[精品]2019学年高中数学第一章1.1.3四种命题间的相互关系课后提升训练含解析新人教A版选修0

合集下载

高中数学 第一章 常用逻辑用语 1.1.3 四种命题间的相

高中数学 第一章 常用逻辑用语 1.1.3 四种命题间的相

1.1.3 四种命题间的相互关系
1.命题“若a>-1,则a>-3”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A.1
B.2
C.3
D.4
【解析】选B.原命题为真,则其逆否命题为真,而逆命题为假,则其否命题为假,故选B.
2.如果命题“若p,则q”的逆命题是真命题,则下列命题一定为真命题的是
( ) A.若p,则q B.若p,则q
C.若q,则p
D.以上都不对
【解析】选B.逆命题与否命题互为逆否命题,为等价命题,它们同真同假,故选B.
3.命题“若两条直线没有公共点,则这两条直线是异面直线”与“若两条直线是异面直线,则这两条直线没有公共点”的关系是________.
【解析】命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题是“若两条直线是异面直线,则这两条直线没有公共点”.
答案:互为逆命题
4.命题“圆内接四边形是等腰梯形”的等价命题是________________.
【解析】等价命题是“若一个四边形不是等腰梯形,则这个四边形不内接于圆”.
答案:若一个四边形不是等腰梯形,则这个四边形不内接于圆
5.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆命题的真假.
【解析】原命题的逆命题为“若方程x2+2x-3m=0有实数根,则m>0”,若方程x2+2x-3m=0有实数根,则Δ=12m+4≥0,解得m≥-,所以原命题的逆命题为假命题.。

人教A版高中数学选修1-1课时提升作业 三 1.1.3 四种命题间的相互关系 精讲优练课型 Word版含答案

人教A版高中数学选修1-1课时提升作业 三 1.1.3 四种命题间的相互关系 精讲优练课型 Word版含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业三四种命题间的相互关系一、选择题(每小题4分,共12分)1.命题“若p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则qB.若q,则pC.若q,则pD.若q,则p【解题指南】利用命题的等价关系判断.【解析】选C.“若p,则q”的逆否命题是“若q,则p”,又因为互为逆否命题所以真假性相同.所以“若q,则p”一定是真命题.2.(2016·三明高二检测)下列命题中为真命题的是( )A.命题“若x>2016,则x>0”的逆命题B.命题“若xy=0,则x=0或y=0”的否命题C.命题“若x2+x-2=0,则x=1”D.命题“若x2≥1,则x≥1”的逆否命题【解析】选B.A.命题“若x>2016,则x>0”的逆命题为命题“若x>0,则x>2016”,显然命题为假;B.命题“若xy=0,则x=0或y=0”的逆命题为“若x=0或y=0,则xy=0”,显然命题为真,则原命题的否命题也为真;C.解x2+x-2=0得x=1或x=-2.所以命题“若x2+x-2=0,则x=1”为假;D.x2≥1⇒x≤-1或x≥1.所以命题“若x2≥1,则x≥1”是假命题,则其逆否命题也为假命题.3.(2016·泰安高二检测)已知命题“若a,b,c成等比数列,则b2=ac”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A.0B.1C.2D.3【解析】选B.若a,b,c成等比数列,则b2=ac,为真命题,逆命题:若b2=ac,则a,b,c成等比数列,为假命题,否命题:若a,b,c不成等比数列,则b2≠ac,为假命题,逆否命题:若b2≠ac,则a,b,c不成等比数列,为真命题,在它的逆命题、否命题、逆否命题中为真命题的有1个.【补偿训练】已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3B.2C.1D.0【解析】选B.易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.二、填空题(每小题4分,共8分)4.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是. 【解析】原命题为假命题,逆否命题也为假命题,逆命题也是假命题,否命题也是假命题.故假命题个数为3.答案:35.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m>1,则mx2-2(m+1)x+m+3>0的解集为R”的逆命题.其中真命题是.(把你认为正确命题的序号都填在横线上)【解析】原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx2-2(m+1)x+m+3>0的解集为R,由⇒⇒m>1.故⑤正确.答案:②③⑤三、解答题6.(10分)(教材P8练习改编)证明:若a2-4b2-2a+1≠0,则a≠2b+1.【证明】“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.因为a=2b+1,所以a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0,所以命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,结论正确.【补偿训练】求证:若p2+q2=2,则p+q≤2.【证明】该命题的逆否命题为若p+q>2,则p2+q2≠2.p2+q2=≥(p+q)2.因为p+q>2,所以(p+q)2>4,所以p2+q2>2,即p+q>2时,p2+q2≠2成立.所以由原命题与逆否命题具有相同的真假性可知,结论正确.即若p2+q2=2,则p+q≤2.一、选择题(每小题5分,共10分)1.(2015·厦门高二检测)给出命题:已知a,b为实数,若a+b=1,则ab≤.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A. 3B.2C.1D.0【解题指南】四种命题中原命题与逆否命题真假性一致,逆命题与否命题真假性一致,因此要判断一个命题的真假可判断其逆否命题的真假.【解析】选C.由ab≤得:a+b=1,则有ab≤,原命题是真命题,所以逆否命题是真命题;逆命题:若ab≤,则a+b=1不成立,反例a=b=0满足ab≤但不满足a+b=1,所以逆命题是假命题,否命题也是假命题.2.(2016·惠州高二检测)已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】选D.函数f(x)=e x-mx在(0,+∞)上是增函数等价于f′(x)=e x-m≥0在(0,+∞)上恒成立,即m≤e x在(0,+∞)上恒成立,而e x>1,故m≤1,所以命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【补偿训练】命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题( )A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题【解析】选D.原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,则△ABC 有一内角为”,它是真命题.二、填空题(每小题5分,共10分)3.(2016·衡阳高二检测)在“a,b是实数”的大前提之下,已知原命题是“若不等式x2+ax+b ≤0的解集是非空数集,则a2-4b≥0”,给出下列命题:①若a2-4b≥0,则不等式x2+ax+b≤0的解集是非空数集;②若a2-4b<0,则不等式x2+ax+b≤0的解集是空集;③若不等式x2+ax+b≤0的解集是空集,则a2-4b<0;④若不等式x2+ax+b≤0的解集是非空数集,则a2-4b<0;⑤若a2-4b<0,则不等式x2+ax+b≤0的解集是非空数集;⑥若不等式x2+ax+b≤0的解集是空集,则a2-4b≥0.其中是原命题的逆命题、否命题、逆否命题的命题的序号依次是(按要求的顺序填写).【解题指南】根据四种命题间的关系确定【解析】“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,题目的答案是①③②.答案:①③②4.命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为,是命题(填“真”或“假”).【解题指南】求原命题的等价命题即为原命题的逆否命题,只需把原命题的条件与结论既交换又否定即可.【解析】命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为“已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0”,是真命题.答案:已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0真三、解答题5.(10分)(2016·益阳高二检测)写出命题:“若+(y+1)2=0,则x=2且y=-1”的逆命题,否命题,逆否命题,并判断它们的真假.【解析】逆命题:若x=2且y=-1,则+(y+1)2=0,真命题;否命题:若+(y+1)2≠0,则x≠2或y≠-1,因为逆命题为真,所以否命题为真;逆否命题:若x≠2或y≠-1,则+(y+1)2≠0,显然原命题为真命题,所以逆否命题为真命题.关闭Word文档返回原板块高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

1.1.3四种命题间的相互关系

1.1.3四种命题间的相互关系

反证法的步骤:
1. 假设命题的结论不成立,即假设结论的 反面成立。 推理过程中一定要用到才行
王新敞
奎屯 新疆
2. 从这个假设出发,通过推理论证,得出 矛盾。 显而易见的矛盾(如和已知条件矛盾). 3. 由矛盾判定假设不正确,从而肯定命题 的结论正确。
可能出现矛盾四种情况:
• • • • 与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。
(真 ) (假 ) (假 ) (真 )
例题讲解
例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命题、否命题、逆否命题。 并分别判断它们的真假。
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真) (真)
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
由于P点一定不是圆心O,连结OP, 根据垂径定理的推论,有
P
C
B
OP⊥AB,OP⊥CD, 即过点P有两条直线与OP都垂直,这与垂 线性质矛盾。
所以,弦AB、CD不被P平分。
所以假设不成立, 从而______________ x =y=0。 成立。
反 证 法
例 2
用反证法证明 : 如果a b 0, 那么 a b .
或者 a b
证明: 假设 a不大于 b , 则或者 a b ,
因为a 0, b 0, 所以 a b a a b a与 a b b b a b a bab

高中数学 《1.1.3四种命题间的相互关系》课时提升作业(含答案解析)

高中数学 《1.1.3四种命题间的相互关系》课时提升作业(含答案解析)

课时提升作业(三)四种命题间的相互关系(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·杭州高二检测)命题“如果x≥a2+b2,那么x≥2ab”的等价命题是( )A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab【解析】选C.等价命题即为原命题的逆否命题,故选C.2.(2014·长春高二检测)若命题p的等价命题是q,q的逆命题是r,则p与r是( )A.互逆命题B.互否命题C.互逆否命题D.不确定【解析】选B.因为p与q的条件与结论既互换又否定,且q与r的条件与结论互换,所以p与r的条件与结论是相互否定的,故p与r是互否命题.【举一反三】本题中的条件“q的逆命题是r”若换为“q的否命题是r”,其他条件不变,其结论又如何呢?【解析】选A.因为p与q是互逆否命题,q与r是互否命题,所以p与r是互逆命题.3.(2014·海口高二检测)在命题“若函数f(x)是偶函数,则f(x)的图象关于y轴对称”的逆命题,否命题,逆否命题中结论成立的是( )A.都真B.都假C.否命题假,逆命题真D.逆否命题假【解析】选A.因为f(x)是偶函数,与f(x)的图象关于y轴对称是等价的,故四种命题均为真命题.4.关于命题:“设a,b为实数,若ab=0,则a,b至少有一个为0.”有下列说法:①原命题为真命题;②逆命题为真命题;③否命题为“设a,b为实数,若ab≠0,则a,b不都为0”;④逆否命题为“设a,b为实数,若a,b都不为0,则ab≠0”.其中,说法不正确的个数是( )A.0B.1C.2D.3【解析】选B.①原命题为真命题;②逆命题为“设a,b为实数,若a,b至少有一个为0,则ab=0”,真命题;③否命题为“设a,b为实数,若ab≠0,则a,b都不为0”,故③不正确;④正确.5.关于原命题“在△ABC中,若cosA=2sinBsinC,则△ABC是钝角三角形”的叙述:①原命题是假命题;②逆命题为假命题;③否命题是假命题;④逆否命题为真命题.其中,正确的个数是( )A.1B.2C.3D.4【解题指南】利用三角形内角和定理以及三角恒等变换,建立三角形内角的关系判断原命题的真假,逆命题的真假尝试特殊角的钝角三角形验证三角恒等式是否成立.【解析】选C.在△ABC中,若cosA=2sinBsinC,则-cos(B+C)=2sinBsinC,得cosBcosC+sinBsinC=0,得cos(B-C)=0,故B-C=90°或B-C=-90°,即B=C+90°或C=B+90°,故△ABC是钝角三角形,原命题与逆否命题为真命题. 逆命题和否命题互为逆否命题,是假命题,如在钝角△ABC中,A=15°,B=15°,C=150°,cosA=cos15°=,sinB=sin15°=,sinC=sin150°=,2sinBsinC=≠cosA.6.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题的等价命题是( )A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【解析】选D.由于原命题的否命题的等价命题,即为原命题的逆命题,故选D.二、填空题(每小题4分,共12分)7.(2014·成都高二检测)下列命题中是真命题的是_______.①命题“面积相等的三角形全等”的否命题;②命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;③命题“若A∩B=B,则A⊆B”的逆否命题.【解析】命题①的否命题:面积不相等的三角形不全等,是真命题.命题②的逆否命题:若x2-2x+m=0无实根,则m>1,是真命题.命题③是假命题.因此其逆否命题也是假命题.故真命题为①②.答案:①②8.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是_________.【解析】①中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC1做模型来观察:上底面A1B1C1D1的顶点中任何三点都不共线,但A1,B1,C1,D1四点共面,所以①的逆命题不是真命题.②中的逆命题是:若两条直线是异面直线,则两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线不会有公共点,所以②的逆命题为真命题.答案:②【举一反三】本题的两个命题中逆否命题为假命题的是.【解析】命题②为假命题,因此它的逆否命题为假命题.答案:②9.命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为,是命题(填真、假).【解题指南】求原命题的等价命题即为原命题的逆否命题,只需把原命题的条件与结论既交换又否定即可.【解析】命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为“已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0”,是真命题.答案:已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0真三、解答题(每小题10分,共20分)10.(2014·周口高二检测)写出下面命题的逆命题、否命题、逆否命题,并判断它们的真假.m>时,mx2-x+1=0无实根.【解析】将原命题改写成“若p,则q”的形式为“若m>,则mx2-x+1=0无实根”.逆命题:“若mx2-x+1=0无实根,则m>”,是真命题;否命题:“若m≤,则mx2-x+1=0有实根”,是真命题;逆否命题:“若mx2-x+1=0有实根,则m≤”,是真命题.11.(2014·大连高二检测)已知命题p:方程x2+mx+1=0有实数根;命题q:方程4x2+4(m-2)x+1=0无实数根,若命题p,q中有且仅有一个为真命题,求实数m的取值范围.【解题指南】解答本题可先根据命题p,q为真命题分别求出m的取值范围,然后分p真q假与p假q真两种情况分别求m的取值范围.【解析】方程x2+mx+1=0有实数根,所以Δ1=m2-4≥0,所以p:m≥2或m≤-2;方程4x2+4(m-2)x+1=0无实数根,所以Δ2=16(m-2)2-16<0,所以q:1<m<3.①p真q假:所以所以m≥3或m≤-2.②p假q真:所以所以1<m<2,所以实数m的取值范围为1<m<2或m≥3或m≤-2.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·福州高二检测)给出命题:已知a,b为实数,若a+b=1,则ab≤.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3B.2C.1D.0【解题指南】四种命题中原命题与逆否命题真假性一致,逆命题与否命题真假性一致,因此要判断一个命题的真假可判断其逆否命题的真假.【解析】选C.由ab≤得:a+b=1,则有ab≤,原命题是真命题,所以逆否命题是真命题;逆命题:若ab≤,则a+b=1不成立,反例a=b=0满足ab≤但不满足a+b=1,所以逆命题是假命题,否命题也是假命题.2.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题【解题指南】若原命题的真假情况不易判断时,可通过判断其逆否命题的真假来确定原命题的真假,若要说明某一命题是假命题,只需举一反例即可.【解析】选A.原命题“若a+b≥2,则a,b中至少有一个不小于1”的逆否命题为“若a,b都小于1,则a+b<2”,是真命题,故原命题为真;原命题的逆命题为“若a,b中至少有一个不小于1,则a+b≥2”,是假命题,如a=3,b=-2,满足条件,可是结论不成立.3.(2014·上海高二检测)已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题②命题α是命题β的逆命题,且命题γ是命题β的否命题③命题β是命题α的否命题,且命题γ是命题α的逆否命题A.①③B.②C.②③D.①②③【解析】选A.根据逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.4.(2013·咸阳高二检测)已知下列三个命题:①“若x2=4,则x=2”的逆命题;②“正方形是菱形”的否命题;③“若m>2,则不等式x2-2x+m>0的解集为R”.其中真命题的个数为( )A.0个B.1个C.2个D.3个【解析】选C.对①,逆命题正确.对②,否命题为:若一个四边形不是正方形,则这个四边形不是菱形,故不正确.对于③,Δ=4-4m,当m>2时,Δ<0,所以二次函数f(x)=x2-2x+m开口向上,与x轴无交点,所以x2-2x+m>0的解集为R,正确.二、填空题(每小题5分,共10分)5.(2014·新乡高二检测)给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②“若a>b,则a+c>b+c”的否命题;③“菱形的对角线垂直”的逆命题.其中真命题的序号是.【解析】①因为Δ=4-4(-k)=4+4k>0,所以是真命题.②否命题:“若a≤b,则a+c≤b+c”是真命题.③逆命题:“对角线垂直的四边形是菱形”是假命题.答案:①②6.设有两个命题:①关于x的不等式mx2+1≥0的解集是R;②函数f(x)=log m x是减函数(m>0且m≠1).如果这两个命题中有且只有一个真命题,则m的取值范围是. 【解析】若①真,②假,则故m>1.若①假,②真,则无解.综上所述,m的取值范围是m>1.答案:m>1【举一反三】本题中若两命题均为真命题,则m的取值范围是. 【解析】若①②均真,则故0<m<1.答案:0<m<1三、解答题(每小题12分,共24分)7.若方程x2+2px-q=0(p,q是实数)没有实数根,则p+q<.(1)判断上述命题的真假,并说明理由.(2)试写出上述命题的逆命题,并判断真假,说明理由.【解析】(1)上述命题是真命题.由题意,得方程的判别式Δ=4p2+4q<0,得q<-p2, 所以p+q<p-p2=-+≤,所以p+q<.(2)逆命题:如果p,q是实数,p+q<,则方程x2+2px-q=0没有实数根.逆命题是假命题,如当p=1,q=-1时,p+q<,但原方程有实数根x=-1.8.有甲、乙、丙三个人,命题p:“如果乙的年龄不是最大,那么甲的年龄最小”和命题q:“如果丙不是年龄最小,那么甲的年龄最大”都是真命题,则甲、乙、丙的年龄的大小能否确定?请说明理由.【解析】设甲、乙、丙三人的年龄分别为a,b,c,显然命题p和q的结论是矛盾的,因此应从它的逆否命题来看.由命题p可知,乙不是最大时,则甲最小.所以丙最大,即c>b>a,而它的逆否命题也为真.即“甲不是最小,则乙最大”,为真,即b>a>c,同理由命题q为真可得:a>c>b或b>a>c,又命题p与q均为真,可得b>a>c.故甲、乙、丙三人的年龄大小顺序是:乙大,甲次之,丙最小.。

2019秋 金版学案 数学选修1-1(人教版)练习:第一章1.1-1.1.3四种命题间的相互关系 含解析

2019秋 金版学案 数学选修1-1(人教版)练习:第一章1.1-1.1.3四种命题间的相互关系 含解析
2019秋 金版学案 数学选修1-1(人教版)练习:第一章1.1-1.1.3四种命题间的相互关系 含解析
编 辑:__________________
时 间:__________________
第一章常用逻辑用语
1.1命题及其关系
1.1.2四种命题
1.1.3四种命题间的相互关系
A级 基中:①若一个四边形的四条边不相等,则它不是正方形;
②若一个四边形对角互补,则它内接于圆;
③正方形的四条边相等;
④圆内接四边形对角互补;
⑤对角不互补的四边形不内接于圆;
⑥若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________.
答案:B
4.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的()
A.逆命题B.否命题
C.逆否命题D.以上都不正确
解析:设命题p为:“若s,则t”,则命题q为:“若t,则s”,命题r是:“若¬t,则¬s”,由此知q为r的否命题.
答案:B
5.有下列四种命题:
①“若x+y=0,则x,y互为相反数”的否命题;
答案:D
2.设有两个命题:①不等式mx2+1>0的解集是R;②函数f(x)=logmx是减函数.如果这两个命题中有且只有一个是真命题,则实数m的取值范围是________.
解析:①当m=0时,mx2+1=1>0恒成立,解集为R.当m≠0时,若mx2+1>0的解集为R,必有m>0.综上知,不等式mx2+1>0的解集为R,必有m≥0.
解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆的内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系判断.

2019最新高中数学 第一章1.1.2 四种命题 1.1.3 四种命题间的相互关系学案 新人教A版选修1-1

2019最新高中数学 第一章1.1.2 四种命题 1.1.3 四种命题间的相互关系学案 新人教A版选修1-1

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式命题为“若,则否命题为“若(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:97792009】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0 [“ab≠0”的否定是“ab=0”,“a,b都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题. 解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可[跟踪训练2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题; (3)“若x ≤3,则x 2-x -6>0”的否命题; (4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{aΔ=4a2+12a≤0,即{a-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。

精品2019学年高中数学第一章1.1.2四种命题1.1.3四种命题间的相互关系学案含解析新人教A版选修79

精品2019学年高中数学第一章1.1.2四种命题1.1.3四种命题间的相互关系学案含解析新人教A版选修79

1.1.2 & 1.1.3 四种命题四种命题间的相互关系[提出问题]观察下列四个命题:(1)若一个四边形的两条对角线相等,则这个四边形是矩形;(2)若一个四边形是矩形,则其两对角线相等;(3)若一个四边形两条对角线不相等,则这个四边形不是矩形;(4)若一个四边形不是矩形,则其两对角线不相等.问题:命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?提示:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件;对于命题(1)和(3),其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;对于命题(1)和(4),其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.[导入新知]1.四种命题的概念一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这样的两个命题叫做互逆命题,如果是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫做互否命题,如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题,把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.2.四种命题结构[化解疑难]1.用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p,q的否定.2.四种命题是相对的,一个命题是什么命题不是固定不变的.[提出问题]问题:我们同样观察知识点一中的四个命题,你能说出其中任意两个命题之间的相互关系吗?提示:命题(2)(3)是互为逆否命题,命题(2)(4)是互否命题,命题(3)(4)是互逆命题.[导入新知]1.四种命题之间的关系2.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[化解疑难]互逆命题、互否命题、互为逆否命题反映的是两个命题之间的相对关系,不具有特指性,即四种命题中的任意两个命题之间一定具有这三种关系中的一种,且唯一.[例1](1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.[解] (1)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0;逆命题:若x2-3x+2=0,则x=2;否命题:若x≠2,则x2-3x+2≠0;逆否命题:若x2-3x+2≠0,则x≠2.[类题通法](1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件和结论同时否定即得否命题,将条件和结论互换的同时,进行否定即得逆否命题.(2)如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.[活学活用]把下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题,然后判断它们的真假:(1)正数a的平方根不等于0;(2)平行于同一条直线的两条直线平行.解:(1)原命题:若a是正数,则a的平方根不等于0.是真命题.逆命题:若a的平方根不等于0,则a是正数.是假命题.否命题:若a不是正数,则a的平方根等于0.是假命题.逆否命题:若a的平方根等于0,则a不是正数.是真命题.(2)原命题:若两条直线平行于同一条直线,则这两条直线平行.是真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线.是真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行.是真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线.是真命题.[例2](1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是( )A.0 B.1C.2 D.3[解] 选B (1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x+y=0”,为真命题;(2)原命题与其逆否命题具有相同的真假性,而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题;(3)该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.[类题通法]解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可.[活学活用]写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)在△ABC中,若BC>AC,则A>B;(2)相等的两个角的正弦值相等.解:(1)逆命题:在△ABC中,若A>B,则BC>AC.真命题.否命题:在△ABC中,若BC≤AC,则A≤B.真命题.逆否命题:在△ABC中,若A≤B,则BC≤AC.真命题.(2) 逆命题:若两个角的正弦值相等,则这两个角相等.假命题.否命题:若两个角不相等,则这两个角的正弦值也不相等.假命题.逆否命题:若两个角的正弦值不相等,则这两个角不相等.真命题.[例3] 证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.[解] 证明:法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.法二:假设a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ). ∴f (a )+f (b )<f (-a )+f (-b ).这与已知条件f (a )+f (b )≥f (-a )+f (-b )相矛盾. 因此假设不成立,故a +b ≥0.[类题通法]由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.[活学活用]证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”. 由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.2.否命题理解中的误区[典例] 将命题“当a >0时,函数y =ax +b 是增函数”写成“若p ,则q ”的形式,并写出其否命题. [解] “若p ,则q ”的形式:若a >0,则函数y =ax +b 是增函数.否命题:若a≤0,则函数y=ax+b不是增函数.[易错防范]1.“a>0”的否定易误为“a<0”,“增函数”的否定易误为“减函数”,这是初学者易犯的错误.2.在写一个命题的否命题、逆否命题时,一定要搞清楚所否定的对象及其所对应的性质,如本题中,实数a 可能有三种取值,分别为a>0,a=0,a<0,从而a>0的否定是a≤0.[成功破障](山东高考)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x -m=0没有实根,则m≤0”.故选D.[随堂即时演练]1.命题“若a∉A,则b∈B”的否命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉A解析:选B 命题“若p,则q”的否命题是“若綈p,则綈q”,“∈”与“∉”互为否定形式.2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A.3 B.2C.1 D.0解析:选C 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.3.命题“若x>1,则x>0”的逆命题是__________,逆否命题是________________.答案:若x>0,则x>1 若x≤0,则x≤14.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:逆命题为“若A∩B≠A,则A∪B≠B”;否命题为“若A∪B=B,则A∩B=A”;逆否命题为“若A∩B=A,则A∪B=B”;全为真命题.答案:45.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.解:(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解.所以该命题是真命题.[课时达标检测]一、选择题1.命题“若a=-b,则||a=||b”的逆命题是( )A.若a≠-b,则||a≠||bB.若a=-b,则||a≠||bC.若||a≠||b,则a≠-bD.若||a=||b,则a=-b解析:选D 原命题的条件是a=-b,把它作为逆命题的结论;原命题的结论是||a=||b,把它作为逆命题的条件,即得逆命题“若||a=||b,则a=-b”.2.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.1 B.2C.3 D.4解析:选B 命题“若a>-3,则a>-6”的逆命题为“若a>-6,则a>-3”,为假命题,则它的否命题“若a≤-3,则a≤-6”也必为假命题;它的逆否命题“若a≤-6,则a≤-3”为真命题.故真命题的个数为2.3.与命题“能被6整除的整数,一定能被3整除”等价的命题是( )A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,能被3整除解析:选B 即写命题“若一个整数能被6整除,则一定能被3整除”的逆否命题.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题 B.互否命题C.互为逆否命题 D.以上都不正确解析:选A 设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”.故q与r为互逆命题.5.下列四个命题:①“若xy=0,则x=0,且y=0”的逆否命题;②“正方形是矩形”的否命题;③“若ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为( ) A.0 B.1C .2D .3解析:选B 命题①的逆否命题是“若x ≠0,或y ≠0,则xy ≠0”,为假命题; 命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题; 命题③的逆命题是“若a >b ,则ac 2>bc 2”,为假命题;命题④为真命题,当m >2时,方程x 2-2x +m =0的判别式Δ<0,对应二次函数图象开口向上且与x 轴无交点,所以函数值恒大于0.二、填空题6.命题“若x ≠1,则x 2-1≠0”的真假性为______.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是“若x 2-1=0,则x =1”,因为x 2-1=0时,x =±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________. 解析:由已知得,若1<x <2成立, 则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2.∴1≤m ≤2.答案:[1,2] 8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________________________________________________________________________; 互为否命题的有________________________________________________________________________; 互为逆否命题的有________________________________________________________________________. (填序号)解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤ 三、解答题9.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. (1)等高的两个三角形是全等三角形;(2)弦的垂直平分线平分弦所对的弧.解:(1)逆命题:若两个三角形全等,则这两个三角形等高.它是真命题.否命题:若两个三角形不等高,则这两个三角形不全等.它是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高.它是假命题.(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.它是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.它是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.它是真命题.10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集”.判断其真假如下:抛物线y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0.即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真命题.。

高中数学课时提升作业三1.1.3四种命题间的相互关系含解析新人教A版选修1

高中数学课时提升作业三1.1.3四种命题间的相互关系含解析新人教A版选修1

课时提升作业三四种命题间的相互关系一、选择题(每小题4分,共12分)1.命题“若p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则qB.若q,则pC.若q,则pD.若q,则p【解题指南】利用命题的等价关系判断.【解析】选C.“若p,则q”的逆否命题是“若q,则p”,又因为互为逆否命题所以真假性相同.所以“若q,则p”一定是真命题.2.(2016·三明高二检测)下列命题中为真命题的是( )A.命题“若x>2016,则x>0”的逆命题B.命题“若xy=0,则x=0或y=0”的否命题C.命题“若x2+x-2=0,则x=1”D.命题“若x2≥1,则x≥1”的逆否命题【解析】选B.A.命题“若x>2016,则x>0”的逆命题为命题“若x>0,则x>2016”,显然命题为假;B.命题“若xy=0,则x=0或y=0”的逆命题为“若x=0或y=0,则xy=0”,显然命题为真,则原命题的否命题也为真;C.解x2+x-2=0得x=1或x=-2.所以命题“若x2+x-2=0,则x=1”为假;D.x2≥1⇒x≤-1或x≥1.所以命题“若x2≥1,则x≥1”是假命题,则其逆否命题也为假命题.3.(2016·泰安高二检测)已知命题“若a,b,c成等比数列,则b2=ac”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A.0B.1C.2D.3【解析】选B.若a,b,c成等比数列,则b2=ac,为真命题,逆命题:若b2=ac,则a,b,c成等比数列,为假命题,否命题:若a,b,c不成等比数列,则b2≠ac,为假命题,逆否命题:若b2≠ac,则a,b,c不成等比数列,为真命题,在它的逆命题、否命题、逆否命题中为真命题的有1个.【补偿训练】已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3B.2C.1D.0【解析】选B.易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.二、填空题(每小题4分,共8分)4.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是.【解析】原命题为假命题,逆否命题也为假命题,逆命题也是假命题,否命题也是假命题.故假命题个数为3. 答案:35.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m>1,则mx2-2(m+1)x+m+3>0的解集为R”的逆命题.其中真命题是.(把你认为正确命题的序号都填在横线上)【解析】原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx2-2(m+1)x+m+3>0的解集为R,由⇒⇒m>1.故⑤正确.答案:②③⑤三、解答题6.(10分)(教材P8练习改编)证明:若a2-4b2-2a+1≠0,则a≠2b+1.【证明】“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.因为a=2b+1,所以a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0,所以命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,结论正确.【补偿训练】求证:若p2+q2=2,则p+q≤2.【证明】该命题的逆否命题为若p+q>2,则p2+q2≠2.p2+q2=[(p+q)2+(p-q)2]≥(p+q)2.因为p+q>2,所以(p+q)2>4,所以p2+q2>2,即p+q>2时,p2+q2≠2成立.所以由原命题与逆否命题具有相同的真假性可知,结论正确.即若p2+q2=2,则p+q≤2.一、选择题(每小题5分,共10分)1.(2015·厦门高二检测)给出命题:已知a,b为实数,若a+b=1,则ab≤.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3B.2C.1D.0【解题指南】四种命题中原命题与逆否命题真假性一致,逆命题与否命题真假性一致,因此要判断一个命题的真假可判断其逆否命题的真假.【解析】选C.由ab≤得:a+b=1,则有ab≤,原命题是真命题,所以逆否命题是真命题;逆命题:若ab≤,则a+b=1不成立,反例a=b=0满足ab≤但不满足a+b=1,所以逆命题是假命题,否命题也是假命题.2.(2016·惠州高二检测)已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】选D.函数f(x)=e x-mx在(0,+∞)上是增函数等价于f′(x)=e x-m≥0在(0,+∞)上恒成立,即m≤e x 在(0,+∞)上恒成立,而e x>1,故m≤1,所以命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【补偿训练】命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题( )A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题【解析】选D.原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,则△ABC有一内角为”,它是真命题.二、填空题(每小题5分,共10分)3.(2016·衡阳高二检测)在“a,b是实数”的大前提之下,已知原命题是“若不等式x2+ax+b≤0的解集是非空数集,则a2-4b≥0”,给出下列命题:①若a2-4b≥0,则不等式x2+ax+b≤0的解集是非空数集;②若a2-4b<0,则不等式x2+ax+b≤0的解集是空集;③若不等式x2+ax+b≤0的解集是空集,则a2-4b<0;④若不等式x2+ax+b≤0的解集是非空数集,则a2-4b<0;⑤若a2-4b<0,则不等式x2+ax+b≤0的解集是非空数集;⑥若不等式x2+ax+b≤0的解集是空集,则a2-4b≥0.其中是原命题的逆命题、否命题、逆否命题的命题的序号依次是(按要求的顺序填写).【解题指南】根据四种命题间的关系确定【解析】“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,题目的答案是①③②.答案:①③②4.命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为,是命题(填“真”或“假”).【解题指南】求原命题的等价命题即为原命题的逆否命题,只需把原命题的条件与结论既交换又否定即可. 【解析】命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为“已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0”,是真命题.答案:已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0真三、解答题5.(10分)(2016·益阳高二检测)写出命题:“若+(y+1)2=0,则x=2且y=-1”的逆命题,否命题,逆否命题,并判断它们的真假.【解析】逆命题:若x=2且y=-1,则+(y+1)2=0,真命题;否命题:若+(y+1)2≠0,则x≠2或y≠-1,因为逆命题为真,所以否命题为真;逆否命题:若x≠2或y≠-1,则+(y+1)2≠0,显然原命题为真命题,所以逆否命题为真命题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题间的相互关系
(30分钟60分)
一、选择题(每小题5分,共40分)
1.(2017·太原检测)一个命题与它的逆命题、否命题、逆否命题这四个命题中
( )
A.真命题与假命题的个数相同
B.真命题的个数一定是奇数
C.真命题的个数一定是偶数
D.真命题的个数可能是奇数,也可能是偶数
【解析】选C.因为原命题与逆否命题同真同假,逆命题与否命题同真同假,所以真命题的个数一定是偶数.
2.(2017·青岛高二检测)与命题“若x=1,则2x2-x-1=0”等价的命题是( )
A.若x≠1,则2x2-x-1≠0
B.若x=1,则2x2-x-1≠0
C.若2x2-x-1≠0,则x≠1
D.若2x2-x-1≠0,则x=1
【解题指南】只需找其逆否命题即可.
【解析】选C.与其等价的命题为逆否命题:若2x2-x-1≠0,则x≠1.
3.命题“若a=5,则a2=25”与其逆命题、否命题、逆否命题这四个命题中,假命题是( )
A.原命题、否命题
B.原命题、逆命题
C.原命题、逆否命题
D.逆命题、否命题
【解析】选D.原命题为真,逆命题为假,逆否命题为真,否命题为假.
4.已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是( )
A.真命题,否命题:“若ab>0,则a>0或b>0”
B.真命题,否命题:“若ab>0,则a>0且b>0”
C.假命题,否命题:“若ab>0,则a>0或b>0”
D.假命题,否命题:“若ab>0,则a>0且b>0”
【解析】选B.逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab>0,则a>0且b>0”.
5.命题“若∠A=60°,则△ABC是等边三角形”的否命题“若∠A≠60°,则△ABC不是等边三角形”( )
A.为假命题
B.与原命题真假性相同
C.与原命题的逆否命题真假性相同
D.与原命题的逆命题真假性相同
【解析】选D.否命题与逆命题是等价命题.
6.(2017·石家庄高二检测)已知下列命题:
①“若xy=0,则x=0且y=0”的逆否命题;
②“正方形是菱形”的否命题;
③“若m>2,则不等式x2-2x+m>0的解集为R”.
其中真命题的个数为( )
A.0
B.1
C.2
D.3
【解析】选B.对①,原命题是假命题,其逆否命题也是假命题;
对②,其否命题是:不是正方形的四边形不是菱形,是假命题;
对③,不等式x2-2x+m>0的解集为R,需满足Δ=4-4m<0,解得m>1.而m>2满足m>1.故只有③是真命题.
7.给出命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题的个数是( )
A.0
B.2
C.3
D.4
【解析】选B.因为原命题为真,逆命题为假,故逆否命题为真,否命题为假.
8.若一个命题的逆命题、否命题、逆否命题中有且只有一个是真命题,我们就把这个命题叫做“正向真命题”.给出以下命题:①函数y=x2(x∈R)是偶函数;②若两条直线相交,则它们的倾斜角一定不相等;③α,β,γ为三个不同的平面,若α⊥γ,β⊥γ,则α∥β;④若a·c=b·c,则a=b;⑤若m+n≤2,则m≤1或n≤1.其中是“正向真命题”的序号是( )
A.①⑤
B.②③
C.③④
D.②④
【解析】选A.①中命题是真命题,其逆命题为“若一个函数是偶函数,则这个函数是y=x2,是假命题,故它是“正向真命题”;②中命题是真命题,其逆命题为“若两条直线的倾斜角不相等,则它们一定相交”,也是真命题,所以②中命题不是“正向真命题”;③、④中命题都是假命题,所以它们都不是“正向真命题”;⑤中命题的逆否命题是“若m>1且n>1,则m+n>2”是真命题,而它的否命题是“若m+n>2,则n>1且m>1”,显然不是真命题,所以这个命题是“正向真命题”.综上,是“正向真命题”的序号是①⑤.
二、填空题(每小题5分,共10分)
9.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题为____________命题,逆命题为__________命题.(填“真”或“假”)
【解析】逆否命题为:a,b都小于1,则a+b<2是真命题,
所以原命题是真命题,逆命题为:若a,b中至少有一个不小于1,则a+b≥2,例如a=3,b=-3满足条件a,b中至少有一个不小于1,但此时a+b=0,故逆命题是假命题.
答案:真假
10.命题“若x≠1,则x2-1≠0”的真假性为________.
【解析】可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x2-1=0,则x=1”,因为x2-1=0时,x=±1,所以该命题是假命题,因此原命题是假命题.
答案:假
三、解答题
11.(10分)证明:若m2+n2=2,则m+n≤2.
【证明】将“若m2+n2=2,则m+n≤2”视为原命题,则它的逆否命题为“若m+n>2,则m2+n2≠2”.
由于m+n>2,m2+n2≥2mn,则2(m2+n2)≥m2+n2+2mn=(m+n)2,则m2+n2≥(m+n)2>×22=2,
所以m2+n2≠2.
故原命题的逆否命题为真命题,从而原命题也为真命题.
【能力挑战题】
若a2+b2=c2,求证:a,b,c不可能都是奇数.
【证明】若a,b,c都是奇数,则a2,b2,c2都是奇数.
得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,
即原命题的逆否命题为真,故原命题也为真命题.
所以a,b,c不可能都是奇数.。

相关文档
最新文档