A的摩尔体积。
临界温度下的饱和蒸汽压为临界压力,pc 是在临界温度下使气体液化做需要的
最低压力
临界摩尔体积Vm,c:在Tc, pc下物质的摩尔体积
Tc, pc , Vm,c:临界参数
§1.3 气体的液化及临界参数
液体的饱和蒸汽压 临界参数
真实气体的p-Vm图及气体的液化
3.真实气体的p-Vm图及气体的液化
等温线的三种类型: T>Tc(不可液化) T<Tc(加压可液化) T=Tc
V VB*
B
VnR /p T ( nB)R/T p
B
(nB p R)T BV B *
VB* nBRT/ p
理想气体混合物中物质B的分体积等于纯气体B在混合 物温度及总压条件下所占有的体积。
理想气体混合物的体积具有一定的加和性。在相同 的温度和压力下,混合后的总体积等于混合前各组 分的体积之和。
由pVT数据拟合得到Z~p关系.
3. 对应状态原理
对比参数反映了气体所处状态偏离临界点 的倍数。 各种不同气体,只要两个对比参数相同, 第三个参数必相同,这就是对应状态原理。 此时的气体处于相同的对应状态。
3. 普遍化压缩因子图
将对比状态参数的表达式引入到压缩因子 定义式中,得到:
Z Z pm V pcV m ,c prV r RT RcT T r
(2)T=Tc
随着T↑,l-g线缩短,说明Vm(g)和 Vm(l)之差减小, T=Tc时变为一个拐点C
C: 临界点
Tc — 临界温度 pc — 临界压力 Vm,c — 临界摩尔体积 临界点处气、液两相摩尔体积 及其他性质完全相同,气态、 液态无法区分,此时:
(3)T >Tc
无论加多大的压力,气态 不再变为液体,等温线为 一光滑曲线
R 是通过实验测定确定出来的
例:测300 K时,N2,He, CH4 的 pVm - p 关系,作图。
p0时: pVm= 2494.2 Jmol-1
R = pVm/T = 8.314 Jmol–1K – 1
图1.1.2 300K下N2,He,CH4 的 pVm-p 等温线
在压力趋于0的极限条件下,各种气体的行为均服从pVm=RT的定 量关系,所以: R 是一个对各种气体都适用的常数。
§1.1 理想气体状态方程
1. 理想气体状态方程
低压气体定律:
(1)波义尔 (Boyle R,1662)定律:
pV = 常数
(n,T 一定)
(2)盖-吕萨克 (Gay-Lussac J,1808)定律:
V / T = 常数
(n, p 一定)
(3)阿伏加德罗(Avogadro A,1811)定律:
V / n = 常数
如果真实气体处于实际的p,Vm,T条件时,如果 分子间的相互吸引力不存在,则表现出来的压
力应该高于p,为 p+a/Vm2 ∵分子本身占有体积,∴每摩尔气体分子自由
活动空间<它的摩尔体积Vm,为Vm-b
将修正后的压力和体积项引入理想气体状态 方程:
内压 力
(pnV22a)(Vnb)nRT
a, b的单位分别为 Pam6mo2l, m3mo1l
图1.3.1 真实气体的p-Vm等温示意图
(1)T<Tc 时:
气相线g1g1’ : p↑ ,Vm ↓
气-液平衡线g1l1 p*不变,随着g →l,Vm↓ g1: 饱和蒸汽的摩尔体积Vm(g) l1: 饱和液体的摩尔体积Vm(l) g1l1线上,气液两相共存
图1.3.1 真实气体的p-Vm等温示意图
(T, p 一定)
以上三式结合
理想气体状态方程
pV nRT
Pa Nm-2
m3
dm3
mol
8.314Pa·m3·mol-1·K -1 8.314J·mol-1·K -1
K
pV(m/M)RT pVm RT
理想气体定义: 服从 pV=nRT 的气体为理想气体 或服从理想气体模型的气体为理想气体
摩尔气体常数 R
Z 压缩因子的定义:
pV pVm 映真实气体对理想气体的偏差。
Z<1,真实气体的Vm<同条件下的理想气体,比理想气体易于压缩 Z>1真实气体的Vm>同条件下的理想气体,比理想气体难于压缩
维里方程实际上是将压缩因子表示成Vm和 p的级数关系。
Z
查压缩因子图,或由维里方程等公式计算;
T > TB : p↑, pVm ↑ T = TB : p ↑, pVm开始不变 然后增加 T < TB :p ↑,pVm先下降后增 加 TB — 波义尔温度,定义为:
图1.4.1气体在不同温度下的pVm-p
每种气体都有自己的波义尔温度,
难液化的气体(H2,He,N2)的TB较低; 易液化(极性,大分子)的TB较高; TB一般为Tc的2~2.5倍; 当T=TB时,气体在几百千帕压力范围内符合 理想气体状态方程。
lcg虚线内:气液两相共存区 lcg虚线外:单相区
左下方:液相区 右下方:气相区
§1.4 真实气体状态方程
真实气体的pVm-p图及玻义尔温度
范德华方程 维里方程
1. 真实气体的pVm-p图及玻义尔温度
温度相同时,不同气 体的pVm-p曲线有三 种类型
同一气体在不同温度的pVm-p曲线也有三 种
(1) 引入压缩因子Z,修正理想气体方程 (2)引入一些p、V 修正项,修正理想气体
状态方程 (3)使用经验公式
特点:当p →0时,所有的状态方程 →理想气体状态方程。
2. 范德华方程
1)范德华方程(1873年)
理想气体状态方程:pVm=RT 实质: (分子间无相互作用力时气体的压力)× (1mol 气体分子的自由活动空间)= RT
m pM
V RT
200 103 16.04 103 8.314 (25 273.15)
kg m3
1.294 kg m3
2. 理想气体模型
(1)分子间力 吸引力 分子相距较远时,有范德华引力;
排斥力 分子相距较近时,电子云及核产生排斥作用。
E吸引 1/r 6
E排斥 1/r n 兰纳德-琼斯(Lennard-Jones)理论:
Vm
(1) 查Tc, pc
查图
Tr , pr (2)
(3)计算(pVm=ZRT)
Z
作业:1.2,1.6,1.8
压缩因子例题
把25℃的氧气充入40dm3的氧气钢瓶中,压 力达202.7×102kPa。试用普遍化压缩因子 图求钢瓶中氧气的质量。 解:pVm=ZRT
第一章 气体的PVT
物质的聚集状态可以分为三种
流体
气体 液体 固体
V 受 T,p 的影响很大
凝聚态
V 受 T,p的影响较小
在众多宏观性质中,p,V,T三者物理意义非常明确,又易 于直接测量,对于纯物质只要p,V,T中任意两个量确定, 第三个量就随之确定,此时即认为物质处于一定的状态。
联系 p,V,T 之间关系的方程称为状态方程
prV r c T r
大多数Zc在0.27~0.29,近似为常数
Zf(pr, Tr) 适用于所有真实气体
荷根和华德生在20世纪40年代用若干种无机、
有机气体实验数据的平均值,描绘出等Tr线
来表达
Zf(pr, 的T关r)系,称为双参数普
遍化压缩因子图
压缩因子图的应用
已知T、p,求 Z 和 Vm
求
T, p
2. 理想气体状态方程对理想气体混合物的应用
pVnRT(nB)RT
B
pV m RT Mmix
Mmix yBMB B
m m B n B M B ny B M B n M m ix
B
B
B
M m ixmn m B nB
B
B
3. 道尔顿定律
分压力
pB yBp
yB 1
p pB
B
B
pV( nB)RT
VB* nBRT/ p
pBnBR T/V
pV( nB)RT
B
yB nB
nB
B
yBVB */VpB/p
理想气体某一组分B的分体积与总体积 之比或分压与总压之比等于该组分的摩 尔分数。
第一章 气体的PVT关系
§1.1 理想气体状态方程 §1.2 理想气体混合物 §1.3 真实气体的液化及临界参数 §1.4 真实气体状态方程 §1.5 对应状态原理及普遍化压缩因子图
饱和蒸汽压由物质的本性决定组成的影响。
饱和蒸汽压等于外压时的温度为沸点
沸点受压力和组成的影响。 T一定时:
如果pB<pB*,B液体蒸发为气体,直至pB=pB* pB>pB*,B气体凝结为液体,直至pB=pB*
一般情况下,此规律不受气相中其它气体存在的影响
大气中水蒸气的分压与同温度下水的饱和蒸气压 之比称为相对湿度
真实气体: (1)分子之间有相互作用力(主要是吸引)
分子间相互作用减弱了分子对器壁的碰撞,使得真 实气体的pVm与理想气体相比趋于减小。 (2)分子本身占有体积(体积效应) 气体的Vm为自由活动空间+因分子本身占有体积 而不可压缩的空间。造成1mol真实气体实际所占 空间>理想气体的Vm.