Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型IO和休眠]

合集下载

Linux设备驱动程序接口

Linux设备驱动程序接口

§1. Linux驱动程序接口系统调用是操作系统内核与应用程序之间的接口,设备驱动程序则是操作系统内核与机器硬件的接口。

几乎所有的系统操作最终映射到物理设备,除了CPU、内存和少数其它设备,所有的设备控制操作都由该设备特殊的可执行代码实现,此代码就是设备驱动程序。

操作系统内核需要访问两类主要设备:字符设备和块设备。

与此相关主要有两类设备驱动程序,字符设备驱动程序和块设备驱动程序。

Linux(也是所有UNIX)的基本原理之一是:系统试图使它对所有各类设备的输入、输出看起来就好象对普通文件的输入、输出一样。

设备驱动程序本身具有文件的外部特征,它们都能使用象open(),close(),read(),write()等系统调用。

为使设备的存取能象文件一样处理,所有设备在目录中应有对应的文件名称,才可使用有关系统调用。

通常Linux驱动程序接口分为如下四层:1).应用程序进程与内核的接口;2).内核与文件系统的接口;3).文件系统与设备驱动程序的接口;4).设备驱动程序与硬件设备的接口。

§2. 驱动程序文件操作数据结构每个驱动程序都有一个file-operation的数据结构,包含指向驱动程序内部函数的指针。

file-operation的数据结构为:struct file-operation {int (*lseek)();int (*read)();int (*write)();int (*readdir)();int (*select)();int (*ioctl)();int (*mmap)();int (*open)();int (*close)();int (*release)();int (*fsync)();int (*fasync)();int (*check-media-change)();int (*revalidate)();}内核中有两个表,一个用于字符设备驱动程序,一个用于块设备驱动程序。

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。

为此,的内核一般不能动态的增加新的功能。

为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。

利用这个机制“模块”(module)。

利用这个机制,可以)。

利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。

正是这种机制,走已经安装的模块。

正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。

和可扩充性。

内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。

严格来说,卸载的内核软件。

严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。

但是,另一方面,可安装模块的形式实现的。

但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。

密切相关的部分(如文件系统等)。

课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。

且创建好该系统中的硬件设备的列表树:/sys 文件系统。

(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。

)。

Linux驱动程序模块调试方法

Linux驱动程序模块调试方法

Linux驱动程序模块调试方法第6章编写Linux驱动程序6.1 Linux驱动程序概述LINUX中的驱动设计是嵌入式LINUX开发中十分重要的部分,它要求开发者不仅要熟悉LINUX的内核机制、驱动程序与用户级应用程序的接口关系、考虑系统中对设备的并发操作等等,而且还要非常熟悉所开发硬件的工作原理。

这对驱动开发者提出了比较高的要求,本章是给大家了解驱动设计提供一个简单入门的一个实例,并不需要提供太多与硬件相关的内容,这部分应该是通过仔细阅读芯片厂家提供的资料来解决。

驱动程序的作用是应用程序与硬件之间的一个中间软件层,驱动程序应该为应用程序展现硬件的所有功能,不应该强加其他的约束,对于硬件使用的权限和限制应该由应用程序层控制。

但是有时驱动程序的设计是跟所开发的项目相关的,这时就可能在驱动层加入一些与应用相关的设计考虑,主要是因为在驱动层的效率比应用层高,同时为了项目的需要可能只强化或优化硬件的某个功能,而弱化或关闭其他一些功能;到底需要展现硬件的哪些功能全都由开发者根据需要而定。

驱动程序有时会被多个进程同时使用,这时我们要考虑如何处理并发的问题,就需要调用一些内核的函数使用互斥量和锁等机制。

驱动程序主要需要考虑下面三个方面:提供尽量多的选项给用户,提高驱动程序的速度和效率,尽量使驱动程序简单,使之易于维护。

LINUX的驱动开发调试有两种方法,一种是直接编译到内核,再运行新的内核来测试;二是编译为模块的形式,单独加载运行调试。

第一种方法效率较低,但在某些场合是唯一的方法。

模块方式调试效率很高,它使用insmod工具将编译的模块直接插入内核,如果出现故障,可以使用rmmod从内核中卸载模块。

不需要重新启动内核,这使驱动调试效率大大提高。

模块中必须的两个基本函数:在Linux 2.4 内核中是函数init_module和cleanup_module;在Linux 2.6 的内核中是宏module_init(your_init_func) 和module_exit(your_exit_func)。

Linux操作系统应用编程课件(完整版)

Linux操作系统应用编程课件(完整版)

2.Linux操作系统的发行版
Linux操作系统发行版实际就是Linux内核加上外围实用程序 组成的一个大软件包。相对于Linux操作系统的内核版本,发行版 的版本号随发布者的不同而不同,与Linux操作系统内核的版本号 是相对独立的。因此把SUSE、RedHat、Ubuntu、Slackware等直 接称为Linux是不确切的,它们是Linux操作系统的发行版。更确 切地说,应该将它们称为“以Linux为核心的操作系统软件包”。
Shell是Linux操作系统的一种用户界面,它作为操作系统 的“外壳”,为用户提供使用操作系统的接口。Shell主要有以 下两大功能特点。
(1)Shell是一个命令解释器,它拥有自己内建的Shell命令集。 (2)Shell的另一个重要特性是它自身就是一种解释型的程序设 计语言。
当用户成功登录Linux系统后,系统将执行一个Shell程序。 正是Shell进程提供了命令提示符。作为默认值,Shell对普通用 户用“$”作提示符,对超级用户(root)用“#”作提示符。
1.4.4 联机手册
联机手册命令man可向用户提供系统中各种命令、系统调用、 库函数和重要系统文件的详细说明,包括名字、使用语法、功能 描述、应用实例和相关参考文件等。其格式如下:
$ man [拥有哪个级别的帮助。 -k:查看和命令相关的所有帮助。
查看who命令的详细说明示例如下。 $ man who
Linux操作系统 应用编程
本章主要介绍Linux文件系统,包括文件系统的结构、文 件的定义与分类、目录与文件操作命令、文件的权限管理等, 让读者对Linux文件系统有一定的认识和理解,为后文的学习 打下基础。
2.1.1 组织结构
Linux操作系统中所有文件存储在文件系统中,文件被组织 到一棵“目录树”中,其文件系统层次结构(树状目录结构)如 图2.1所示。树根在该层次结构的顶部,树根的下方衍生出子目 录分支。

linux字符驱动框架(用户态的read,write,poll是怎么操作驱动的)

linux字符驱动框架(用户态的read,write,poll是怎么操作驱动的)

linux字符驱动框架(⽤户态的read,write,poll是怎么操作驱动的)前⾔这篇⽂章是通过对⼀个简单字符设备驱动的操作来解释,⽤户态的读写操作是怎么映射到具体设备的。

因为针对不同版本的linux内核,驱动的接⼝函数⼀直有变化,这贴出我测试的系统信息:root@ubuntu:~/share/dev/cdev-2# cat /etc/os-release |grep -i verVERSION="16.04.5 LTS (Xenial Xerus)"VERSION_ID="16.04"VERSION_CODENAME=xenialroot@ubuntu:~/share/dev/cdev-2#root@ubuntu:~/share/dev/cdev-2# uname -r4.15.0-33-generic字符驱动这⾥给出了⼀个不怎么标准的驱动,定义了⼀个结构体 struct dev,其中buffer成员模拟驱动的寄存器。

由wr,rd作为读写指针,len作为缓存buffer的长度。

具体步骤如下:1. 定义 init 函数,exit函数,这是在 insmod,rmmod时候调⽤的。

2. 定义驱动打开函数open,这是在⽤户态打开设备时候调⽤的。

3. 定义release函数,这是在⽤户态关闭设备时候⽤到的。

4. 定义read,write,poll函数,并挂接到 file_operations结构体中,所有⽤户态的read,write,poll都会最终调到这些函数。

chardev.c/*参考:深⼊浅出linux设备驱动开发*/#include <linux/module.h>#include <linux/init.h>#include <linux/fs.h>#include <linux/uaccess.h>#include <linux/wait.h>#include <linux/semaphore.h>#include <linux/sched.h>#include <linux/cdev.h>#include <linux/types.h>#include <linux/kdev_t.h>#include <linux/device.h>#include <linux/poll.h>#define MAXNUM 100#define MAJOR_NUM 400 //主设备号 ,没有被使⽤struct dev{struct cdev devm; //字符设备struct semaphore sem;int flag;poll_table* table;wait_queue_head_t outq;//等待队列,实现阻塞操作char buffer[MAXNUM+1]; //字符缓冲区char *rd,*wr,*end; //读,写,尾指针}globalvar;static struct class *my_class;int major=MAJOR_NUM;static ssize_t globalvar_read(struct file *,char *,size_t ,loff_t *);static ssize_t globalvar_write(struct file *,const char *,size_t ,loff_t *);static int globalvar_open(struct inode *inode,struct file *filp);static int globalvar_release(struct inode *inode,struct file *filp);static unsigned int globalvar_poll(struct file* filp, poll_table* wait);/*结构体file_operations在头⽂件 linux/fs.h中定义,⽤来存储驱动内核模块提供的对设备进⾏各种操作的函数的指针。

第二章2.阻塞与非阻塞操作时间延时

第二章2.阻塞与非阻塞操作时间延时
stamp_n = j + n * HZ / 1000; /* n milliseconds */
IT Education & Training
Date: 9 3 2010
Neusoft Institute of Information
嵌入式Linux驱动设备开发
电子工程系-IT Education & Training
Date: 9 3 2010
Байду номын сангаас
Neusoft Institute of Information
目录

阻塞型设备驱动
二 POLLPOLL 方法
IT Education & Training
Date: 9 3 2010
Neusoft Institute of Information
实例分析
IT Education & Training
Date: 9 3 2010
Neusoft Institute of Information
poll 和 select
IT Education & Training
Select系统调用
Date: 9 3 2010
Neusoft Institute of Information
Select系统调用
Timeout取不同的值,该调用有不同的表现:
Timeout值为0,不管是否有文件满足要求,都立刻 返 回,无文件满足要求返回0,有文件满足要求返回一个 正值。 Timeout为NULL,select将阻塞进程,直到某个文 件 满足要求 Timeout值为正整数,就是等待的最长时间,即 select在timeout时间内阻塞进程。

linux系统io高处理方法

linux系统io高处理方法

linux系统io高处理方法
Linux系统中,当IO负载过高时,会影响系统的性能和响应时间。

为应对这种情况,我们需要采取一系列措施来提高系统的IO处理能力。

以下是几种常用的方法:
1. 调整内核参数:Linux内核提供了一些参数可以调整IO的行为。

例如,调整磁盘读写缓存大小、IO调度器等等。

通过调整这些参数,我们可以改变IO的性能和行为,从而提高系统的IO处理能力。

2. 使用IO多路复用技术:IO多路复用技术能够同时处理多个IO请求。

通过使用IO多路复用技术,我们可以减少IO请求的等待时间,提高系统的IO响应速度。

3. 使用异步IO:异步IO是一种无阻塞的IO处理方式,它可以在数据请求等待返回的同时处理其他任务。

通过使用异步IO,我们可以大大提高系统的IO处理效率。

4. 使用快速磁盘:快速磁盘能够提供更快的读写速度,从而大大提高系统的IO性能。

因此,在高IO负载的情况下,我们可以考虑使用快速磁盘来提高系统的IO处理能力。

5. 优化IO调度策略:Linux系统提供了多种IO调度策略,不同的调度策略适用于不同的应用场景。

我们可以根据实际情况选择合适的IO调度策略来提高系统的IO处理能力。

总之,提高Linux系统的IO处理能力是一个复杂的工作,需要考虑多种因素。

以上几种方法只是其中的一部分,还有很多其他的
方法可以用来提高系统的IO性能。

linux 基本操作指令集-概述说明以及解释

linux 基本操作指令集-概述说明以及解释

linux 基本操作指令集-概述说明以及解释1.引言1.1 概述Linux 是一种自由和开放源代码的操作系统,它是基于类UNIX 操作系统的。

Linux 操作系统主要用于服务器应用领域,但也逐渐在桌面和嵌入式系统中得到广泛应用。

Linux 操作系统具有高度的稳定性、安全性和灵活性,因此备受广大用户的青睐。

在Linux 系统中,我们可以通过命令行终端执行一系列操作指令来完成各种任务。

本文将介绍Linux 中一些基本的操作指令集,包括文件和目录操作、用户和权限管理以及系统管理等内容。

通过学习这些基本操作指令,读者将能够更加熟练地使用Linux 系统,提高工作效率和系统管理能力。

本文将从文件和目录操作开始介绍,然后逐步深入到用户和权限管理以及系统管理等内容,帮助读者全面了解和掌握Linux 操作系统中的基本操作指令,从而更好地利用Linux 系统进行工作和学习。

1.2 文章结构本文将分为三个主要部分,分别介绍了linux基本操作指令集的相关内容。

具体包括:- 文件和目录操作: 介绍如何在linux系统中进行文件和目录的创建、查看、复制、删除等操作。

包括常用的文件操作指令如ls、cp、mv、rm 等。

- 用户和权限管理: 介绍如何管理linux系统中的用户和权限。

涵盖了用户创建、用户组管理、权限设置等内容。

常用的指令包括useradd、passwd、chown、chmod等。

- 系统管理: 介绍如何管理linux系统的状态和信息。

包括查看系统信息、进程管理、服务管理等内容。

常用的指令有ps、top、systemctl等。

通过这三个主要部分的介绍,读者可以对linux系统中常用的操作指令有一个全面的了解,从而更加熟练地操作linux系统。

1.3 目的本文的目的是帮助读者了解和掌握Linux基本操作指令集,包括文件和目录操作、用户和权限管理以及系统管理。

通过学习这些基本操作指令,读者可以提高对Linux操作系统的使用效率,快速地完成常见任务,提高工作效率和生产力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型I/O和休眠]Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型I/O和休眠]这一部分主要讨论:如果驱动程序无法立即满足请求,该如何响应?(65865346)一、休眠进程被置为休眠,意味着它被标识为处于一个特殊的状态并且从调度器的运行队列中移走。

这个进程将不被在任何CPU 上调度,即将不会运行。

直到发生某些事情改变了那个状态。

安全地进入休眠的两条规则:(1)永远不要在原子上下文中进入休眠,即当驱动在持有一个自旋锁、seqlock或者RCU 锁时不能睡眠;关闭中断也不能睡眠。

持有一个信号量时休眠是合法的,但你应当仔细查看代码:如果代码在持有一个信号量时睡眠,任何其他的等待这个信号量的线程也会休眠。

因此发生在持有信号量时的休眠必须短暂,而且决不能阻塞那个将最终唤醒你的进程。

(2)当进程被唤醒,它并不知道休眠了多长时间以及休眠时发生什么;也不知道是否另有进程也在休眠等待同一事件,且那个进程可能在它之前醒来并获取了所等待的资源。

所以不能对唤醒后的系统状态做任何的假设,并必须重新检查等待条件来确保正确的响应。

除非确信其他进程会在其他地方唤醒休眠的进程,否则也不能睡眠。

使进程可被找到意味着:需要维护一个称为等待队列的数据结构。

它是一个进程链表,其中饱含了等待某个特定事件的所有进程。

在Linux 中,一个等待队列由一个wait_queue_head_t 结构体来管理,其定义在<linux/wait.h>中。

wait_queue_head_t 类型的数据结构非常简单:它包含一个自旋锁和一个链表。

这个链表是一个等待队列入口,它被声明做wait_queue_t。

wait_queue_head_t包含关于睡眠进程的信息和它想怎样被唤醒。

简单休眠(其实是高级休眠的宏)Linux 内核中最简单的休眠方式是称为wait_event的宏(及其变种),它实现了休眠和进程等待的条件的检查。

形式如下:唤醒休眠进程的函数称为wake_up,形式如下:惯例:用wake_up 唤醒 wait_event ;用wake_up_interruptible 唤醒wait_event_interruptib le。

简单休眠实验模块程序链接:sleepy模块测试程序链接:sleepy-test实验现象:2 pty3 ttyp4 /dev/vc/04 tty4 ttyS5 /dev/tty5 /dev/console 5 /dev/ptmx7 vcs10 misc13 input14 sound81 video4linux89 i2c90 mtd116 alsa128 ptm136 pts180 usb189 usb_device204 s3c2410_serial 252 sleepy253 usb_endpoint 254 rtcBlock devices:1 ramdisk256 rfd31 mtdblock93 nftl96 inftl179 mmc[Tekkaman2440@SBC2440V4]#mknod -m 666 sleepy c 252 0 [Tekkaman2440@SBC2440V4]#cd /tmp/[Tekkaman2440@SBC2440V4]#./sleepy_testr& [Tekkaman2440@SBC2440V4]#./sleepy_testr& [Tekkaman2440@SBC2440V4]#psPID Uid VSZ Stat Command1 root 1744 S init2 root SW<[kthreadd]3 root SWN [ksoftirqd/0]4 root SW<[watchdog/0]5 root SW<[events/0]6 root SW<[khelper]59 root SW<[kblockd/0]60 root SW<[ksuspend_usbd]63 root SW<[khubd]65 root SW<[kseriod]77 root SW [pdflush]78 root SW [pdflush]79 root SW<[kswapd0]80 root SW<[aio/0]707 root SW<[mtdblockd]708 root SW<[nftld]709 root SW<[inftld]710 root SW<[rfdd]751 root SW<[kmmcd]769 root SW<[rpciod/0]778 root 1752 S -sh779 root 1744 S init781 root 1744 S init783 root 1744 S init787 root 1744 S init799 root 1336 S ./sleepy_testr800 root 1336 S ./sleepy_testr802 root 1744 R ps[Tekkaman2440@SBC2440V4]#./sleepy_testw read code=0write code=0[2]+ Done ./sleepy_testr[Tekkaman2440@SBC2440V4]#psPID Uid VSZ Stat Command1 root 1744 S init2 root SW<[kthreadd]3 root SWN [ksoftirqd/0]4 root SW<[watchdog/0]5 root SW<[events/0]6 root SW<[khelper]59 root SW<[kblockd/0]60 root SW<[ksuspend_usbd]63 root SW<[khubd]65 root SW<[kseriod]77 root SW [pdflush]78 root SW [pdflush]80 root SW<[aio/0]707 root SW<[mtdblockd]708 root SW<[nftld]709 root SW<[inftld]710 root SW<[rfdd]742 root SW<[kpsmoused]751 root SW<[kmmcd]769 root SW<[rpciod/0]778 root 1752 S -sh779 root 1744 S init781 root 1744 S init783 root 1744 S init787 root 1744 S init799 root 1336 S ./sleepy_testr804 root 1744 R ps[Tekkaman2440@SBC2440V4]#./sleepy_testw write code=0[Tekkaman2440@SBC2440V4]#read code=0[1]+ Done ./sleepy_testr[Tekkaman2440@SBC2440V4]#psPID Uid VSZ Stat Command1 root 1744 S init2 root SW<[kthreadd]3 root SWN [ksoftirqd/0]4 root SW<[watchdog/0]5 root SW<[events/0]6 root SW<[khelper]60 root SW<[ksuspend_usbd]63 root SW<[khubd]65 root SW<[kseriod]77 root SW [pdflush]78 root SW [pdflush]79 root SW<[kswapd0]80 root SW<[aio/0]707 root SW<[mtdblockd]708 root SW<[nftld]709 root SW<[inftld]710 root SW<[rfdd]742 root SW<[kpsmoused]751 root SW<[kmmcd]769 root SW<[rpciod/0]778 root 1752 S -sh779 root 1744 S init781 root 1744 S init783 root 1744 S init787 root 1744 S init806 root 1744 R ps阻塞和非阻塞操作全功能的read 和write 方法涉及到进程可以决定是进行非阻塞I/O还是阻塞I/O操作。

明确的非阻塞I/O 由filp->f_flags 中的O_NONBLOCK 标志来指示(定义再<linux/fcntl.h>,被<linux/fs.h>自动包含)。

浏览源码,会发现O_NON BLOCK 的另一个名字:O_N DELAY ,这是为了兼容System V 代码。

O_NON BLOCK 标志缺省地被清除,因为等待数据的进程的正常行为只是睡眠.其实不一定只有read 和write 方法有阻塞操作,open也可以有阻塞操作。

后面会见到。

而我的项目有一个和CPLD的接口的驱动,我决定要在ioctl 中使用阻塞。

以下是后面的scullpipe实验的有关阻塞的代码,我觉得写得很好,先结合书上的介绍看看吧:高级休眠步骤:(1)分配和初始化一个wait_queue_t 结构,随后将其添加到正确的等待队列。

(2)设置进程状态,标记为休眠。

在<linux/sched.h> 中定义有几个任务状态:TASK_RUNNING 意思是进程能够运行。

有2 个状态指示一个进程是在睡眠: TASK_INTERRUPTIBLE 和TASK_UNTINTERRUPTIBLE。

2.6 内核的驱动代码通常不需要直接操作进程状态。

但如果需要这样做使用的代码是:在老的代码中, 你常常见到如此的东西:current->state = TASK_INTERRUPTIBLE; 但是象这样直接改变current 是不推荐的,当数据结构改变时这样的代码将会失效。

通过改变current 状态,只改变了调度器对待进程的方式,但进程还未让出处理器。

(3)最后一步是放弃处理器。

但必须先检查进入休眠的条件。

如果不做检查会引入竞态:如果在忙于上面的这个过程时有其他的线程刚刚试图唤醒你,你可能错过唤醒且长时间休眠。

相关文档
最新文档